Surfaces in flat pseudo-Riemannian space forms with zero mean curvature vector

Naoya Ando

Abstract Let F be a space-like and conformal immersion of a Riemann surface M into an $(n + 2)$-dimensional flat pseudo-Riemannian space form with zero mean curvature vector. Then $\psi = \partial F = \Psi dw$ is a holomorphic 1-form on M valued in a complex quadric in C^{n+2}. We will define a (-1)-map Ψ_{-1} of Ψ. In addition, for $k = 2, \ldots, [(n + 1)/2]$, we will define a $(-k)$-map Ψ_{-k} of Ψ if Ψ_{-k+1} is already defined, not identically zero and valued in the closure of a complex quadric. We will see that Ψ_{-1} is valued in a suitable complex quadric in C^n if and only if the Hopf quartic differential of F vanishes. We will obtain characterizations of a holomorphic immersion and its analogues in terms of $\Psi_{-1}, \Psi_{-2}, \ldots, \Psi_{-[(n+1)/2]}$.

1 Introduction

A minimal surface in E^3 is locally given by a pair of two holomorphic functions. More generally, for a positive integer n, a minimal surface in E^{n+2} is locally given by a set of $n + 1$ holomorphic functions. We can define special classes of minimal surfaces in E^{n+2}, adopting formulations by smaller sets of holomorphic functions. For example, an isotropic minimal surface in E^4 is locally given by a pair of two holomorphic functions. An isotropic minimal surface in E^4 is just a minimal surface in E^4 with zero Hopf quartic differential. A minimal surface in E^{n+2} with zero Hopf quartic differential is superconformal (we can refer to [4] for superconformal surfaces) and locally given by a set of n holomorphic functions.

Suppose that n is even. Then an immersed complex curve in $C^{n+1} = E^{n+2}$ is a minimal surface. If $n = 2$, then an immersed complex curve in $C = E^4$ is an isotropic minimal surface and any isotropic minimal surface is congruent in E^4 with an immersed complex curve in $C^2 = E^4$. On the other hand, if $n > 2$, then the Hopf quartic differential on an immersed complex curve in $C^{n+1} = E^{n+2}$ vanishes and there exists a minimal surface in E^{n+2} with zero Hopf quartic differential which is not congruent in E^{n+2} with any immersed complex curves in $C_{2}^{n+1} = E^{n+2}$.

Let F be a conformal and minimal immersion of a Riemann surface M into E^{n+2} and w a local complex coordinate of M. Then $\Psi = \Psi_0 := dF(\partial/\partial w)$ gives a holomorphic map into C^{n+2}, and it is valued in the standard complex quadric Q^{n+1} in C^{n+2}. Since F is an immersion, we have $\Psi \neq 0$ and Ψ gives the Gauss map of F. We see that $\psi := \Psi dw$ does not depend on the choice of w and therefore ψ is a Q^{n+1}-valued holomorphic 1-form defined on M. In the present paper, we will define a $(-k)$-map Ψ_{-k} of Ψ for $k \in$
A \((-k)\)-map \(\Psi_{-k}\) is a \((\mathbb{CP}^1)^{n+2-2k}\)-valued meromorphic function and we will define a \((-k)\)-map \(\Psi_{-k}\) of \(\Psi\) in the case where \(\Psi_{-k+1}\) is already defined, not identically zero and valued in the closure \(\overline{Q^{n+3-2k}}\) of \(Q^{n+3-2k}\) in \((\mathbb{CP}^1)^{n+4-2k}\). We will see that \(\Psi_{-k} := \Psi_{-k} dw\) does not depend on the choice of \(w\) and that the Hopf quartic differential of \(F : M \rightarrow E^{n+2}\) vanishes if and only if a \((-1)\)-map \(\Psi_{-1}\) of \(\Psi\) is valued in \(\overline{Q^{n-1}}\). Suppose that \(n\) is even. Then a holomorphic immersion \(F : M \rightarrow C_+^{n+1} = E^{n+2}\) satisfies \(\Psi_{-1} \equiv 0\), \(\Psi_{-2} \equiv 0\), ..., \(\Psi_{-\frac{n+1}{2}} \equiv 0\) or a condition that \(\Psi_{-\frac{n}{2}}\) is defined and valued in \(\overline{Q^1}\). We will see that for a minimal immersion \(F : M \rightarrow E^{n+2}\), if \(\Psi_{-l} \equiv 0\) for an integer \(l \in \{1, 2, \ldots, \frac{n}{2} - 1\}\) or if \(\Psi_{-\frac{n}{2}}\) is defined and valued in \(\overline{Q^1}\), then there exists an element \(A\) of \(O(n+2)\) such that \(FA\) is a holomorphic immersion of \(M\) into \(C_+^{n+1} = E^{n+2}\). We will have an analogous discussion on the case where \(n\) is odd: if \(n\) is odd, then for a holomorphic immersion \(F' : M \rightarrow C_+^{n+1}\), \(F := (F', 0)\) is a minimal immersion into \(E^{n+2}\) satisfying \(\Psi_{-1} \equiv 0\), \(\Psi_{-2} \equiv 0\), ..., \(\Psi_{-\frac{n+1}{2}} \equiv 0\) or \(\Psi_{-\frac{n+1}{2}} \equiv 0\); we will see that for a minimal immersion \(F : M \rightarrow E^{n+2}\), if \(\Psi_{-l} \equiv 0\) for an integer \(l \in \{1, 2, \ldots, \frac{n+1}{2}\}\), then there exists an element \(A\) of \(O(n+2)\) such that \(FA\) is represented as \((F', 0)\) by a holomorphic immersion \(F' : M \rightarrow C_+^{n+1}\). In addition, we will have analogous discussions on space-like and conformal immersions of \(M\) into flat pseudo-Riemannian space forms with zero mean curvature vector. For example, if \(n\) is even, then for a holomorphic immersion \(F' : M \rightarrow C_+^{n+1}\), a light-like vector \(c\) of \(E_1^2\) and a harmonic function \(h\) on \(M\), \(F := (F', hc)\) is a space-like and conformal immersion of \(M\) into a flat Lorentz space form \(E_1^{n+2}\) with zero mean curvature vector satisfying \(\Psi_{-1} \equiv 0\), \(\Psi_{-2} \equiv 0\), ..., \(\Psi_{-\frac{n+1}{2}} \equiv 0\) or a condition that \(\Psi_{-\frac{n}{2}}\) is defined and valued in \(\overline{Q^1}\), where \(\overline{Q^1}\) is the closure of \(Q^1 = \{(z^1, z^2) \in C^2 \mid (z^1)^2 - (z^2)^2 = 0\}\) in \((\mathbb{CP}^1)^2\); we will see that for a space-like and conformal immersion \(F : M \rightarrow E_1^{n+2}\) with zero mean curvature vector, if \(\Psi_{-l} \equiv 0\) for an integer \(l \in \{1, 2, \ldots, \frac{n}{2} - 1\}\) or if \(\Psi_{-\frac{n}{2}}\) is defined and valued in \(\overline{Q^1}\), then there exists an element \(A\) of \(O(n+1, 1)\) such that \(FA\) is represented as \((F', hc)\) by a holomorphic immersion \(F' : M \rightarrow C_+^{n+1}\), a light-like vector \(c\) of \(E_1^2\) and a harmonic function \(h\) on \(M\).

Remark The Hopf quartic differential is a complex quartic differential \(Q\) defined on a space-like surface in a pseudo-Riemannian space form. This is considered to be a generalization of the Hopf differential on a surface in a 3-dimensional space form. We see by the equations of Codazzi that if the mean curvature vector of the surface vanishes, then \(Q\) is holomorphic. We can refer to [2] and its references for the Hopf quartic differential.

Remark We can refer to [3], [4] for \(k\)-isotropicity of minimal surfaces in \(E^{n+2}\). We can find a characterization of an immersed complex curve in terms of \(k\)-isotropicity and a representation formula of \(k\)-isotropic minimal surfaces ([3]). We will see that the \(k\)-isotropicity of a minimal immersion \(F\) into \(E^{n+2}\) is characterized in terms of a \((-k)\)-map \(\Psi_{-k}\) of \(\Psi\).
Remark We can find a characterization of an immersed complex curve in \(C^2 = E^4 \) in terms of the induced metric and a holomorphic cubic differential ([1]).

Remark We can refer to [2], [5] and [6] for isotropic minimal surfaces in oriented 4-dimensional Riemannian manifolds.

2 Holomorphic maps valued in complex quadrics and the Hopf quartic differentials

Let \(n \) be a positive integer. Let \(p, q \) be nonnegative integers satisfying \(p + q = n \). Let \(E_n^{n+2} \) be an \((n + 2)\)-dimensional flat pseudo-Riemannian space form with signature \((p + 2, q)\). We suppose that \(E_n^{n+2} \) is simply connected and complete. Then \(E_n^{n+2} \) is diffeomorphic to \(R^{n+2} \) and equipped with a nondegenerate metric \(\langle , \rangle \) defined by

\[
\langle x, y \rangle := \sum_{i=1}^{p+2} x^i y^i - \sum_{j=p+3}^{n+2} x^j y^j \tag{2.1}
\]

for \(x := (x^1, \ldots, x^{n+2}) \), \(y := (y^1, \ldots, y^{n+2}) \in R^{n+2} \). Let \(M \) be a Riemann surface and \(F : M \rightarrow E_n^{n+2} \) a space-like and conformal immersion of \(M \) into \(E_n^{n+2} \) with zero mean curvature vector. If we represent \(F \) as \(F = (F^1, \ldots, F^{n+2}) \), then each \(F^i \) is harmonic. Therefore, for any local complex coordinate \(w \) of \(M \), \(\Psi : = dF(\partial_w) = (\partial_w F^1, \ldots, \partial_w F^{n+2}) \) is considered as a holomorphic map into \(C^{n+2} \), where \(\partial_w := \partial/\partial w \). In addition, since \(F \) is conformal, \(\Psi \) is valued in a complex quadric

\[
Q_{q}^{n+1} := \{ z \in C^{n+2} | \langle z, z \rangle = 0 \},
\]

where

\[
\langle z, z \rangle := \sum_{i=1}^{p+2} (z^i)^2 - \sum_{j=p+3}^{n+2} (z^j)^2, \quad z := (z^1, \ldots, z^{n+2}). \tag{2.2}
\]

We see that \(\Psi dw \) is a \(Q_{q}^{n+1} \)-valued 1-form on \(M \) and does not depend on the choice of a local complex coordinate \(w \). Since \(\langle \Psi, \Psi \rangle = 0 \), we obtain \(\langle \Psi, \Psi_w \rangle = 0 \), where \(\Psi_w := (\partial_w^2 F^1, \ldots, \partial_w^2 F^{n+2}) \).

Let \(\nu_1, \ldots, \nu_n \) form a local frame of the normal bundle on \(M \) with respect to \(F \) satisfying \(\langle \nu_i, \nu_j \rangle = \varepsilon_i \delta_{ij} \) for \(\varepsilon_i = 1 \ (i = 1, \ldots, p) \) and \(\varepsilon_i = -1 \ (i = p+1, \ldots, p+q) \). Considering each \(\nu_i \) to be an \(R^{n+2} \)-valued function, we obtain \(\langle \Psi, \nu_i \rangle = 0 \). Let \(\Phi_1, \ldots, \Phi_n \) be complex quadratic differentials defined by

\[
\Phi_i := \phi_i dw \otimes dw, \quad \phi_i := \langle \Psi_w, \nu_i \rangle \ (i = 1, \ldots, n). \tag{2.3}
\]
Each Φ_i does not depend on the choice of w. We see by (2.3) that

$$Q := \sum_{i=1}^{n} \varepsilon_i \Phi_i \otimes \Phi_i = \left(\sum_{i=1}^{n} \varepsilon_i \phi_i^2 \right) dw \otimes dw \otimes dw \otimes dw$$ \hspace{1cm} (2.4)$$

does not depend on the choice of a local frame $\{\nu_1, \ldots, \nu_n\}$ satisfying $\langle \nu_i, \nu_j \rangle = \varepsilon \delta_{ij}$. Therefore we can define a complex quartic differential Q on M by (2.4). We call Q the **Hopf quartic differential** of $F : M \rightarrow E_{q+2}^n$. By the equations of Codazzi, we see that $\sum_{i=1}^{n} \varepsilon_i \phi_i^2$ is holomorphic. Hence the Hopf quartic differential Q of a space-like and conformal immersion $F : M \rightarrow E_{q+2}^n$ with zero mean curvature vector is holomorphic. If $n = p = 1$, then Φ_1 is the Hopf differential on M with respect to F.

We represent Ψ as

$$\Psi = (\Psi, t_1) t_1 + (\Psi, t_2) t_2 + \sum_{i=1}^{n} (\Psi, \nu_i) \nu_i,$$ \hspace{1cm} (2.5)$$

where t_1, t_2 are \mathbb{R}^{n+2}-valued functions satisfying

$$t_1 - \sqrt{-1} t_2 = \frac{\sqrt{2}}{\langle \Psi, \Psi \rangle} \Psi.$$

We obtain

$$t_1 = \frac{1}{\sqrt{2 \langle \Psi, \Psi \rangle}} (\Psi + \overline{\Psi}), \hspace{1cm} t_2 = \frac{1}{\sqrt{-2 \langle \Psi, \Psi \rangle}} (-\Psi + \overline{\Psi}).$$

Therefore, by $\langle \Psi, \Psi \rangle = 0$, we obtain

$$\langle \Psi, t_1 \rangle t_1 + \langle \Psi, t_2 \rangle t_2 = \frac{\langle \Psi, \overline{\Psi} \rangle}{\langle \Psi, \Psi \rangle} \Psi.$$ \hspace{1cm} (2.6)$$

By (2.3), we obtain

$$\left\langle \sum_{i=1}^{n} (\Psi, \nu_i) \nu_i, \sum_{i=1}^{n} (\Psi, \nu_i) \nu_i \right\rangle = \sum_{i=1}^{n} (\nu_i, \nu_i) \langle \Psi, \nu_i \rangle^2 = \sum_{i=1}^{n} \varepsilon_i \phi_i^2.$$ \hspace{1cm} (2.7)$$

Therefore, from (2.5), (2.6) and (2.7), we obtain

$$\langle \Psi, \Psi \rangle = \sum_{i=1}^{n} \varepsilon_i \phi_i^2.$$ \hspace{1cm} (2.8)$$

In particular, from (2.4) and (2.8), we obtain

Proposition 2.1 The Hopf quartic differential Q of $F : M \rightarrow E_{q+2}^n$ vanishes if and only if $\langle \Psi, \Psi \rangle = 0$.

3 A \((-1)\)-map of \(\Psi\)

We represent \(\Psi\) as \(\Psi = (\Psi^1, \ldots, \Psi^{n+2})\). Noticing that \(\text{Re} \, \Psi\) and \(\text{Im} \, \Psi\) are linearly independent, we can suppose that on a neighborhood of a point, \(\Psi^1 + \sqrt{-1} \Psi^2\) is nowhere zero. Let \(f_*\) be a holomorphic function of \(w\) on such a neighborhood satisfying

\[
f_*^2 = -\frac{1}{2} (\Psi^1 + \sqrt{-1} \Psi^2).
\]

Then \(f_*\) satisfies

\[
4f_*^4 + 4\Psi^1 f_*^2 - \sum_{i=1}^{n} \varepsilon_i (\Psi^{i+2})^2 = 0.
\]

We set \(f_i := \Psi^{i+2}/f_*\ (i = 1, 2, \ldots, n)\). Then \(\Psi^1, \ldots, \Psi^{n+2}\) are represented as

\[
\begin{aligned}
\Psi^1 &= -f_*^2 + \sum_{i=1}^{n} \varepsilon_i f_i^2, \\
\Psi^2 &= \sqrt{-1} \left(f_*^2 + \sum_{i=1}^{n} \varepsilon_i f_i^2 \right), \\
\Psi^{i+2} &= 2f_* f_i \quad (i = 1, \ldots, n).
\end{aligned}
\]

We obtain

\[
\langle \Psi_w, \Psi_w \rangle = 4 \sum_{i=1}^{n} \varepsilon_i ((f_i)_w f_* - f_i (f_*)_w)^2.
\]

We set

\[
\Psi_{-1}^i := \left(\frac{f_i}{f_*} \right)_w = - \left(\frac{\Psi^{i+2}}{\Psi^1 + \sqrt{-1} \Psi^2} \right)_w \quad (i = 1, \ldots, n).
\]

Then (3.2) can be rewritten into

\[
\langle \Psi_w, \Psi_w \rangle = 4f_*^4 \sum_{i=1}^{n} \varepsilon_i (\Psi_{-1}^i)^2.
\]

We set \(\Psi_{-1} := (\Psi_{-1}^1, \ldots, \Psi_{-1}^n)\). Then \(\Psi_{-1}\) is a holomorphic map into \(\mathbb{C}^n\). By Proposition 2.1 together with (3.3), we obtain

Proposition 3.1 The Hopf quartic differential \(Q\) of \(F : M \rightarrow E^{n+2}_q\) vanishes if and only if \(\Psi_{-1}\) is valued in \(Q_{q-1}^{n-1}\).

Remark We see that \(\Psi_{-1} dw\) does not depend on the choice of \(w\). Suppose that \(\Psi^1 + \sqrt{-1} \Psi^2\) can become zero but that it is not identically zero on \(M\). Then we can define by \(\Psi_{-1}^i dw\) a meromorphic 1-form on \(M\) for each \(i \in \{1, \ldots, n\}\). We set \(\overline{\mathbb{C}} := \mathbb{C} P^1 = \mathbb{C} \cup \{\infty\}\). We denote by \(Q_{q-1}^{n-1}\) the closure of \(Q_{q-1}^{n-1}\) in \(\overline{\mathbb{C}}^n\). Then we see that the Hopf quartic differential \(Q\) of \(F : M \rightarrow E^{n+2}_q\) vanishes if and only if a \(\overline{\mathbb{C}}^n\)-valued meromorphic 1-form \(\Psi_{-1} dw\) on \(M\) is valued in \(Q_{q-1}^{n-1}\).

We call \(\Psi_{-1}\) a \((-1)\)-map of \(\Psi\).
4 Examples

Example 4.1 Let $F : M \rightarrow E^3$ be a conformal minimal immersion. Then Ψ can be locally represented as

$$\Psi = (-f_s^2 + f_1^2, \sqrt{-1}(f_s^2 + f_1^2), 2f_s f_1),$$

where f_s, f_1 are holomorphic functions satisfying $f_s \neq 0$. Then we obtain $\Psi_{-1} = \Psi_{1} = (f_1/f_s)_w$. Therefore Q vanishes if and only if f_1/f_s is constant. If Q vanishes, then F is totally umbilical and therefore the image is part of a plane in E^3. If f_1 vanishes, then $\Psi = f_s^2 (-1, \sqrt{-1}, 0)$. Suppose $f_1 = cf_s$ for a nonzero complex number c. Then

$$\Psi = f_s^2 ((c^2 - 1), \sqrt{-1}(c^2 + 1), 2c).$$

Therefore there exists an element A of $O(3)$ satisfying $\Psi A = \xi (-1, \sqrt{-1}, 0)$, where $\xi := (1 + |c|^2)f_s^2$.

Example 4.2 Let $F : M \rightarrow E^3_1$ be a space-like and conformal immersion with zero mean curvature vector. Then Ψ can be locally represented as

$$\Psi = (-f_s^2 - f_1^2, \sqrt{-1}(f_s^2 - f_1^2), 2f_s f_1),$$

where f_s, f_1 are holomorphic functions satisfying $f_s \neq 0$. Then we obtain $\Psi_{-1} = \Psi_{1} = (f_1/f_s)_w$. If Q vanishes, then the image by F is part of a plane in E^3. If $f_1 = cf_s$ for a complex number c, then noticing that F is space-like, we have $|c| \neq 1$ and we see that there exists an element A of $O(2, 1)$ satisfying $\Psi A = \xi (-1, \sqrt{-1}, 0)$, where $\xi := (1 - |c|^2)f_s^2$.

Example 4.3 Let $F : M \rightarrow E^4$ be a conformal minimal immersion. Then Ψ can be locally represented as

$$\Psi = (-f_s^2 + f_1^2 + f_2^2, \sqrt{-1}(f_s^2 + f_1^2 + f_2^2), 2f_s f_1, 2f_s f_2),$$

where f_s, f_1, f_2 are holomorphic functions satisfying $f_s \neq 0$. Then we obtain

$$\Psi_{-1} = (\Psi_{-1}^1, \Psi_{-1}^2) = \left(\frac{f_1}{f_s}_w, \frac{f_2}{f_s}_w\right). \quad (4.1)$$

Therefore Q vanishes if and only if one of $(f_1 \pm \sqrt{-1}f_2)/f_s$ is constant. If Q vanishes, then F is an isotropic minimal immersion. Suppose that one of $(f_1 \pm \sqrt{-1}f_2)/f_s$ is constant. If one of $f_1 \pm \sqrt{-1}f_2$ vanishes, then

$$\Psi = (-f_s^2, \sqrt{-1}f_s^2, 2f_s f_1, \pm 2\sqrt{-1}f_s f_1) \quad (4.2)$$

and therefore $\xi_1 := -f_s^2, \xi_2 := 2f_s f_1$ satisfy $\Psi = (\xi_1, -\sqrt{-1}\xi_1, \xi_2, \pm \sqrt{-1}\xi_2)$. Suppose one of $f_1 \pm \sqrt{-1}f_2 = cf_s$ for a nonzero complex number c. Then $\Psi = F_s a_s \mp F_s a_1$, where

$$F_s := f_s, \quad F_1 := 2f_s f_2,$$

$$a_s := (c^2 - 1, \sqrt{-1}(c^2 + 1), 2c, 0), \quad a_1 := (\sqrt{-1}c, -c, \sqrt{-1}, \mp 1).$$
We set
\[b_1 := a_1, \quad b_* := a_* + c\sqrt{-1}b_1 = (-1, \ \sqrt{-1}, c, \mp c\sqrt{-1}). \]
Then \(\text{Re} b_*, \text{Im} b_*, \text{Re} b_1, \text{Im} b_1 \) form an orthogonal system and the lengths of them are equal to \(\sqrt{|c|^2 + 1} \). We set
\[
\begin{align*}
u_1 &= \frac{1}{\rho} \text{Re} b_* , \quad \nu_2 = -\frac{1}{\rho} \text{Im} b_* , \quad \nu_3 = \frac{1}{\rho} \text{Re} b_1 , \quad \nu_4 = -\frac{1}{\rho} \text{Im} b_1 ,
\end{align*}
\]
where \(\rho := \sqrt{|c|^2 + 1} \). Then \(\nu_1, \nu_2, \nu_3, \nu_4 \) form an orthonormal basis of \(E^4 \) and we obtain
\[
\Psi = \xi_1 \nu_1 - \sqrt{-1}\xi_1 \nu_2 + \xi_2 \nu_3 - \sqrt{-1}\xi_2 \nu_4 ,
\]
where
\[
\xi_1 := \rho F_* , \quad \xi_2 := \rho (-\sqrt{-1}cF_* \mp F_1).
\]
Therefore we see that there exists an element \(A \) of \(O(4) \) such that \(\Psi A \) is represented as in the form of
\[
\Psi A = (\xi_1, -\sqrt{-1}\xi_1, \xi_2, -\sqrt{-1}\xi_2).
\]
This means that \(FA \) is a holomorphic immersion of \(M \) into \(C^2 \).

Example 4.4 Let \(F : M \rightarrow E^4 \) be a space-like and conformal immersion with zero mean curvature vector. Then \(\Psi \) can be locally represented as
\[
\Psi = (-f_*^2 + f_1^2 - f_2^2, \sqrt{-1}(f_*^2 + f_1^2 - f_2^2), 2f_*f_1, 2f_*f_2),
\]
where \(f_*, f_1, f_2 \) are holomorphic functions satisfying \(f_* \neq 0 \). Then we obtain (4.1). Therefore \(Q \) vanishes if and only if one of \((f_1 \pm f_2)/f_* \) is constant. If \(Q \) vanishes, then a light-like normal vector field of \(F \) is contained in a constant direction. Suppose that one of \((f_1 \pm f_2)/f_* \) is constant. If one of \(f_1 \pm f_2 \) vanishes, then
\[
\Psi = (-f_*^2, \sqrt{-1}f_*^2, 2f_*f_1, \mp 2f_*f_1)
\]
and therefore \(\xi_1 := -f_*^2, \xi_2 := 2f_*f_1 \) satisfy \(\Psi = (\xi_1, -\sqrt{-1}\xi_1, \xi_2, \mp \xi_2) \). Suppose one of \(f_1 \pm f_2 = cf_* \) for a nonzero complex number \(c \). Then \(\Psi = F_* a_* \mp \bar{F} \bar{a} \), where
\[
F_* := f_*^2, \quad \bar{F} := 2f_*f_2 , \quad a_* := (-1 + c^2, \sqrt{-1}(1 + c^2), 2c, 0), \quad \bar{a} := (c, \sqrt{-1}c, 1, \mp 1).
\]
We represent \(\bar{a} \) as
\[
\bar{a} = \frac{|c|^2}{c(1 + |c|^2)} a_* + c,
\]
where
\[
c := -\frac{1}{1 + |c|^2}(-2\text{Re} c, 2\text{Im} c, -1 + |c|^2, \pm (1 + |c|^2)).
\]
Therefore, if we set
\[u_1 := \frac{1}{1 + |c|^2} \Re a_*, \quad u_2 := -\frac{1}{1 + |c|^2} \Im a_*, \]
then we obtain
\[\Psi = \xi_1 u_1 - \sqrt{-1}\xi_1 u_2 + \xi_2 c, \]
where
\[\xi_1 := (1 + |c|^2)F_* \mp \bar{\bar{F}}, \quad \xi_2 := \mp \bar{\bar{F}}. \]
We have
\[\langle u_1, u_1 \rangle = \langle u_2, u_2 \rangle = 1, \quad \langle u_1, u_2 \rangle = \langle u_2, c \rangle = \langle u_1, c \rangle = \langle c, c \rangle = 0. \]
Therefore we see that there exists an element \(A \) of \(O(3,1) \) such that \(\Psi A \) is represented as in the form of
\[\Psi A = (\xi_1, -\sqrt{-1}\xi_1, \xi_2, \xi_2). \]

Example 4.5 Let \(F : M \rightarrow E_3^2 \) be a space-like and conformal immersion with zero mean curvature vector. Then \(\Psi \) can be locally represented as
\[\Psi = (-f_*^2 - f_1^2 - f_2^2, \sqrt{-1}(f_*^2 - f_1^2 - f_2^2), 2f_* f_1, 2f_* f_2), \]
where \(f_*, f_1, f_2 \) are holomorphic functions satisfying \(f_* \neq 0 \). Then we obtain (4.1) and therefore \(Q \) vanishes if and only if one of \((f_1 \pm \sqrt{-1}f_2) / f_* \) is constant. If \(Q \) vanishes, then \(F \) is an isotropic minimal immersion. Suppose that one of \((f_1 \pm \sqrt{-1}f_2) / f_* \) is constant. If one of \(f_1 \pm \sqrt{-1}f_2 \) vanishes, then we obtain (4.2) and therefore \(\xi_1 := -f_*^2, \xi_2 := 2f_* f_1 \) satisfy \(\Psi = (\xi_1, -\sqrt{-1}\xi_1, \xi_2, \pm \sqrt{-1}\xi_2). \) Suppose one of \(f_1 \pm \sqrt{-1}f_2 = cf_* \) for a nonzero complex number \(c \). Then \(\Psi = F_* a_* \pm F_1 a_1 \), where
\[F_* := f_*^2, \quad F_1 := 2f_* f_2, \]
\[a_* := (-1 - c^2, \sqrt{-1}(1 - c^2), 2c, 0), \]
\[a_1 := (\sqrt{-1}c, -c, -\sqrt{-1}, \pm 1). \]
Since \(F \) is space-like, we have \(|c| \neq 1 \). We set
\[b_1 := a_1, \quad b_* := a_* - \sqrt{-1}c b_1 = (-1, \sqrt{-1}, c, \mp \sqrt{-1}c), \]
and
\[u_1 := \frac{1}{\rho} \Re b_*, \quad u_2 := -\frac{1}{\rho} \Im b_*, \quad u_3 := \frac{1}{\rho} \Re b_1, \quad u_4 := -\frac{1}{\rho} \Im b_1, \]
where \(\rho := |1 - |c|^2|^{1/2} \). Then \(u_1, u_2, u_3, u_4 \) satisfy
\[\langle u_i, u_j \rangle = \begin{cases} \varepsilon & (i = j = 1, 2), \\ -\varepsilon & (i = j = 3, 4), \\ 0 & (i \neq j), \end{cases} \]
where
\[\varepsilon := \frac{1 - |c|^2}{|1 - |c|^2|}. \]

We can represent \(\Psi \) as
\[
\Psi = \xi_1 u_1 - \sqrt{-1} \xi_2 u_2 + \xi_2 u_3 - \sqrt{-1} \xi_2 u_4,
\]
where
\[\xi_1 := \rho F_*, \quad \xi_2 := \rho \left(\sqrt{-1} c F_* \pm F_1 \right). \]

Therefore there exists an element \(A \) of \(\text{O}(2, 2) \) such that \(\Psi A \) is represented as in the form of \((\xi_1, -\sqrt{-1} \xi_1, \xi_2, -\sqrt{-1} \xi_2) \).

Example 4.6 Suppose that \(p, q \) are even integers. Then \(n = p + q \) is also even. Let \(F : M \rightarrow E^{n+2}_q \) be a space-like and conformal immersion with zero mean curvature vector satisfying
\[\Psi^{2i} = -\sqrt{-1} \Psi^{2i-1} \quad (i = 1, 2, \ldots, n+2)^{\frac{1}{2}}. \] (4.3)

Then we have \(\langle \Psi_w, \Psi_w \rangle = 0 \) and therefore \(Q \) vanishes. Since
\[\Psi^{2i-1}_{-1} = -\frac{1}{2} \left(\frac{\Psi^{2i+1}}{\Psi^1} \right)_w, \quad \Psi^{2i}_{-1} = \frac{\sqrt{-1}}{2} \left(\frac{\Psi^{2i+1}}{\Psi^1} \right)_w, \]
\(\Psi_{-1} \) is valued in \(Q_{n-1}^q \).

Example 4.7 Suppose that \(p \) is even and that \(q = 2 \). Then \(n = p + 2 \) is even. Let \(F : M \rightarrow E^{n+2}_2 \) be a space-like and conformal immersion with zero mean curvature vector satisfying
\[\Psi^{2i} = -\sqrt{-1} \Psi^{2i-1} \quad (i = 1, 2, \ldots, \frac{n-2}{2}), \quad \Psi^{-1} = \Psi^{n+1}, \quad \Psi^n = \Psi^{n+2}. \]

Then \(Q \) vanishes and \(\Psi_{-1} \) is valued in \(Q_{n-1}^n \).

Example 4.8 Suppose that \(p, q \) are odd. Then \(n = p + q \) is even. Let \(F : M \rightarrow E^{n+2}_q \) be a space-like and conformal immersion with zero mean curvature vector satisfying
\[\Psi^{2i} = -\sqrt{-1} \Psi^{2i-1} \quad (i \in \left\{ 1, 2, \ldots, \frac{p+1}{2} \right\}), \quad \Psi^{2j+p+2} = -\sqrt{-1} \Psi^{2j+p+1} \quad (j \in \left\{ 1, 2, \ldots, \frac{q-1}{2} \right\}), \quad \Psi^{p+2} = \Psi^{n+2}. \] (4.4)

Then \(Q \) vanishes and \(\Psi_{-1} \) is valued in \(Q_{n-1}^q \).
Example 4.9 Suppose that p is even and that q is odd. Then $n = p + q$ is odd. Let $F : M \rightarrow E^{n+2}_q$ be a space-like and conformal immersion with zero mean curvature vector satisfying

$$\Psi^{2i} = -\sqrt{-1}\Psi^{2i-1} \left(i = 1, 2, \ldots, \frac{n+1}{2} \right), \quad \Psi^{n+2} = 0.$$

Then Q vanishes and Ψ_{-1} is valued in Q^{n-1}_q.

Example 4.10 Suppose that p is even and positive and that $q = 1$. Then $n = p + 1$ is odd. Let $F : M \rightarrow E^{n+2}_1$ be a space-like and conformal immersion with zero mean curvature vector satisfying

$$\Psi^{2i} = -\sqrt{-1}\Psi^{2i-1} \left(i = 1, 2, \ldots, \frac{n-1}{2} \right), \quad \Psi^n = \Psi^{n+2}, \quad \Psi^{n+1} = 0.$$

Then Q vanishes and Ψ_{-1} is valued in Q^{n-1}_1.

Example 4.11 Suppose that p is odd and that q is even. Then $n = p + q$ is odd. Let $F : M \rightarrow E^{n+2}_q$ be a space-like and conformal immersion with zero mean curvature vector satisfying

$$\Psi^{2i} = -\sqrt{-1}\Psi^{2i-1} \left(i = 1, 2, \ldots, \frac{p+1}{2} \right), \quad \Psi^{p+2} = 0,$$

$$\Psi^{p+2+2j} = -\sqrt{-1}\Psi^{p+2+2j} \left(j = 1, 2, \ldots, \frac{q}{2} \right).$$

Then Q vanishes and Ψ_{-1} is valued in Q^{n-1}_q.

Example 4.12 Suppose that p is odd and that q is even and positive. Then $n = p + q$ is odd. Let $F : M \rightarrow E^{n+2}_q$ be a space-like and conformal immersion with zero mean curvature vector satisfying

$$\Psi^{2i} = -\sqrt{-1}\Psi^{2i-1} \left(i = 1, 2, \ldots, \frac{p+1}{2} \right),$$

$$\Psi^{p+2+2j} = -\sqrt{-1}\Psi^{p+2+2j} \left(j = 1, 2, \ldots, \frac{q-2}{2} \right), \quad \Psi^{p+2} = \Psi^{p+1}, \quad \Psi^{n+2} = 0.$$

Then Q vanishes and Ψ_{-1} is valued in Q^{n-1}_q.

5 A lemma for \overline{C}^{n+2}-valued meromorphic functions

Let $\Psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})$ be a \overline{C}^{n+2}-valued meromorphic function on M: each Ψ^i is a meromorphic function of a local complex coordinate w. In the next section, we need the following lemma.
Lemma 5.1 Let μ be a positive integer. Suppose
\[
\left\langle \frac{\partial^\lambda \Psi}{\partial w^\lambda}, \frac{\partial^\lambda \Psi}{\partial w^\lambda} \right\rangle = 0
\]
(5.1)
for $\lambda = 0, 1, \ldots, \mu - 1$, where $\langle \ , \ \rangle$ is as in (2.2). In addition, suppose that $\Psi^1 + \sqrt{-1}\Psi^2$ is not identically zero on M. Then
\[
\sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial^\mu}{\partial w^\mu} \left(\frac{\Psi^{i+2}}{\Psi^1 + \sqrt{-1}\Psi^2} \right) \right)^2 = \frac{1}{(\Psi^1 + \sqrt{-1}\Psi^2)^2} \left\langle \frac{\partial^\mu \Psi}{\partial w^\mu}, \frac{\partial^\mu \Psi}{\partial w^\mu} \right\rangle ,
\]
(5.2)
where ε_i is as in Section 2.

Proof Suppose $\mu = 1$. Then (5.1) means $\langle \Psi, \Psi \rangle = 0$. We set $X := \Psi^1 + \sqrt{-1}\Psi^2$. Then we obtain
\[
\sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial}{\partial w} \left(\frac{\Psi_i^{i+2}}{\Psi^1 + \sqrt{-1}\Psi^2} \right) \right)^2 = \sum_{i=1}^{n} \varepsilon_i \left(\frac{\Psi_i^{i+2} (\Psi^1 + \sqrt{-1}\Psi^2) - \Psi_i^{i+2} (\Psi^1 + \sqrt{-1}\Psi^2)}{(\Psi^1 + \sqrt{-1}\Psi^2)^2} \right)^2
\]
(5.3)
\[
= \frac{1}{X^2} \sum_{i=1}^{n} \varepsilon_i (\Psi_i^{i+2})^2 - 2 \frac{X_w}{X^3} \sum_{i=1}^{n} \varepsilon_i \Psi_i^{i+2} \Psi^{i+2} + \frac{X_w^2}{X^4} \sum_{i=1}^{n} \varepsilon_i (\Psi_i^{i+2})^2
\]
\[
= \frac{1}{X^2} \sum_{i=1}^{n} \varepsilon_i (\Psi_i^{i+2})^2 + 2 \frac{X_w}{X^3} (\Psi_i^1 \Psi_i^1 + \Psi_i^2 \Psi_i^2) - \frac{X_w^2}{X^4} (\Psi_i^1)^2 + (\Psi_i^2)^2,
\]
where we use $\langle \Psi, \Psi \rangle = 0$. The sum of the second and the third terms of the right side of (5.3) is given by $((\Psi_i^1)^2 + (\Psi_i^2)^2)/X^2$. Therefore we obtain Lemma 5.1 for $\mu = 1$. Let ν be a positive integer. Suppose that Lemma 5.1 for $\mu = 1, 2, \ldots, \nu$ is true and that (5.1) holds for $\lambda = 0, 1, \ldots, \nu$. Then we obtain
\[
\sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial^\lambda \xi^{i+2}}{\partial w^\lambda X^2} \right)^2 = 0
\]
(5.4)
for $\lambda = 0, 1, \ldots, \nu - 1$, where
\[\xi^i := \Psi_i^1 (\Psi^1 + \sqrt{-1}\Psi^2) - \Psi_i^1 (\Psi^1 + \sqrt{-1}\Psi^2).\]

By (5.4), we obtain
\[
\sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial^\nu+1}{\partial w^{\nu+1} X^2} \right)^2 = \sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial^\nu \xi^{i+2}}{\partial w^{\nu} X^2} \right)^2 = \frac{1}{X^4} \sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial^\nu \xi^{i+2}}{\partial w^{\nu}} \right)^2 ,
\]
(5.5)
Using $\xi^2 = \sqrt{-1}\xi^1$ and (5.1) for $\lambda = 0, 1, \ldots, \nu$, we obtain
\[
\sum_{i=1}^{n} \varepsilon_i \left(\frac{\partial^\nu \xi^{i+2}}{\partial w^{\nu}} \right)^2 = \left\langle \frac{\partial^\nu \xi}{\partial w^{\nu}}, \frac{\partial^\nu \xi}{\partial w^{\nu}} \right\rangle = X^2 \left\langle \frac{\partial^{\nu+1} \Psi}{\partial w^{\nu+1}}, \frac{\partial^{\nu+1} \Psi}{\partial w^{\nu+1}} \right\rangle ,
\]
(5.6)
where $\xi := (\xi^1, \xi^2, \ldots, \xi^{n+2})$. From (5.5) and (5.6), we obtain (5.2) for $\mu = \nu + 1$ and therefore we obtain Lemma 5.1 for $\mu = \nu + 1$. Thus we obtain Lemma 5.1 by induction.

\[\square \]

Remark Let n be even and $F : M \longrightarrow E^{n+2}$ a conformal minimal immersion. Then there exists an element A of $O(n + 2)$ such that ΨA is a holomorphic immersion into C^{n+1}_T if and only if (5.1) holds for any $\lambda \geq 0$ ([7, p. 173]).

6 (−k)-maps of $\overline{Q^{n+1}}_q$-valued meromorphic functions

6.1 Case 1: $2k \leq p + 2$

Let ψ be a \overline{C}^{n+2}-valued meromorphic 1-form on M: ψ is locally represented as $\psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})dw$ by $(n + 2)$ meromorphic functions $\Psi^1, \Psi^2, \ldots, \Psi^{n+2}$ of a local complex coordinate w. Suppose that ψ is valued in $\overline{Q^{n-1}}_q$. We set $\Psi := (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})$. Suppose that $\Psi^1 + \sqrt{-1}\Psi^2$ is not identically zero on M. Let ψ_{-1} be a \overline{C}^n-valued meromorphic 1-form on M defined by

$$\psi_{-1} := (\Psi_{-1}^1, \Psi_{-1}^2, \ldots, \Psi_{-1}^n)dw, \quad \psi_{i} := -\left(\frac{\Psi^{i+2}}{\Psi^1 + \sqrt{-1}\Psi^2}\right)w (i = 1, 2, \ldots, n).$$

Notice that $\Psi^{i+2}/(\Psi^1 + \sqrt{-1}\Psi^2)$ does not depend on the choice of a local complex coordinate w. We set $\Psi_{-1} := (\Psi_{-1}^1, \Psi_{-1}^2, \ldots, \Psi_{-1}^n)$ and we call Ψ_{-1} a (-1)-map of Ψ. Referring to (3.3) or using Lemma 5.1 for $\mu = 1$, we see that Ψ satisfies (5.1) for $\lambda = 1$ if and only if ψ_{-1} is valued in $\overline{Q^{n-1}}_q$.

Remark In the above discussion, it seems that Ψ^1, Ψ^2 play special roles. However, referring to (3.3) or using Lemma 5.1 for $\mu = 1$, we see that whether ψ_{-1} is valued in $\overline{Q^{n-1}}_q$ does not depend on the choice of a pair (Ψ^i, Ψ^j) with $i, j \in \{1, 2, \ldots, p + 2\}, i \neq j$ and $\Psi^i + \sqrt{-1}\Psi^j \neq 0$.

In the following, suppose that ψ_{-1} is valued in $\overline{Q^{n-1}}_q$. In addition, suppose $p \geq 2$ and that $\Psi_{-1}^1 + \sqrt{-1}\Psi_{-1}^2$ is not identically zero. Let ψ_{-2} be a \overline{C}^{n-2}-valued meromorphic 1-form on M defined by

$$\psi_{-2} := (\Psi_{-2}^1, \Psi_{-2}^2, \ldots, \Psi_{-2}^{n-2})dw, \quad \psi_{i-2} := -\left(\frac{\Psi^{i+2}}{\Psi_{-1}^1 + \sqrt{-1}\Psi_{-1}^2}\right)w (i = 1, 2, \ldots, n - 2).$$

We set $\Psi_{-2} := (\Psi_{-2}^1, \Psi_{-2}^2, \ldots, \Psi_{-2}^{n-2})$ and we call Ψ_{-2} a (-2)-map of Ψ. This definition implies that Ψ_{-2} is a (-1)-map of Ψ_{-1}. We see that $\langle (\Psi_{-1})_w, (\Psi_{-1})_w \rangle_{p,q} = 0$ if and only if ψ_{-2} is valued in $\overline{Q^{n-3}}_q$, where $\langle \ , \ \rangle_{p,q}$ denotes the complexification of the metric of E^n_q. Therefore by Lemma 5.1 for $\mu = 2$, we see that Ψ satisfies (5.1) for $\lambda = 2$ if and only if Ψ has a $\overline{Q^{n-3}}_q$-valued (-2)-map.
Remark By Lemma 5.1 for $\mu = 1, 2$, we see that whether ψ_{-2} is valued in Ω^{n-3}_q depends on neither the choice of a pair (Ψ^i, Ψ^j) as in the previous remark nor the choice of a pair (Ψ_{-1}, Ψ_{-1}) with $i, j \in \{1, 2, \ldots, p\}, \; i \neq j$ and $\Psi_{-1} + \sqrt{-1}\Psi_{-1} \neq 0$.

For a positive integer k, suppose the following:

- $2k \leq p + 2$ and $2k < n + 2$;
- for each $l \in \{1, 2, \ldots, k\}$, we have a \mathcal{C}^{n+2-2l}-valued meromorphic 1-form ψ_{-l} on M;
- for each $l \in \{1, 2, \ldots, k - 1\}$, ψ_{-l} is valued in Ω^{n+1-2l}_q;
- $\psi_{-1}, \psi_{-2}, \ldots, \psi_{-k}$ satisfy $\psi_{-l} = (\psi_{1-l})_{-1}$ for $l = 1, 2, \ldots, k$, where $\psi_0 := \psi$.

We represent ψ_{-k} as $\psi_{-k} = \Psi_{-k} dw$. We call Ψ_{-k} a $(-k)$-map of Ψ. We see that

$$\langle (\Psi_{-k+1})^w, (\Psi_{-k+1})^w \rangle_{p+4-2k, q} = 0$$

if and only if ψ_{-k} is valued in Ω^{n+1-2k}_q. Therefore by Lemma 5.1 for $\mu = k$, we see that Ψ satisfies (5.1) for $\lambda = k$ if and only if Ψ has a Ω^{n+1-2k}_q-valued $(-k)$-map.

Remark By Lemma 5.1 for $\mu = 1, 2, \ldots, k$, we see that whether ψ_{-k} is valued in Ω^{n+1-2k}_q does not depend on the choice of a pair $(\Psi^i_{-l}, \Psi^j_{-l})$ with $i, j \in \{1, 2, \ldots, p + 2 - 2l\}, \; i \neq j$ and $\Psi^i_{-l} + \sqrt{-1}\Psi^j_{-l} \neq 0$ for any $l \in \{0, 1, 2, \ldots, k - 1\}$.

Remark Noticing the representation formula of k-isotropic minimal surfaces in E^{n+2} ([3]), we see that $F : M \map E^{n+2}$ is a k-isotropic minimal immersion if and only if for each $l \in \{1, \ldots, k\}$, Ψ_{-l} is defined and valued in Ω^{n+1-2l}_q.

6.2 Case 2: $2k > p + 2$

Suppose $q \geq 2$ and that we already have a Ω^{n+1-2l}_q-valued meromorphic 1-form ψ_{-l} for each $l \in \{1, 2, \ldots, [p/2] + 1\}$ satisfying $\psi_{-l} = (\psi_{1-l})_{-1}$, where $[p/2]$ denotes the maximum of integers which do not exceed $p/2$. Then we represent $\Psi_{-[p/2]-1}$ as

$$\Psi_{-[p/2]-1} = \begin{cases}
(\tilde{\Psi}^1_{-[p/2]-1}, \tilde{\Psi}^2_{-[p/2]-1}, \ldots, \tilde{\Psi}^q_{-[p/2]-1}) & \text{if } p \text{ is even}, \\
(\tilde{\Psi}^0_{-[p/2]-1}, \tilde{\Psi}^1_{-[p/2]-1}, \tilde{\Psi}^2_{-[p/2]-1}, \ldots, \tilde{\Psi}^q_{-[p/2]-1}) & \text{if } p \text{ is odd}.
\end{cases}$$

If p is even, then we set

$$\Psi^i_{-[p/2]-2} := -\left(\frac{\tilde{\Psi}^{i+2}_{-[p/2]-1}}{\tilde{\Psi}^1_{-[p/2]-1} + \sqrt{-1}\tilde{\Psi}^2_{-[p/2]-1}}\right)^w.$$
for $i = 1, 2, \ldots, q - 2$; if p is odd, then we set

$$\Psi_{-[p/2]-2}^{-1} := -\left(\frac{\tilde{\Psi}_{-[p/2]-1}^0}{\Psi_{-[p/2]-1}^1 + \sqrt{-1}\Psi_{-[p/2]-1}^2}\right)_w$$

and

$$\Psi_{-[p/2]-2}^{-i} := -\left(\frac{\tilde{\Psi}_{-[p/2]-1}^{i+1}}{\Psi_{-[p/2]-1}^1 + \sqrt{-1}\Psi_{-[p/2]-1}^2}\right)_w$$

for $i = 2, 3, \ldots, q - 1$. Whether p is even or odd, we set

$$\Psi_{-[p/2]-2} := \left(\Psi_{-[p/2]-2}^1, \Psi_{-[p/2]-2}^2, \ldots, \Psi_{-[p/2]-2}^{n-2[p/2]-2}\right).$$

Then we obtain a $\mathcal{O}^{n-2[p/2]-2}$-valued meromorphic 1-form $\psi_{-[p/2]-2}$ on M by $\psi_{-[p/2]-2} := \Psi_{-[p/2]-2} dw$. We denote $\Psi_{-[p/2]-2} dw$ by not only $\psi_{-[p/2]-2}$ but also $(\psi_{-[p/2]-1})^{-1}$. We call $\Psi_{-[p/2]-2}$ a $(-[p/2] - 2)$-map of Ψ. We see that

$$\langle(\Psi_{-[p/2]-1})_w, (\Psi_{-[p/2]-1})_w\rangle_{p-2[p/2], q} = 0$$

if and only if $\psi_{-[p/2]-2}$ is valued in $\mathcal{O}^{n-2[p/2]-3}$. Therefore by Lemma 5.1, we see that Ψ satisfies (5.1) for $\lambda = [p/2] + 2$ if and only if Ψ has a $\mathcal{O}^{n-2[p/2]-3}$-valued $(-[p/2] - 2)$-map.

Remark By Lemma 5.1, we see that whether $\psi_{-[p/2]-2}$ is valued in $\mathcal{O}^{n-2[p/2]-3}$ depends on neither the choice of a pair $(\Psi_{i-l}^l, \Psi_{j-l}^j)$ with $i, j \in \{1, 2, \ldots, p + 2 - 2l\}$, $i \neq j$ and $\Psi_{i-l}^l + \sqrt{-1}\Psi_{j-l}^j \neq 0$ for any $l \in \{0, 1, 2, \ldots, [p/2]\}$, nor the choice of a pair $\left(\tilde{\Psi}_{-[p/2]-1}^i, \tilde{\Psi}_{-[p/2]-1}^j\right)$ with $i, j \in \{1, 2, \ldots, q\}$, $i \neq j$ and $\tilde{\Psi}_{-[p/2]-1}^i + \sqrt{-1}\tilde{\Psi}_{-[p/2]-1}^j \neq 0$.

For a positive integer k, suppose the following:

- $p + 2 < 2k < n + 2$;
- for each $l \in \{1, 2, \ldots, k\}$, we have a \mathcal{O}^{n+2-2l}-valued meromorphic 1-form ψ_l on M;
- for each $l \in \{1, 2, \ldots, [p/2] + 1\}$, ψ_l is valued in \mathcal{O}^{n+1-2l};
- for each $l \in \{[p/2] + 2, \ldots, k - 1\}$, ψ_l is valued in \mathcal{O}^{n+1-2l};
- $\psi_{-1}, \psi_{-2}, \ldots, \psi_{-k}$ satisfy $\psi_{-l} = (\psi_{1-l})^{-1}$ for $l = 1, 2, \ldots, k$.

We represent ψ_{-k} as $\psi_{-k} = \Psi_{-k} dw$. We call Ψ_{-k} a $(-k)$-map of Ψ. We see that

$$\langle(\Psi_{-k+1})_w, (\Psi_{-k+1})_w\rangle_{p-2[p/2], q+2[p/2]+4-2k} = 0$$

if and only if ψ_{-k} is valued in \mathcal{O}^{n+1-2k}. Therefore by Lemma 5.1, we see that Ψ satisfies (5.1) for $\lambda = k$ if and only if Ψ has a \mathcal{O}^{n+1-2k}-valued $(-k)$-map.
Remark By Lemma 5.1, we see that whether \(\psi_{-k} \) is valued in \(\frac{Q^{n+1-2k}}{q+2[p/2]+2-2k} \) depends on neither the choice of a pair \((\Psi^i_{-l}, \Psi^j_{-l})\) with \(i, j \in \{1, 2, \ldots, p + 2 - 2l\}, i \neq j \) and \(\Psi^i_{-l} + \sqrt{-1}\Psi^j_{-l} \neq 0 \) for any \(l \in \{0, 1, 2, \ldots, [p/2]\} \), nor the choice of a pair \((\tilde{\Psi}^i_{-l}, \tilde{\Psi}^j_{-l})\) with \(i, j \in \{1, 2, \ldots, q + 2[p/2] + 2 - 2l\}, i \neq j \) and \(\tilde{\Psi}^i_{-l} + \sqrt{-1}\tilde{\Psi}^j_{-l} \neq 0 \) for any \(l \in \{[p/2] + 1, \ldots, k - 1\}. \)

7 The main theorems

Let \(p, q \) be nonnegative integers with \(n = p + q \geq 1 \). We set

\[
K := \max\{k \in \mathbb{N} \mid 2k < n + 2\} = \left\lfloor \frac{n+1}{2} \right\rfloor, \quad a(n) := n + 2 - 2K.
\]

We define an integer \(b(p, q) \) as follows:

- if \(q = 0 \), then we set \(b(p, 0) := 0 \);
- if \(q \geq 1 \), then we set \(b(p, q) := q + 2[p/2] + 2 - 2K \).

Then we see the following:

- if \(p \) is even and if \(q = 0 \), then \((a(n), b(p, 0)) = (2, 0)\);
- if \(p, q \) are even and if \(q \) is positive, then \((a(n), b(p, q)) = (2, 2)\);
- if \(p, q \) are odd, then \((a(n), b(p, q)) = (2, 1)\);
- if \(p \) is even and if \(q \) is odd, then \((a(n), b(p, q)) = (1, 1)\);
- if \(p \) is odd and if \(q \) is even, then \((a(n), b(p, q)) = (1, 0)\).

We will prove

Theorem 7.1 Let \(\psi \) be a \(\mathcal{C}^{n+2} \)-valued meromorphic 1-form on \(M \) which is locally represented as \(\psi = \Psi dw \). Suppose that \(p, q \) are even. Then \(\Psi_{-1} \equiv 0, \Psi_{-2} \equiv 0, \ldots, \Psi_{-K+1} \equiv 0 \) or \(\Psi \) has a \(Q^{a(n)-1}_{b(p, q)} \)-valued \((-K)\)-map if and only if there exists an element \(A \) of \(\text{O}(p+2, q) \) such that \(\hat{\Psi} := \Psi A \) satisfies

\[
\hat{\Psi}^{2i} = -\sqrt{-1}\hat{\Psi}^{2i-1} \quad (i = 1, \ldots, \frac{p + 2 - 2r}{2}, \frac{p + 4}{2}, \ldots, \frac{n + 2 - 2r}{2}),
\]

\[
\hat{\Psi}^{p+2-2r+j} = \hat{\Psi}^{n+2-2r+j} \quad (j = 1, \ldots, 2r),
\]

where \(r \) is a nonnegative integer satisfying

\[
r \leq \min\left\{ \frac{p + 2}{2}, \frac{q}{2} \right\}.
\]
Remark Theorem 7.1 says that for a space-like and conformal immersion $F : M \rightarrow E^{n+2}_q$ with zero mean curvature vector, $\psi = \partial F = \Psi dw$ satisfies $\Psi_{-1} \equiv 0$, $\Psi_{-2} \equiv 0$, \ldots, $\Psi_{-K+1} \equiv 0$ or a condition that Ψ has a $Q(a(n)-1)_{b(p,q)}$-valued $(-K)$-map if and only if

$$F : M \rightarrow E^{n+2}_q \cong E^{p+2-2r}_p \oplus E^{4r}_2 \oplus E^{q-2r}_2$$

is represented as $F = (F_+, F_0, F_-)$, where

$$F_+ : M \rightarrow C^{p+2-2r}_p = E^{p+2-2r}_p, \quad F_- : M \rightarrow C^{2-2r}_2 = E^{q-2r}_2$$

are holomorphic maps and

$$F_0 : M \rightarrow E^{4r}_2 \cong \bigoplus_{i=1}^{2r} E^2_i$$

is represented as $F_0 = (h_1 c, \ldots, h_{2r} c)$ for harmonic functions $h_i (i = 1, \ldots, 2r)$ and a light-like vector $c \in E^2_1$.

Suppose that there exists an element A of $O(p+2, q)$ as in Theorem 7.1. Then we obtain (5.1) for any nonnegative integer λ. Therefore by Lemma 5.1, we see that Ψ has a $Q(a(n)-1)_{b(p,q)}$-valued $(-K)$-map, unless $\Psi_{-l} \equiv 0$ for $l = 1, 2, \ldots, K-1$. In the following, we will show that the converse is true. In particular, we suppose that p, q are even and that Ψ has a $Q(a(n)-1)_{b(p,q)}$-valued $(-K)$-map, and we will show the existence of such an element A of $O(p+2, q)$ as in Theorem 7.1.

Proposition 7.2 Suppose that p is even and that $q = 0$. Let $\Psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})$ be a C^{n+2}-valued meromorphic function on M satisfying

$$\Psi^2_i = -\sqrt{-1}\Psi^2_{-1}^{-1} \quad (i = 1, 2, \ldots, n/2). \quad (7.3)$$

Then there exists an element A of $O(n+2)$ such that ΨA is represented as in the form of (4.3).

Proof Referring to Example 4.3, we can obtain Proposition 7.2 with $p = 2$. In the following, suppose $p \geq 4$. We can suppose that on a neighborhood of a point of M, Ψ is represented as in (3.1) with $\varepsilon_i = 1$. Then (7.3) yields

$$\left(\frac{f_{2j-1} - \sqrt{-1}f_{2j}}{f_*}\right)_w = 0 \quad (j = 1, \ldots, n/2). \quad (7.4)$$

Therefore for each $j \in \{1, \ldots, n/2\}$, there exists a complex number c_j satisfying $f_{2j-1} = c_j f_* + \sqrt{-1} f_{2j}$. Then we can represent Ψ as

$$\Psi = F_* a_* + \sum_{j=1}^{n/2} F_j a_j, \quad (7.5)$$
\[F_* := f_*^2, \quad F_j := 2f_*f_{2j} \quad (j = 1, \ldots, \frac{p}{2}), \]

\[
a_* := \left(-1 + \sum_{j=1}^{\frac{p}{2}} c_j^2, \sqrt{-1} \left(1 + \sum_{j=1}^{\frac{p}{2}} c_j^2 \right), 2c_1, 0, 2c_2, 0, \ldots, 2c_{p/2}, 0 \right),
\]

\[
a_j := c_j \left(\sqrt{-1}, -1, 0, \ldots, 0 \right) + \sqrt{-1}e_{2j+1} + e_{2j+2},
\]

and \(e_\alpha\) is an element of \(R^{p+2}\) such that the \(\beta\)-th component is given by \(\delta_{\alpha,\beta}\). We have

\[
\langle a_i, a_j \rangle = 0, \quad \langle a_*, a_i \rangle = 0, \quad \langle a_*, a_* \rangle = 0. \tag{7.6}
\]

In particular, the length \(|\text{Re} a_j|\) of \(\text{Re} a_j\) is equal to the length \(|\text{Im} a_j|\) of \(\text{Im} a_j\) and \(\text{Re} a_j\) is orthogonal to \(\text{Im} a_j\) in \(E^{p+2}\) for each \(j \in \{1, \ldots, p/2, *\}\). We see that \(\{a_1, \ldots, a_{p/2}, a_*\}\) are linearly independent in \(C^{p+2}\). Referring to the Gram-Schmidt orthogonalization, we can obtain vectors \(b_j\) \((j = 1, \ldots, p/2)\), \(b_*\) of \(C^{p+2}\) as follows:

- we set \(b_1 := a_1\) and \(\rho_1 := |\text{Re} b_1| = |\text{Im} b_1|\);

- we set

\[
b_2 := a_2 - \frac{1}{2\rho_1^2} \langle a_2, \overline{b}_1 \rangle b_1,
\]

and noticing that (7.6) implies \(\langle b_2, b_2 \rangle = 0\), we set \(\rho_2 := |\text{Re} b_2| = |\text{Im} b_2|\);

- for \(j \in \{1, \ldots, p/2 - 1\}\), if we already have \(b_1, \ldots b_j\), then we set \(\rho_i := |\text{Re} b_i| = |\text{Im} b_i|\) for \(i = 1, \ldots, j\) and

\[
b_{j+1} := a_{j+1} - \frac{1}{2} \sum_{i=1}^{j} \frac{1}{\rho_i^2} \langle a_{j+1}, \overline{b}_i \rangle b_i,
\]

and noticing that (7.6) implies \(\langle b_{j+1}, b_{j+1} \rangle = 0\), we set \(\rho_{j+1} := |\text{Re} b_{j+1}| = |\text{Im} b_{j+1}|\);

- by the above procedure, we obtain vectors \(b_j\) \((j = 1, \ldots, p/2)\), and we set

\[
b_* := a_* - \frac{1}{2} \sum_{j=1}^{p/2} \frac{1}{\rho_j^2} \langle a_*, \overline{b}_j \rangle b_j
\]

and noticing that (7.6) implies \(\langle b_*, b_* \rangle = 0\), we set \(\rho_* := |\text{Re} b_*| = |\text{Im} b_*|\).

Noticing that \(\text{Re} b_j, \text{Im} b_j\) \((j = 1, \ldots, p/2, *)\) form an orthogonal system, we set

\[
u_1 := \frac{1}{\rho_*} \text{Re} b_*, \quad u_2 := -\frac{1}{\rho_*} \text{Im} b_*,
\]

\[
u_{2j+1} := \frac{1}{\rho_j} \text{Re} b_j, \quad u_{2j+2} := -\frac{1}{\rho_j} \text{Im} b_j \quad (j = 1, \ldots, \frac{p}{2}).
\]

Then \(\{ u_1, \ldots, u_{p+2} \} \) is an orthonormal basis of \(E^{p+2} \) and we see from (7.5) that there exist meromorphic functions \(\xi_1, \ldots, \xi_{p/2+1} \) satisfying

\[
\Psi = \sum_{j=1}^{q+1} \left(\xi_j u_{2j-1} - \sqrt{-1} \xi_j u_{2j} \right).
\]

Therefore there exists an element \(A \) of \(O(p + 2) \) such that \(\Psi A \) is represented as in (4.3). Hence we have proved Proposition 7.2. \(\square \)

Proposition 7.3 Suppose that \(p = 0 \) and that \(q \) is an even and positive integer. Let \(\Psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2}) \) be a \(C^{n+2} \)-valued meromorphic function on \(M \) satisfying (7.3). Then there exists an element \(A \) of \(O(2, q) \) such that \(\hat{\Psi} = \Psi A \) is represented as in the form of either (4.3) or

\[
\hat{\Psi}^1 = \hat{\Psi}^3, \quad \hat{\Psi}^2 = \hat{\Psi}^4, \quad \hat{\Psi}^{2j+4} = -\sqrt{1} \hat{\Psi}^{2j+3} \quad (j = 1, 2, \ldots, \frac{q-2}{2}).
\]

(7.7)

Proof If \(q = 2 \), then referring to Example 4.5, we can find \(A \in O(2, 2) \) satisfying either

\[
\hat{\Psi}^i_{2i-1} = -\sqrt{-1} \hat{\Psi}^{2i-1}_{2i-1} \quad (i = 1, 2) \quad \text{or} \quad \hat{\Psi}^i = \hat{\Psi}^{i+2} \quad (i = 1, 2).
\]

In the following, suppose \(q \geq 4 \). We can suppose that \(\Psi \) is locally represented as in (3.1) with \(\varepsilon_i = -1 \). Then (7.3) yields (7.4) and for each \(j \in \{ 1, \ldots, n/2 \} \), there exists a complex number \(c_j \) satisfying

\[
f_{2j-1} = c_j f_s + \sqrt{-1} f_{2j}.
\]

Then we can represent \(\Psi \) as in (7.5), where

\[
F_s := f_s^2, \quad F_j := 2 f_s f_{2j} \quad (j = 1, \ldots, \frac{q}{2}),
\]

\[
a_* := \left(-1 - \sum_{j=1}^{q/2} c_j^2, \sqrt{-1} \left(1 - \sum_{j=1}^{q/2} c_j^2 \right), 2c_1, 0, 2c_2, 0, \ldots, 2c_{q/2}, 0 \right),
\]

\[
a_j := c_j \left(-\sqrt{-1}, 1, 0, \ldots, 0 \right) + \sqrt{-1} e_{2j+1} + e_{2j+2}.
\]

We have (7.6) and we see that \(\{ a_1, \ldots, a_{q/2}, a_* \} \) are linearly independent in \(C^{q+2} \). If \(c_1 = \cdots = c_{q/2} = 0 \), then we immediately obtain Proposition 7.3. In the following, suppose that at least one of \(c_1, \ldots, c_{q/2} \) is not zero. Then we suppose \(c_{q/2} \neq 0 \). We set

\[
\tilde{a}_j := a_j - \frac{c_j}{c_{q/2}} a_{q/2} \quad (j = 1, \ldots, \frac{q}{2} - 1).
\]

(7.8)

Then noticing that the first and the second components of \(\tilde{a}_j \) are zero for each \(j = 1, \ldots, q/2 - 1 \), we see that the real and the imaginary parts of a linear combination of \(\tilde{a}_1, \ldots, \tilde{a}_{q/2-1} \) are time-like. We set \(b_1 := \tilde{a}_1 \) and

\[
\rho_1 := \sqrt{-\langle \text{Re} b_1, \text{Re} b_1 \rangle} = \sqrt{-\langle \text{Im} b_1, \text{Im} b_1 \rangle}.
\]

By \(b_1 \) and \(\rho_1 \), we set

\[
b_2 := \tilde{a}_2 + \frac{1}{2 \rho_1^2} \langle \tilde{a}_2, \bar{b}_1 \rangle b_1.
\]

18
Noticing that \(\text{Re} \, b_2 \) and \(\text{Im} \, b_2 \) are time-like, we set

\[
\rho_2 := \sqrt{-\langle \text{Re} \, b_2, \text{Re} \, b_2 \rangle} = \sqrt{-\langle \text{Im} \, b_2, \text{Im} \, b_2 \rangle}.
\]

For \(j \in \{1, \ldots, q/2 - 2\} \), if we already obtain \(b_1, \ldots, b_j \) as linear combinations of \(a_1, \ldots, a_j \), then noticing that the real and the imaginary parts are time-like, we set

\[
\rho_i := \sqrt{-\langle \text{Re} \, b_i, \text{Re} \, b_i \rangle} = \sqrt{-\langle \text{Im} \, b_i, \text{Im} \, b_i \rangle} \quad (i = 1, \ldots, j)
\]

and

\[
b_{j+1} := a_{j+1} + \frac{1}{2} \sum_{i=1}^{j} \frac{1}{\rho_i} \langle \tilde{a}_{j+1}, \tilde{b}_i \rangle b_i,
\]

\[
\rho_{j+1} := \sqrt{-\langle \text{Re} \, b_{j+1}, \text{Re} \, b_{j+1} \rangle} = \sqrt{-\langle \text{Im} \, b_{j+1}, \text{Im} \, b_{j+1} \rangle}.
\]

Then \(\text{Re} \, b_j, \text{Im} \, b_j \) \((j = 1, \ldots, q/2 - 1) \) are time-like and form an orthogonal system. We set

\[
b_{q/2} := \frac{1}{2} \sum_{j=1}^{q-1} \rho_j^{-1} \langle a_{q/2}, \tilde{b}_j \rangle b_j.
\]

Then \(\text{Re} \, b_{q/2} \) and \(\text{Im} \, b_{q/2} \) are orthogonal to each of \(\text{Re} \, b_j \) and \(\text{Im} \, b_j \) for \(j = 1, \ldots, q/2 - 1 \). We set

\[
b_* := a_* + \sqrt{-1} \sum_{j=1}^{q} c_j a_j
\]

\[
= (-1, \sqrt{-1} c_1, \sqrt{-1} c_1, \ldots, c_{q/2}, \sqrt{-1} c_{q/2})
\]

Since \(b_* \) and \(a_j \) satisfy \(\langle b_*, a_j \rangle = \langle b_*, \bar{a}_j \rangle = 0 \), \(\text{Re} \, b_* \) and \(\text{Im} \, b_* \) are orthogonal to each of \(\text{Re} \, b_j \) and \(\text{Im} \, b_j \) for \(j = 1, \ldots, q/2 \). In addition, we obtain

\[
b_{q/2} = \frac{c_{q/2}}{c} (\sqrt{-1}c_1, c, \sqrt{-1}c_1, \ldots, \sqrt{-1}c_{q/2}),
\]

\[
c := -\sqrt{-1}(|c_1|^2 + \cdots + |c_{q/2}|^2).
\]

We see the following:

• if \(\text{Re} \, b_{q/2} \) and \(\text{Im} \, b_{q/2} \) are space-like, then \(\text{Re} \, b_* \) and \(\text{Im} \, b_* \) are time-like;

• if \(\text{Re} \, b_{q/2} \) and \(\text{Im} \, b_{q/2} \) are light-like, then \(\text{Re} \, b_* \) and \(\text{Im} \, b_* \) are light-like;

• if \(\text{Re} \, b_{q/2} \) and \(\text{Im} \, b_{q/2} \) are time-like, then \(\text{Re} \, b_* \) and \(\text{Im} \, b_* \) are space-like.

We set \(\varepsilon := 1 \) (respectively, \(-1 \)) if \(\text{Re} \, b_{q/2}, \text{Im} \, b_{q/2} \) are space-like (respectively, time-like).

Suppose that \(\text{Re} \, b_{q/2} \) and \(\text{Im} \, b_{q/2} \) are space-like or time-like. Then for

\[
u_{2j-1} := \frac{1}{\rho_j} \text{Re} \, b_j, \quad u_{2j} := -\frac{1}{\rho_j} \text{Im} \, b_j \quad (j = 1, \ldots, q/2),
\]

\[
u_{q+1} := \frac{1}{\rho_*} \text{Re} \, b_*, \quad u_{q+2} := -\frac{1}{\rho_*} \text{Im} \, b_*
\]
with
\[
\rho_{q/2} := \sqrt{\varepsilon(\operatorname{Re} b_{q/2}, \operatorname{Re} b_{q/2})} = \sqrt{\varepsilon(\operatorname{Im} b_{q/2}, \operatorname{Im} b_{q/2})},
\]
\[
\rho_* := \sqrt{-\varepsilon(\operatorname{Re} b_*, \operatorname{Re} b_*)} = \sqrt{-\varepsilon(\operatorname{Im} b_*, \operatorname{Im} b_*)},
\]
there exist meromorphic functions \(\xi_1, \ldots, \xi_{q/2+1}\) satisfying
\[
\Psi = \sum_{j=1}^{q+1} (\xi_j u_{2j-1} - \sqrt{-1} \xi_j u_{2j}).
\]

Therefore there exists an element \(A\) of \(O(2, q)\) such that \(\hat{\Psi} = \Psi A\) is represented as in (4.3). Suppose that \(\operatorname{Re} b_{q/2}\) and \(\operatorname{Im} b_{q/2}\) are light-like. Then we obtain \(c = -\sqrt{-1}\) and
\[
b_{q/2} = \sqrt{-1} c_{q/2} (-1, -\sqrt{-1}, \overline{c}_1, -\sqrt{-1} \overline{c}_1, \ldots, \overline{c}_{q/2}, -\sqrt{-1} \overline{c}_{q/2}) = \sqrt{-1} c_{q/2} \overline{b}_x.
\]

Then for
\[
u_{2j-1} := \frac{1}{\rho_j} \operatorname{Re} b_j, \quad \nu_{2j} := -\frac{1}{\rho_j} \operatorname{Im} b_j \quad (j = 1, \ldots, \frac{q}{2} - 1),
\]
\[
c := \operatorname{Re} b_*, \quad c' := \operatorname{Im} b_*,
\]
there exist meromorphic functions \(\xi_1, \ldots, \xi_{q/2-1}, \xi, \xi'\) satisfying
\[
\Psi = \sum_{j=1}^{q-1} (\xi_j u_{2j-1} - \sqrt{-1} \xi_j u_{2j}) + \xi c + \xi' c'.
\]

Therefore there exists an element \(A\) of \(O(2, q)\) such that \(\hat{\Psi} = \Psi A\) is represented as in (7.7). Hence we have proved Proposition 7.3. \(\square\)

Referring to the above proof of Proposition 7.3, we can obtain

Proposition 7.4 Suppose that \(p, q\) are even and positive. Let \(\Psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})\) be a \(\mathbb{C}^{n+2}\)-valued meromorphic function on \(M\) satisfying (7.3). Then there exists an element \(A\) of \(O(p+2, q)\) such that \(\hat{\Psi} = \Psi A\) is represented as in the form of either (4.3) or (7.1) with \(r = 1\).

We will prove

Proposition 7.5 Suppose that \(p, q\) are even and positive. Let \(\Psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})\) be a \(\mathbb{C}^{n+2}\)-valued meromorphic function on \(M\) satisfying
\[
\Psi_{-1}^{2i} = -\sqrt{-1} \Psi_{-1}^{2i-1} \quad (i = 1, \ldots, \frac{p-2g}{2}, \frac{p+2}{2}, \ldots, \frac{n-2g}{2}),
\]
\[
\Psi_{-1}^{p-2g+j} = \Psi_{-1}^{n-2g+j} \quad (j = 1, \ldots, 2g),
\]
where \(g\) is a positive integer satisfying \(g \leq \min\{p/2, q/2\}\). Then there exists an element \(A\) of \(O(p+2, q)\) such that \(\hat{\Psi} = \Psi A\) is represented as in the form of (7.1) with \(r = g - 1, g\) or \(g + 1\).
Proof. We represent Ψ as in (3.1). Then by (7.10), we have
\[
\left(\frac{f_{2i}}{f_n}\right)_{w} = -\sqrt{-1}\left(\frac{f_{2i-1}}{f_n}\right)_{w} \quad (i = 1, \ldots, \frac{p}{2} - g, \frac{p}{2} + 1, \ldots, \frac{n}{2} - g),
\]
\[
\left(\frac{f_{p-2g+j}}{f_n}\right)_{w} = \left(\frac{f_{n-2g+j}}{f_n}\right)_{w} \quad (j = 1, \ldots, 2g).
\]

Therefore there exist complex numbers c_i, d_j satisfying
\[
f_{2i-1} = c_if_* + \sqrt{-1}f_{2i}, \quad f_{p-2g+j} = d_jf_* + f_{n-2g+j}.
\]

Then we can represent Ψ as
\[
\Psi = F_*a_* + \sum_{i=1}^{\frac{n}{2}-g} F_i a_i + \sum_{j=1}^{2g} F'_j a'_j + \sum_{i=\frac{p}{2}+1}^{\frac{n}{2}-g} F_i a_i,
\]
where
\[
F_* := f_*^2, \quad F_i := 2f_*f_{2i} \quad (i = 1, \ldots, \frac{p}{2} - g, \frac{p}{2} + 1, \ldots, \frac{n}{2} - g),
\]
\[
F'_j := 2f_*f_{n-2g+j} \quad (j = 1, \ldots, 2g)
\]
and
\[
a_* := \left(-1 + \sum_{i=1}^{\frac{n}{2}-g} c_i^2 - \sum_{i=\frac{p}{2}+1}^{\frac{n}{2}-g} c_i^2 + \sum_{j=1}^{2g} d_j^2\right) e_1
\]
\[
+ \sqrt{-1} \left(1 + \sum_{i=1}^{\frac{n}{2}-g} c_i^2 - \sum_{i=\frac{p}{2}+1}^{\frac{n}{2}-g} c_i^2 + \sum_{j=1}^{2g} d_j^2\right) e_2
\]
\[
+ 2 \sum_{i=1}^{\frac{n}{2}-g} c_i e_{2i+1} + 2 \sum_{j=1}^{2g} d_j e_{2+p-2g+j} + 2 \sum_{i=\frac{p}{2}+1}^{\frac{n}{2}-g} c_i e_{2i+1},
\]
\[
a_i := c_i \left(\sqrt{-1}, -1, 0, \ldots, 0\right) + \sqrt{-1} e_{2i+1} + e_{2i+2},
\]
\[
a'_j := d_j \left(1, \sqrt{-1}, 0, \ldots, 0\right) + e_{2+p-2g+j} + e_{2+n-2g+j}.
\]

We see the following:

- $\text{Re} \ a_i, \text{Im} \ a_i \ (i = 1, \ldots, p/2 - g)$ are space-like;

- if $c_i = 0$ for $i = p/2 + 1, \ldots, n/2 - g$, then $\text{Re} \ a_i, \text{Im} \ a_i \ (i = p/2 + 1, \ldots, n/2 - g)$ are time-like, and if at least one of $c_i \ (i = p/2 + 1, \ldots, n/2 - g)$ is not zero and if $c_{n/2-g} \neq 0$, then the real and the imaginary parts of
\[
\bar{a}_i := a_i - \frac{c_i}{c_{n/2-g}} a_{n/2-g} \quad (i = \frac{p}{2} + 1, \ldots, \frac{n}{2} - g - 1)
\]
are time-like.
\begin{itemize}
 \item if \(d_j = 0\) (respectively, \(d_j \neq 0\)) for \(j \in \{1, \ldots, 2g\}\), then \(\text{Re} \, a'_j\), \(\text{Im} \, a'_j\) are light-like (respectively, space-like).
\end{itemize}

We can suppose that there exists a nonnegative integer \(k\) satisfying \(d_j = 0\) for \(j = 1, \ldots, k\) and \(d_j \neq 0\) for \(j = k + 1, \ldots, 2g\). Then from \(a_i = i = 1, \ldots, p/2 - g\) and \(a'_j = (j = k + 1, \ldots, 2g)\), we obtain vectors \(b_i = i = 1, \ldots, p/2 + g - k\) such that \(\text{Re} \, b_i\), \(\text{Im} \, b_i\) are space-like and form an orthogonal system. Suppose \(c_i = 0\) for \(i = p/2 + 1, \ldots, n/2 - g\). Then \(\text{Re} \, a_s\), \(\text{Im} \, a_s\) are space-like and from \(a_s\), we obtain \(b_s\) such that \(\text{Re} \, b_s\), \(\text{Im} \, b_s\) are space-like and form an orthogonal system. Noticing Proposition 7.2, we suppose

\[
\hat{\Psi} = \Psi_{k+1} \Psi_k^{-1} \quad (k = 1, \ldots, p/2 - g - 1) \quad \text{and} \quad \hat{\Psi} = \Psi_k^{-1} \quad (k = p/2 + 1, \ldots, n/2 - g).
\]

This implies \(k \geq g\). We see that for vectors \(\hat{b}_i = a_i = i = p/2 + 1, \ldots, n/2 - g\), \(\text{Re} \, \hat{b}_i\), \(\text{Im} \, \hat{b}_i\) are time-like and form an orthogonal system. Let \(W\) be a subspace of \(E^{n+2}_q\) generated by \(\text{Re} \, \hat{b}_i\), \(\text{Im} \, \hat{b}_i\) and \(\hat{W}\) a subspace of \(E^{n+2}_q\) generated by \(\text{Re} \, \hat{b}_i\), \(\text{Im} \, \hat{b}_i\), \(i = p/2 + 1, \ldots, n/2 - g\). Then \(W\) is orthogonal to \(\hat{W}\).

Noticing \(a'_j = e_{2+p-2g+j} + e_{2+n-2g+j}\) and that \(e_{2+p-2g+j} + e_{2+n-2g+j}\) are orthogonal to both \(W\) and \(\hat{W}\), we obtain \(k = 2g\). Then we obtain (7.1) with \(r = g\). In the following, suppose \(c_{n/2-g} \neq 0\). From \(\hat{a}_i = i = p/2 + 1, \ldots, n/2 - g\), we obtain vectors \(\hat{b}_i = i = p/2 + 1, \ldots, n/2 - g\) such that \(\text{Re} \, \hat{b}_i\), \(\text{Im} \, \hat{b}_i\) are time-like and form an orthogonal system. Let \(W\) be a subspace of \(E^{n+2}_q\) generated by \(\text{Re} \, \hat{b}_i\), \(\text{Im} \, \hat{b}_i\) and \(\hat{W}\) a subspace of \(E^{n+2}_q\) generated by \(\text{Re} \, \hat{b}_i\), \(\text{Im} \, \hat{b}_i\), \(i = p/2 + 1, \ldots, n/2 - g\). Then \(W\) is orthogonal to \(\hat{W}\).

Applying Proposition 7.3 to \(\hat{\Psi} = \Psi_{-[p/2]-1} A_{-[p/2]-1}\) such that \(\hat{\Psi} = \Psi_{-[p/2]-1} A_{-[p/2]-1}\) satisfies

\[
\hat{\Psi}^2_{-[p/2]-1} = \sqrt{-1} \hat{\Psi}^{2i-1}_{-[p/2]-1} \quad (i = 1, \ldots, q/2).
\]

Applying Proposition 7.3 to \(\hat{\Psi} = \Psi_{-[p/2]} A_{-[p/2]}\) such that \(\hat{\Psi} = \Psi_{-[p/2]} A_{-[p/2]}\) satisfies

\[
\hat{\Psi}^2_{-[p/2]} = \sqrt{-1} \hat{\Psi}^{2i-1}_{-[p/2]} \quad (i = 1, \ldots, q/2 + 1)
\]

or

\[
\hat{\Psi}^3 = \hat{\Psi}^3, \quad \hat{\Psi}^2 = \hat{\Psi}^4, \quad \hat{\Psi}^{2j+4} = \sqrt{-1} \hat{\Psi}^{2j+3} \quad (j = 1, 2, \ldots, q/2 - 2).
\]

Applying Proposition 7.5 to \(\hat{\Psi} = \Psi_{-[p/2]-1} A_{-[p/2]-1}\) such that \(\hat{\Psi} = \Psi_{-[p/2]-1} A_{-[p/2]-1}\) satisfies (7.1) for a nonnegative integer \(r\) with (7.2). If \(\hat{\Psi} = 0\) for an integer \(l \in \{1, 2, \ldots, K - 1\}\), then we similarly obtain the result. Hence we have proved Theorem 7.1. \(\square\)
We will prove

Theorem 7.6 Let ψ be a C^{n+2}-valued meromorphic 1-form on M which is locally represented as $\psi = \Psi dw$. Suppose that p, q are odd. Then $\Psi_{-1} \equiv 0$, $\Psi_{-2} \equiv 0, \ldots, \Psi_{-K+1} \equiv 0$ or Ψ has a \overline{Q}_1-valued $(-K)$-map if and only if there exists an element A of $O(p+2, q)$ such that $\hat{\Psi} := \Psi A$ satisfies

$$\hat{\Psi}^{2i} = -\sqrt{-1} \hat{\Psi}^{2i-1} \quad (i = 1, \ldots, \frac{p+1-2r}{2}),$$

$$\hat{\Psi}^{2i+1} = -\sqrt{-1} \hat{\Psi}^{2i} \quad (i = \frac{p+3}{2}, \ldots, \frac{n-2r}{2}),$$

$$\hat{\Psi}^{p+1-2r+j} = \hat{\Psi}^{p+1-2r+j} \quad (j = 1, \ldots, 2r + 1),$$

where r is a nonnegative integer satisfying

$$r \leq \min \left\{ \frac{p+1}{2}, \frac{q-1}{2} \right\}. \quad (7.12)$$

Remark Theorem 7.6 says that for a space-like and conformal immersion $F : M \rightarrow E_q^{n+2}$ with zero mean curvature vector, $\psi = \partial F = \Psi dw$ satisfies $\Psi_{-1} \equiv 0$, $\Psi_{-2} \equiv 0, \ldots, \Psi_{-K+1} \equiv 0$ or a condition that Ψ has a \overline{Q}_1-valued $(-K)$-map if and only if

$$F : M \rightarrow E_q^{n+2} \cong E_{p+1-2r}^p \oplus E_{2r+1}^{q-1-2r}$$

is represented as $F = (F_+, F_0, F_-)$, where

$$F_+ : M \rightarrow C^{p+1-2r} = E_{p+1-2r}^p, \quad F_- : M \rightarrow C^{q-1-2r} = E_{q-1-2r}^{q-1-2r}$$

are holomorphic maps and

$$F_0 : M \rightarrow E_{2r+1}^{4r+2} \cong \bigoplus_{i=1}^{2r+1} E_1^2$$

is represented as $F_0 = (h_1 e, \ldots, h_{2r+1} e)$ for harmonic functions $h_i (i = 1, \ldots, 2r + 1)$ and a light-like vector $c \in E_1^2$.

If there exists an element A of $O(p+2, q)$ as in Theorem 7.6, then we see that Ψ has a \overline{Q}_1-valued $(-K)$-map, unless $\Psi_{-l} \equiv 0$ for $l = 1, 2, \ldots, K-1$. The main part of the proof of Theorem 7.6 consists of discussions on the existence of $A \in O(p+2, q)$ as in Theorem 7.6 for odd p, q and Ψ with a \overline{Q}_1-valued $(-K)$-map.

Proposition 7.7 Suppose that p is odd and that $q = 1$. Let $\Psi = (\Psi^1, \Psi^2, \ldots, \Psi^{n+2})$ be a C^{n+2}-valued meromorphic function on M satisfying

$$\Psi_{-1}^{2i} = -\sqrt{-1} \Psi_{-1}^{2i-1} \quad (i = 1, 2, \ldots, \frac{p-1}{2}), \quad \Psi_{-1}^p = \Psi_{-1}^{p+1}. \quad (7.13)$$

Then there exists an element A of $O(n+1, 1)$ such that ΨA is represented as in the form of (4.4) with $q = 1.$
We set
\[c_j := \left(-1 + \sum_{j=1}^{\frac{p-1}{2}} c_j^2 + \tilde{c}^2 \right) e_1 + \sqrt{1} \left(1 + \sum_{j=1}^{\frac{p-1}{2}} c_j^2 + \tilde{c}^2 \right) e_2 + 2 \sum_{i=1}^{\frac{p-1}{2}} c_i e_{2i+1} + 2 \tilde{c} e_{n+1}, \]
\[a_j := c_j \left(\sqrt{-1}, -1, 0, \ldots, 0 \right) + \sqrt{1} e_{2j+1} + e_{2j+2}, \]
\[\tilde{a} := \tilde{c} \left(1, \sqrt{-1}, 0, \ldots, 0 \right) + e_{n+1} + e_{n+2}. \]

We have
\[\langle a_i, a_j \rangle = \langle a_*, a_i \rangle = \langle a_*, a_* \rangle = \langle a_i, \tilde{a} \rangle = \langle a_*, \tilde{a} \rangle = \langle \tilde{a}, \tilde{a} \rangle = 0. \] (7.15)

For \(a_1, \ldots, a_{\frac{p-1}{2}}, a_* \), let \(b_1, \ldots, b_{\frac{p-1}{2}}, b_* \) be vectors obtained as in the proof of Proposition 7.2. Then there exist complex numbers \(\alpha_j \) \((j = 1, \ldots, (p-1)/2, *) \) satisfying
\[\text{Im} \tilde{a} = \text{Im} \left(\alpha_* b_* + \sum_{j=1}^{\frac{p-1}{2}} \alpha_j b_j \right). \]

We set
\[c := \tilde{a} - \alpha_* b_* - \sum_{j=1}^{\frac{p-1}{2}} \alpha_j b_j. \]

Then \(c \) is a real vector, and we see by (7.15) that \(c \) is zero or light-like and that \(c \) satisfies \(\langle c, a_j \rangle = \langle c, a_* \rangle = 0 \). Therefore we see by (7.14) that \(\Psi \) can be represented as in the form of
\[\Psi = \sum_{j=1}^{\frac{p-1}{2}} \left(\xi_j u_{2j-1} - \sqrt{-1} \xi_j u_{2j} \right) + \xi c, \]

Proof Referring to Example 4.4, we can obtain Proposition 7.7 with \(p = 1 \). In the following, suppose \(p \geq 3 \). We can suppose that on a neighborhood of a point of \(M \), \(\Psi \) is represented as in (3.1) with \(\varepsilon_i = 1 \) \((i = 1, \ldots, n-1) \), \(-1 \) \((i = n) \). Then (7.13) yields
\[\left(\frac{f_{2j-1} - \sqrt{-1} f_{2j}}{f_*} \right)_w = 0 \quad (j = 1, \ldots, \frac{p-1}{2}), \quad \left(\frac{f_p - f_{p+1}}{f_*} \right)_w = 0. \]

Therefore we see that for each \(j \in \{1, \ldots, (p-1)/2\} \), there exists a complex number \(c_j \) satisfying \(f_{2j-1} = c_j f_* + \sqrt{-1} f_{2j} \) and that there exists a complex number \(\tilde{c} \) satisfying \(f_p = \tilde{c} f_* + f_{p+1} \). Then we can represent \(\Psi \) as
\[\Psi = F_* a_* + \sum_{j=1}^{\frac{p-1}{2}} F_j a_j + \tilde{F} \tilde{a}, \quad (7.14) \]
where
\[F_* := f_*^2, \quad F_j := 2 f_* f_{2j} \quad (j = 1, \ldots, \frac{p-1}{2}), \quad \tilde{F} := 2 f_* f_{p+1}, \]
\[a_* := \left(-1 + \sum_{j=1}^{\frac{p-1}{2}} c_j^2 + \tilde{c}^2 \right) e_1 + \sqrt{1} \left(1 + \sum_{j=1}^{\frac{p-1}{2}} c_j^2 + \tilde{c}^2 \right) e_2 + 2 \sum_{i=1}^{\frac{p-1}{2}} c_i e_{2i+1} + 2 \tilde{c} e_{n+1}, \]
\[a_j := c_j \left(\sqrt{-1}, -1, 0, \ldots, 0 \right) + \sqrt{1} e_{2j+1} + e_{2j+2}, \]
\[\tilde{a} := \tilde{c} \left(1, \sqrt{-1}, 0, \ldots, 0 \right) + e_{n+1} + e_{n+2}. \]
where $\xi_j (j = 1, \ldots, (p + 1)/2)$ and ξ are meromorphic functions. Then there exists an element A of $O(n + 1, 1)$ such that ΨA is represented as in (4.4) with $q = 1$. Hence we have proved Proposition 7.7.

Proof of Theorem 7.6 Noticing Proposition 7.7, we suppose $q \geq 3$. We have $K = n/2$ and $(a(n), b(p, q)) = (2, 1)$. Suppose that Ψ has a $\overline{O(1)}$-valued $(-K)$-map. Then we can suppose $\Psi^2_K = \Psi^1_K$. Then applying analogues of Proposition 7.7 to Ψ_{-l} $(l = K - 1, \ldots, [p/2] + 1)$, we see that there exists an element $A_{- [p/2] - 1}$ of $O(1, q)$ such that

\[
\hat{\Psi}_{- [p/2] - 1} := \Psi_{- [p/2] - 1} A_{- [p/2] - 1}
\]

satisfies

\[
\hat{\Psi}^1_{- [p/2] - 1} = \hat{\Psi}^2_{- [p/2] - 1}, \quad \hat{\Psi}^{2i+2}_{- [p/2] - 1} = -\sqrt{-1} \hat{\Psi}^{2i+1}_{- [p/2] - 1} \quad (i = 1, \ldots, q - 1/2).
\]

Applying an analogue of Proposition 7.3 to $\Psi_{- [p/2]}$, we see that there exists an element $A_{- [p/2]}$ of $O(3, q)$ such that $\hat{\Psi}_{- [p/2]} := \Psi_{- [p/2]} A_{- [p/2]}$ satisfies

\[
\hat{\Psi}^2_{- [p/2]} = -\sqrt{-1} \Psi^1_{- [p/2]}, \quad \hat{\Psi}^3_{- [p/2]} = \hat{\Psi}^4_{- [p/2]},
\]

\[
\hat{\Psi}^{2i}_{- [p/2]} = -\sqrt{-1} \hat{\Psi}^{2i-1}_{- [p/2]} \quad (i = 3, \ldots, q + 3/2)
\]

or

\[
\hat{\Psi}^i = \hat{\Psi}^{i+3} (i = 1, 2, 3), \quad \hat{\Psi}^{2j+6} = -\sqrt{-1} \hat{\Psi}^{2j+5} (j = 1, 2, \ldots, q - 3/2).
\]

Applying analogues of Proposition 7.5 to $\Psi_{- l}$ $(l = [p/2] - 1, \ldots, 1, 0)$, we see that there exists an element A of $O(p + 2, q)$ such that $\hat{\Psi} := \Psi A$ satisfies (7.11) for a nonnegative integer r with (7.12). If $\Psi_{- l} \equiv 0$ for an integer $l \in \{1, 2, \ldots, K - 1\}$, then we similarly obtain the result. Hence we have proved Theorem 7.6.

Referring to the proof of Theorem 7.1, we can obtain

Theorem 7.8 Let ψ be a $\overline{C^{n+2}}$-valued meromorphic 1-form on M which is locally represented as $\psi = \Psi dw$. Suppose that p is even and that q is odd. Then $\Psi_{- 1} \equiv 0$, $\Psi_{- 2} \equiv 0, \ldots, \Psi_{- K+1} \equiv 0$ or $\Psi_{- K} \equiv 0$ if and only if there exists an element A of $O(p + 2, q)$ such that $\hat{\Psi} := \Psi A$ satisfies

\[
\hat{\Psi}^{2i} = -\sqrt{-1} \hat{\Psi}^{2i-1} \quad (i = 1, \ldots, p + 2 - 2r), \quad \hat{\Psi}^{p+2-2r+j} = \hat{\Psi}^{n+1-2r+j} \quad (j = 1, \ldots, 2r), \quad \hat{\Psi}^{n+2} = 0,
\]

where r is a nonnegative integer satisfying $r \leq \min\{(p + 2)/2, (q - 1)/2\}$, or

\[
\hat{\Psi}^{2i} = -\sqrt{-1} \hat{\Psi}^{2i-1} \quad (i = 1, \ldots, p - 2r), \quad \hat{\Psi}^{p-2r+j} = \hat{\Psi}^{n+1-2r+j} \quad (j = 1, 2, \ldots, 2r + 1), \quad \hat{\Psi}^{p+2} = 0,
\]

where r satisfies $r \leq \min\{p/2, (q - 1)/2\}$.

25
Remark} Theorem 7.8 says that for a space-like and conformal immersion $F : M \to E^{n+2}$ with zero mean curvature vector, $\psi = \partial F = \Psi dw$ satisfies $\Psi_{-1} \equiv 0$, $\Psi_{-2} \equiv 0, \ldots, \Psi_{-K+1} \equiv 0$ or $\Psi_{-K} \equiv 0$ if and only if one of the following holds:

- the immersion

$$F : M \to E^{n+2} \cong E^{p+2-2r} \oplus E^{4r}_2 \oplus E^{q-1-2r}_q \oplus E^1_1$$

is represented as $F = (F_+, F_0, F_-, 0)$, where

$$F_+ : M \to C^{p+2-2r} = E^{p+2-2r}, \quad F_- : M \to C^{q-1-2r} = E^{q-1-2r}_q$$

are holomorphic maps and

$$F_0 : M \to E^{4r}_2 \cong \bigoplus_{i=1}^{2r} E^i_1$$

is represented as $F_0 = (h_1 c, \ldots, h_{2r} c)$ for harmonic functions $h_i (i = 1, \ldots, 2r)$ and a light-like vector $c \in E^2$;

- the immersion

$$F : M \to E^{n+2} \cong E^{p-2r} \oplus E^{4r+2}_{2r+1} \oplus E^{q-1-2r}_q \oplus E^1_1$$

is represented as $F = (F_+, F_0, F_-, 0)$, where

$$F_+ : M \to C^{p-2r} = E^{p-2r}, \quad F_- : M \to C^{q-1-2r} = E^{q-1-2r}_q$$

are holomorphic maps and

$$F_0 : M \to E^{4r+2}_{2r+1} \cong \bigoplus_{i=1}^{2r+1} E^i_1$$

is represented as $F_0 = (h_1 c, \ldots, h_{2r+1} c)$ for harmonic functions $h_i (i = 1, \ldots, 2r+1)$ and a light-like vector $c \in E^2$.

Referring to the proof of Theorem 7.6, we can obtain

Theorem 7.9 Let ψ be a C^{n+2}-valued meromorphic 1-form on M which is locally represented as $\psi = \Psi dw$. Suppose that p is odd and that q is even. Then $\Psi_{-1} \equiv 0$, $\Psi_{-2} \equiv 0, \ldots, \Psi_{-K+1} \equiv 0$ or $\Psi_{-K} \equiv 0$ if and only if there exists an element A of $O(p+2, q)$ such that $\hat{\Psi} := \Psi A$ satisfies

$$\hat{\Psi}^{2i} = -\sqrt{1} \hat{\Psi}^{2i-1} \left(i = 1, \ldots, \frac{p+1-2r}{2} \right),$$

$$\hat{\Psi}^{2i+1} = -\sqrt{1} \hat{\Psi}^{2i} \left(i = \frac{p+3}{2}, \ldots, \frac{n+1-2r}{2} \right),$$

$$\hat{\Psi}^{p+1-2r+j} = \hat{\Psi}^{n+2-2r+j} \quad (j = 1, \ldots, 2r), \quad \hat{\Psi}^{p+2} = 0,$$
where r is a nonnegative integer satisfying $r \leq \min \{ (p+1)/2, q/2 \}$, or

$$\hat{\Psi}^{2i} = -\sqrt{-1} \hat{\Psi}^{2i-1} \quad \left(i = 1, \ldots, \frac{p+1-2r}{2} \right),$$

$$\hat{\Psi}^{2i+1} = -\sqrt{-1} \hat{\Psi}^{2i} \quad \left(i = \frac{p+3}{2}, \ldots, \frac{n-1-2r}{2} \right),$$

$$\hat{\Psi}^{n+1-2r+j} = \hat{\Psi}^{n-2r+j} \quad (j = 1, 2, \ldots, 2r + 1), \quad \hat{\Psi}^{n+2} = 0,$$

where r satisfies $r \leq \min \{ (p+1)/2, (q-2)/2 \}$.

Remark Theorem 7.9 says that for a space-like and conformal immersion $F : M \rightarrow E^{n+2}_q$ with zero mean curvature vector, $\psi = \partial F = \Psi dw$ satisfies $\Psi^{-1} \equiv 0$, $\Psi^{-2} \equiv 0$, ..., $\Psi^{-K+1} \equiv 0$ or $\Psi^{-K} \equiv 0$ if and only if one of the following holds:

- the immersion
 $$F : M \rightarrow E^{n+2}_q \cong E^{p+1-2r}_2 \oplus E^{q-2r}_2 \oplus E^{4r}_2$$
 is represented as $F = (F_+, F_0, F_-)$, where
 $$F_+ : M \rightarrow \mathbb{C}^{p+1-2r}_2 = E^{p+1-2r}_2, \quad F_- : M \rightarrow \mathbb{C}^{q-2r}_2 = E^{q-2r}_2$$
 are holomorphic maps and
 $$F_0 : M \rightarrow E^{4r}_2 \cong \bigoplus_{i=1}^{2r} E^2_1$$
 is represented as $F_0 = (h_1 c, \ldots, h_{2r} c)$ for harmonic functions h_i ($i = 1, \ldots, 2r$) and a light-like vector $c \in E^2_1$;

- the immersion
 $$F : M \rightarrow E^{n+2}_q \cong E^{p+1-2r}_2 \oplus E^{4r+2r+1}_2 \oplus E^{q-2r-1}_2 \oplus E^{1}_1$$
 is represented as $F = (F_+, F_0, F_-)$, where
 $$F_+ : M \rightarrow \mathbb{C}^{p+1-2r}_2 = E^{p+1-2r}_2, \quad F_- : M \rightarrow \mathbb{C}^{q-2r}_2 = E^{q-2r}_2$$
 are holomorphic maps and
 $$F_0 : M \rightarrow E^{4r+2r+1}_2 \cong \bigoplus_{i=1}^{2r+1} E^2_1$$
 is represented as $F_0 = (h_1 c, \ldots, h_{2r+1} c)$ for harmonic functions h_i ($i = 1, \ldots, 2r + 1$) and a light-like vector $c \in E^2_1$.

Acknowledgements The author is grateful to Professor Yoshishige Haraoka for valuable discussions.
References

