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1. INTRODUCTION

Let {X;;i=1{ be a sequence of independently distributed p—dimensional normal ran-
dom vectors with unknown mean g and unknown covariance matrix =. We consider the
following two problems for the mean vector .

(I) Given 0<1—a<1 and d>0, we want to find a region R in p—dimensional
Euclidean space such that P(#éR)=1—a for all (%, 2) and the maximum diameter of
R does not exceed 2d.

() Given W>0, we want to construct an estimator ¢ of u such that
Ell 6—u*?<W for all (x4, 2), where Il t 3=t

It follows easily from the following theorem that there does not exist a fixed sample
procedure to meet such requirements.

THEOREM 1. Let X,,..., Xn be independent and identically distributed p—dimen-
sional random vectors with the probability density function with respect to Lebesgue
measure,

APE (A Y x—mw)),
where A>0, f is some known function and 0=(g, A) is unknown.
Let L(G,d)=p(i1d—p I}) be a loss function, where p=0 is a non—decreasing function
defined on [0, ), and let M=Supp(u), which may be infinite. Then given any W< M,
there does not exist any estimator of u whose risk is bounded by W for all 0.

For p=1, Lehmann [8] proved it under the assumption that f is continuous almost
everywhere (cf. Example 4.1 of Singh [12]). Our proof, which is giv;an in Section 4, '
is different from those of Lehmann and Singh and such an assumption is not needed.

Healy [7] constructed a confidence region of the problem (I). The method is based
on the two-stage procedure of Stein [13] for the univariate case. When p=1, Stein’s
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procedure is not asymptotically efficient (Ghosh and Mukhopadhyay [4]). In Section 2
we show that Healy’s procedure is not asymptotically efficient at least for p=2, but
becomes asymptoticall efficient by choosing the first sample size properly (cf. Mukho-
padhyay [9]). When Z=0?H with unknown 6>>0 and p X p known positive definite matrix
H, Mukhopadhyay and Al-Mousawi [10] considered the same problem.  In Section 3 we
construct an estimator of the problem (II). For the univariate case, see Rao [11] (pp.
486-487).

2. CONFIDENCE REGION

Healy (7] proposed the following two—stage procedure to the problem (I). Let
n(>p) be the first sample size and

Xu=n"'2X,, Sa=n—1)"' [(X—Xn) (X, — X
Determine a constant f,, such that P(F,<f,)=1—a, where F,/p has F distribution with

(p, n—p) degrees of freedom. Define the random sample size N by

fn("_l) 3

where [u] denotes the largest integer less than u and An is the largest characteristic
root of S,. Then the confidence region Ry is defined by

Ry=1{m; N(Xy—p)Sa"(Xx—p)<(n—1)(n—p)~" ful

with )_(.v=N"in. Healy [7] showed that Rx satisfies the requirements of problem
( I ). =1

In this section, we consider properties of the procedure. If = were known, we would
propose a région R defined by

R=t{p;mXn—mZ (Xn—m)s f1,

where m is the least integer greater than Af/d?, f is the 100(1—a)% point of x* dis-

tribution with p degrees of freedom, A is the largest characteristic root of = and

—_— m . .

Xm=m"Zle. - It is easy to show that R satisfies the requirements of problem (I).
By (2.1) we have the inequality

faln—1) 4 <faln—1)5

A= pAh
Fn—p) A, SN An+n.

(2.2) = =)
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The following lemma, which is proved by Cacoullos and Olkin [1], is useful for

the subsequent discussion.

LEMMA 1. If Z is a pXp real random matrix with only real characieristic roots
and E(Z)=A, then

E1M(2) 2A(A), EVAx(Z2)1 S Ap(A),

where A and Ar denote the largest and smallest characteristic roots.

Since E(Sz)=3, Lemma 1 implies that E(12)=A. Hence from the left hand side
of the inequality (2.2), we obtain that

(2.3) E(N)/cz(n—1)fa/ {n—p)ft,

where c=Af/d*.
From Theorem 4 of Ghosh [3], we obtain that f»=f for p=2, so that by (2. 3)

E(N)/cz(n—1)/(n—p).

Hence if the first sample size does not depend on d,

lim E(N)/¢>1,
d—0

which implies that the Healy’s procedure is not asymptotically efficient for at least
p=2. But we conjecture that f»=f for all p if @ is small, so that Healy’s procedure
is not asymptotically efficient for all p if the first sample size n does not depend on
d. But it is possible to make the procedure asymptotically efficient by letting the
first sample size n depend on d (see Mukhopadhyay [9] for the univariate case).

LEMMA 2. (1) :1;.—»11 a.s. as n— oo,
(i) E(An)—21 as n—oo,

PROOF. Note that S»—Z a.s. as n—co. Hence (i) is obtained. Let

Wi={Xi+ ... + X —(—DX/iti— 1172

for i=2. Then it follows easily that |W;;i=2| is a sequence of independently and
identically distributed normal random vectors with mean zero and covariance matrix



4 Yoshikazu TAKADA

Z, and that for n=2
(2.4) Sa=(n—1)" W W
By (2.4) we have that

tr(Sﬁ:(n—l)"é',z Wi,

where tr(S») denote the trace of S». Hence {tr(Ss);n=2}{ becomes a reverse marti-
ngale. Using the Doob's moment inequality (Doob [2], p. 318), we have that

EIS#p(tr(Sn))l<00.

Since i,,gs%p(tr(s,,)), by (i) and the dominated convergence theorem, we obtain (ii).
This completes the proof.

THEOREM 2. If the first sample size n=n(d) is chosen such that
n(d)—~o0 and  d’n(d)—0 as d—0,
then
(i) N/c—1 a.s. as d—0
and

(it) E(N)/c—1 as d—0 (asymptotic efficiency).
PROOF. From (2.2) we have that

<n—1>fninS L=Dfnkn  d'n

&2 e

Note that fo—f as d—0. Then (i) and (ii) are proved by Lemma 2.

REMARK 1. From the left hand side of the inequality (2.2),

fn(’n 1) lf
N—c = dg( p) A.n dg

Note that fn=f for p=2 and E( An)= 1. Hence we have that

_ fn(’n'—l)l A’f A-f(p 1)
EiN—c) 2 dn—p) & 2 d(n—p)’

from which we have that for p=2
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E(N—c¢)—© as d—0
(cf. Gosh and Mukhopadhyay [5), p. 223).
3. BOUNDED MEAN SQUARED ERROR

In this section we consider the problem (), that is, we construct an estimator
d of u such that

(3:1) Eild—unisw

for all (#,2). Such an estimator is constructed by a two—stage procedure similar to
that of Stein [13]. For the univariate case, see Rao [11] (pp. 486-487).

THEOREM 3. Let n (>p+2) be the first sample size. Define the random sample
size N by

(3.2) N=Mazin, [P Do+ 1,

Estimate p# by Xy, Then X satisfies (3.1)

PROOF. Note that given Sn, Xy is normally distributed with mean x and covar-
iance matrix Z/N. Hence

(3.3) El Xs—p 1°=tr(Z)E(N").
From (3.2) we have the inequality

pin—1) 4 <N< p(n—1)
(3. 4) —W(n—p—Z) AH—N_—W(n—p—z)l"-*-n.

Then from the left hand side of the inequality (3.4), we obtain that

(3.5) EW-HsWn=p—2) g3
p(n—1)

Note that E(Sz')=(n—1)(n—p—2)"'Z"" (e.g. Giri [6], p. 104). Hence by Lemma 1
we have that

E(AY<(n—1)(n—p—2)7' A",
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so that it follows from (3. 3) and (3. 5)that
ENX s—p12EWpA) ' ir(Z)=W.
This completes the proof.

Next we consider properties of the procedure. If 2 were known, we would use
X. as an estimator of u satisfying (3.1), where m is the least integer greater than
c=tr(Z)/W. By the left hand side of the inequality and Lemma 1, we obtain that

E(N) {(n—1)pi n—1
c 2(11—1)—2)tr(2) ;n—p—2 >1.

Hence the procedure is not asymptotically efficient if the first sample size n does not
depend on W (cf. Ghosh and Mukhopadhyay [4], p. 207).

LEMMA 3. If the first sample size n=n(W) is chosen such that

(3.6) n(W)—oco and Wn(W)—0 as W—0,
Then

N/c—pA/tr(Z) a.s. as W—0
and

E(N)/c—pA/tr(Z) as W—0.

PROOF. It follows from (3. 4) that

(n—1pin _N__(n—lpha W
=25 S ¢ Sta—p=21r(Z) | Ir(Z)

Hence by Lemma 2 the proof is completed.
The following theorem is easily obtained from Lemma 3.

THEOREM 4. If S=Al, (I, denotes the identity matrix) and the first sample size
n satisfies (3.6), then
N/c—1 a.s. as W—0
and
E(N)/c—1 as W—0 (asymptotic efficiency).

REMARK 2. From the left hand side of the inequality (3.4) and E( 1,,)21,
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. p(n—1) 1 _tr(2) (p+ D)ir(2)
E(N—c¢c) = _W(n—p—2)E(A") W = Wa—p—2)"
Hence we have that
E(N—¢)— as W—0

(cf. Remark 1).

REMARK 3. From Lemma 3, it follows that the procedure is not asymptotically
efficient when =% Al,. At present, we can not construct a procedure which satisfies
(3.1) and is asymptotically efficient for all =.

4. PROOF OF THEOREM 1
Given A, consider the following function hj(x) of x,
hA()=Rm) P2 A Pexp(— Il m112/22%),

For any estimator d, let

TA(9)= [R(6, Ok, ()dp.

where

R(6, O=Egp(l & X)—p )

and X=(X,,..., Xn). Letting h(g)=h:(#) and 83 =(Ag, A), we have that
TA(9)= [ R(0), Dh(p)du
= [1Egp(1 8AX)— Ap ) thix)du.

By the tedious calculation (cf. Theorem 1 of Takada [14]), it can be shown that
(4.1) limTr (9= M.
Note that "
M%Sgp R(6, 6)28%1)]3/1;1) R(6, d')i%S}{P TA(d).
Hence by (4.1) we obtain that
Sgp R(8, 0)=M,

from which the proof is completed.
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