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Introduction

In the preceding paper [3] T. Sunada and the author introduced L -functions of certain
classes of graphs and dynamical systems. Applying number theoretical argument we ([1],
[3], [4]) obtained some results about homology classes of closed orbits of Anosov flows; the
density theorem of Chebotarev's type, equidistribution theorem and so on. In this note we

consider the meromorphic region of these L -functions.
Let @ : X — X be an Anosov flow on a compact Riemannian manifold X whose

non-wondering set coincides with the whole space. Given a unitary representation 2:m (X)
—U(N), we define the L-function of ¢, associated with p by

(v Lo, (53 )=I'I)1/det - p((p))exp (=5 L(p,

where P runs over all @, -prime closed orbits, / (p)is the period of p and (p) is an
element of m(X) whose conjugacy class corresponds to the free homotopy class of p.
When SRes is greater than the topological entropy % = & (@,) of the flow ¢ ., the right
hand side of (1) converges absolutely, hence Lo, (s;p) is holomorphic on Res >h. We
know moreover that L,(s;0) has a meromorphic extension to some neighborhood of Jes
= h(see[3)).

We here give more information on the meromorphic domain of Lo, (s;p). For the
special case of the trivial representation p={, Pollicott[12] shows that the zeta function
Lo (s) = Lo, (5;1) extends meromorphically to a region JPes >h —e for some € > 0.
We extend his proof to cases of general representations and show that there exists ¢ >0
such that for every unitary representation p the L—function Le,(s;p) extends non-zero
meromorphically to the domain Res > h — 8.

When ¢, is the geodesic flow on the unit tangent bundle of a manifold of constant
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negative curvature, the Selberg trace formula implies that L-functions extend to the
entire complex plane. But in general, we have no idea to explane L -functions by trace
formulas. We therefore use twisted Ruelle operators acting Banach spaces of Lipschitz
continuous sections of flat bundles over a profinite éraph. Associated with a continuous
unitary representation g:m(V,E) — U(N) of the fundamental group of a profinite
graph (V,E) with the length function /:E — R, the L-function is defined in the same

way as (1):
Li(s;p=I1 1/deti — p((c))exp(—s I (),

where ¢ runs over all prime cycles on (V,E) and 1(C)=§ll (e;) for e=(ey +..., €n).
Since it is interpreted by what we may call the trace of a twisted Ruelle operator,
an estimate about the essential spectral radius implies that it has a non-zero meromorphic
extension on Res >h —0. We can get our assertion by use of Bowen’s symbolic
dynamics.

We use terminology and some notations given in [3] without any explanation, the

reader should refer it for some basic definitions and results.

§1. Profinite graphs and twisted Ruelle operators

Given graphs (V, ,E,;), » =21, and morphisms of graphs w, : (V, ,E,;) = (V.
E,_)) we define

V=llm Vn = { $=(En) E”[:'tl Vn I Wy, (En)=$n—l },
E=lim E, = [ EneVxV | (& mekE, }

This new graph (V,E) is called as a profinite graph if the following conditions hold;

P0) each (V, ,E,) is a finite graph,

P1) the map w, :V, —V,_, is surjective,

P2) the map of origine ¢: E, =V, and terminus ¢:E, =V, are Surjective,
P3) w, :e "'(t) = ¢ (wyv) is surjective for every v € V,

P4) if w(e)=wye’), e, e’ € E, then £(e)= ¢(e’).

Let p:m(V,E)=1im 7(Va,E) — U(N) be a continuous unitary representation of
the fundamental group of a profinite graph (V,E). There are n, and g, : M (V,,,En,)



Meromorphic Extension of L-Functions of Anosov Flows and Profinite Graphs 11

— U(N) such that p is fuctored as p=p, « Proj : m(V,E) = m(Vya,En)) —U(N).
Without loss of generality we may assume n,=1. We can construct a locally distance
preserving normal covering map 7 : (f’,é,da) — (V,E,do) with covering transformation
group m(V,E,); here do (0< 8<1) denotes the distance function defined by

do(&, )= gsup {n | &=t on V,
defe,e’)=gSIP in | ea=¢}l on E,

and so on. In this paper we suppose (V,E,d,) is irreducible. .
Let Ci(E) denote the Banach space of Lipschitz continuous complex valued functions
with the norm || fll o= || fll »-+Lipe(f), here

fley—fle’)
de(e,e”)

Lipe(f)=sup { exe’ }
Given f € CyE) we define the operator ¥, : CYV,C" — C%V,C" on the space of all
C"—valued continuous functions on V by

ZLg(H= 3 firdg(Le).

eecEad=-¢

Since it leaves invariant the subspace C},(f’,p) of all Lipschitz continuous functions g
on V with g(¥9)=p(9g(§) for every v € m(V,,E,) and & € V, we can set

L= | cyirp) : CHV0) = CHVop),

and call the twisted Ruelle operator associated with p. We[3] study its spectra and
get the following result.

PROPOSITION 1. (1) If f € CU)E) is positive valued then the Ruelle operator
%t associated with the trivial representation has a maximal simple positive eigenvalue
A(f) with a positive eigenfunction.

() If f € CHE) is nowhere vanishing, every spectrum A of Z,, satisfies | A| <
ACLAD.

For a positive valued function f € CYE), we define the continuous transformation
G, on the compact space of all Borel probability measures on V by

GAm)—= ( SVQ,,;I d/t)_] . (,Q,,,)'* 2.
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Using the theorem of Schauder-Tychonoff we get a measure p, with G (t,)=x,. If one
choose a positive eigenfunction u of &1 associated with A(f), then the equality

AN S"d#.r= ng.l“dl‘r= ng,lldl‘/' S“d/‘f

leads us to (Q,‘l)‘,u,= AN #(H). In particular, #, is a Z,;—invariant measure, provided
f € CYE) is positive valued and %, 1=1.

Let V=V' ... U V" denote the decomposition into primitive parts and for v €
Va set

Cw={ eV | &=u.
For every positive valued f € CHE) with &, 1=1, we can conclude x#/{V’')=v""! and

#{(CW) > 0 in the following way. Permuting the indices we may assume that #(e) €
V**' whenever e(e) € V, j=1,...,% modulo v, Since &, 1=1 we get

#AV)= S f’,d#f= Sg.m Qd#, = S 8”1 dy, =/‘J(V’“),

which leads us to the first assertion, where 8, € C'(V) is the characteristic function
of V’. To show the second, we should notice that if V’ contains C(v) then for suffi-
ciently large n there is a ny-step path ¢ with e(¢c)=¢ and ¢(c) € C(v) for each § &
V.. We therefore get

utcon= adn,= {2, san, 2t p § 8, > 0,
where 0, is the characteristic function of C(v).
§2. The essential spectral radius of twisted Ruelle operators

In this section we concern with isolated eigenvalues of twisted Ruelle operators.

We first show the following.
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PROPOSITION 2. If f € CYE) is nowhere vanishing, the essential spectral
radius of %o is not greater than 6A(| f| ). Hence every spectrum A of %o with
R fly< Al = AL f|) is an eigenvalue of finite multiplicity.

Given a positive valued f € CH{E) with &, 1=1 we define the avarage E.(g;/) :
V— C"of g € CYV,0) on m-stage by

Exn(g;:N= ( S d,m,,, duy, )_l S Gep dttr

~

Here the function g»: V — C" v € Va is defined by

y(’?) if = ”m(a)
0 otherwize,

g, (M= [
where 7 is the element of V with Jn="0 and n(;7)=7], and :r,,,:f/m — Vn is the covering

map induced by m As E,(gif) is m-locally constant (i.e. En(g;/)(=En(g:f{&) if &=
&), one can easily check that it is an element of CYV,p) and

| g— En(g;N | o< 6™ Lipelg),
Lipslg— En(g;:N) < 2 Lipe(g).

We now prove Proposition 2. By the scaling transformation of f by A(| f|) and an
associated positive eigenfunction we may assume %, 1=1. Since the image of Cé(l;,p)
by the operator E,(;| f|): CL(‘A’,p) — C},(IA/,,D) is a finite dimensional subspace, the operator
L7° En(;| f1) is compact. By using the estimate

Lo gl < gl

2
@ Lipd@™ ) < Cllgll-+0" Lipdg)

(see Lemma3—4 [3]), we have
| (#.—220m:11)) @]
Slg—Eag; | f1) 1. < 6 Lipd),
Lied (20— 9% *Eas 1 /1)) @)
SCllg—Eag | f1) 1l o+ 6" Lipolg—Enlg; | £1))

=(C+2)6"Lipdlg).
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We therefore get the following bound of the essential spectral radius of &,
ess.spec.rad.( %)
=li"1‘11iup [ inf{| %%, =K1, | K is a compact operator} ] vn
éligljoup &C+3) /"=,

which leads us to the conclusion.

In the case f is locally constant we have

PROPOSITION 3. If f € CYE) is n-locally constant, an eigenvalue A of Z,,

with OA| f|)<AZSA(| f|) is that of L., : C},(IA/,,.P)—' C},(f}"p), where h : E, =+ C
is the function with fle)=h(e,) for every e € E.

Proof. The operator @, leaves invariant the closed subspace I',(0) in Ci(V,p)
consisting of n-locally constant functions, hence it induces an operator %s» : C:s(f;,p)/
T'up) — C:;(f’,p)/ T',(p). The space I',(p) can be identified with C's(l},,,p) so that the follow-
ing diagram is comutative

Pro
TA(p) >T (o)
CH V) CHVp)
Do

With respect to the induced norm on C;(I‘},p)/r,,(p), we can show in the same way to
prove (2) that

| Zonta) | =int 11 Zl—01 - | & € Tl
< & Lipollg),

Lipe( Zron [g) = C g}l =+ 6 Lipoe(g)-

Therefore the essential spectral radius of .. is not greater than 6. Since a spectrum
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of &, is containd in one of the sets of spectra of &, T, and of Zon (see pl2
[5]), we get the conclusion.

§3. Meromorphic extension of L —functions of profinite graphs

Let (V,E,ds) be an irreducible profinite graph with a Lipschitz continuous function
{: E — R,. By the property P2) and P4) the cardinarity of V, is not greater than
Vi A", #=max $# ¢'(v), hence the dimension of I',(0) is not greater than N-# V,-
. veV,
In order to get the meromorphic region of L—functions we shall treat the generalized
L-function L(£p) defined for f € CyE), which is given by
L(fip)=exp (”E-l ;1‘— p Trace p({c)) fic)

c:closed path
with |c| =m

This function is related to the L—function of (V,E,ds{) by the equality L s;0)=L(e ") .
The generalized L—function converges on Us={fECH(E)| | f1 > 0 and A(1f1) < 1}
and is non—zero holomorphic for f &€ U, We extend it meromorphically by using

Proposition 2.

THEOREM 4. The generalized L-function L(;p) can be meromorphically extended

to the domain
Us={f€ECLE) | 1f1 > 0and A(1f1) < J,
where J=exp {%—(log *(2log A—logh™"}.

Proof. Let f, € Us \ U, and 8=+ 8.By Proposition 2 we can choose € > 0 so
that the following conditions are satisfied:

1) 2 log(AC| fo 1 )+€) logp < logl log(v'§ AC| fy 1)+6),

2) the operator Z,o'pzc:,c.(f/,p) — C’o'(f},p) has distinct eigenvalues 4A,,...,Ay of
finite multiplicity satisfying 14,1 =@ A( 1 f, | )+ 3¢,

3) the rest of the spectrum of & ,is contained in {z € C| 121 <@ A1 f1)}.

By perturbation theory there exists positive 6 < min | £ | such that the following
five conditions hold for every f € Bg(fo,d0)={fECHE) | | f—f lls<46};

DAL < AL fol )te,

2) the operator %, : C'(I},P) — C:,’(I},p) has eigenvalues A°(f),j=1,....M, a=1,...,
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m, such that

LA2n | >0 fo| )+2¢,
AP(NH=EA0( for jxk,

3) the rest of the spectrum A of &, satisfies | A| <@A(| f|)+e,

4) if we denote the associated decomposition by C‘a'(lA/,p)=V1(f)€-). LB VLHDV(S,
then the projection 7(f) onto V/(f) is analytic for f € By (fs49),

5) there exist transformations F,(f) : ChV.0) — CY V.0 with m(f)=F,(f) o m(fo)e
F,f), which are analytic for f € By (f0;49).
We shall show that

expi{— él—}; ( 2

mn
Trace p({c)) fic) — 5 3 r@(pm
c:closed path Z 2 A0 ) }

converges absolutely and uniformly on some neighborhood of f,. Define fn: En = C, n
=1,2,...,for each f € CL(E) by

f{ey=_ sup
W (e)=¢

Refl®) + V=1 _sup  Fm fle),
w

W(@)=e

where @, : E— E, is given by @,(e)=e¢, for e=(e,) € E. Since f,°®@, is n-locally
constant, if we take sufficiently large n,, we get

"f""(‘bn—fo“o' = "fno(;)n_j"d +||f_fo“9‘

<30 fll» +20

<30l ol 10 F— fll )+28

<39

for every f € Bo(/f;;20) and n=ni.
Choose positive a so that

2log(A | fo | )+e) | logf| = < @ < | log/g A | o)+ | (log.H
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set n(m)=[am], where [%] denotes the integer part of *, and take m, so that n(m,) >
m. If we put R=(| foll +8)min | f, | —&)-", then for every f € By(fus) and m = m,,

l %ICH?}: Trace ‘a(<c>) ( .ﬂC)—fnm)o‘;nm)) |

<(1+ RO Rgnm .cfm FOIP

Therefore

limsup | %

ms: ? Trace p({c)) (,/(c)—fm,"“;nm,) [ V=

<0 1= f | )+o)< 1,

(see Lemma 5—2 of [3]), and we get the sum

exp —m:im %wEm Trace p( {c)) (.ﬂC)_fum‘ow‘vmm') }

converges absolutely and uniformly on B, (fi;8) .
By Proposition 3 the set of eigenvalues of %r0 : C'(V,0) = C(V,,p0) consists of
Al(m(/nau‘;n)vj=1’ IS 1M’ a= 1, .

yml? and /ul(fn)v i=17-'°1K7 With l /ut(fn) I é 0,'{( I /; l )
+e&. Since the dimension of C‘(V,,,p) is not greater than N# V, {"!, we get

Mmoo

lim | % i, Hlfam)™ | 2 140A] S ] )+ < 1,

hence the sum

exp{— QE é 2 fum)™ b

m=ml =1

also converges absolutely and uniformly on Be(fy;0).

The operator Lo~ FAN° &L, °F(N)7 leaves invariant the space V,f). By the ana-
Iyticity for f &€ Bo(f0;49) it saticefies

I Qf.w - :(-z).f'.a! le = CI f—rle

with some positive C for every f.f € Bg(f;39) and j=1,... .M. For each J € Be(fs;0)
and m = m, we can make the following estimate

! nz:, A(pm — 'IJ‘“’(fmm)‘J w‘.mm))ml
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= l Trace ( ‘é'_'r"pu - é,M:’°w~mml.p:y : VJ(-fo) - Vl(f;)) l

=<(Const) "

| (- s ) 50 |,
§(Const):2: n ( Dy TS ) *
o (37,,,;, - é}mw”)mm) om(fy)
 (Gimnrits ) |
<(Const) | f— fum*@um &

X k=21 " Zpu""}(.fo)

m-k-1

K
[:]

g?m o wumo’ s 7 fy)

S aim) ]

g(ConSt) 0’"“") " f" ] ﬂ;g '1( | .fl )k A( | fu(m)° ";n(m) ‘ )m—k_l
<(Constym&™™(|| £, | +XAC| fo | >+e)7,

hence

1 X m, ~
limsup | 7 b zl A‘f’(f)’”"‘&"’(fmmﬁ“’rum))m 1m

Moo J=1a=

bt A S|+ < 1.

We therefore get the sum

=1a=1

-

© M " . -~
exp { _mz'ml% PP A(;x)(f)m_,\(}z)(f’m)o Drim)” ]

converges absolutely and uniformly on B,(f3;9).
The property P2) and P4) imply that the set of all m-step closed paths on (V,E)
can be identified with that of all m-step closed paths on (V.,E,) by the map induced by

w,, hence

b Trace p({c)) f, ° @,(¢)
c:closed path in
(V,E) with |[c| =m

=3 Trace pi({c)) f(c)
c:closed path in
(V,E) with |c|=m
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=Trace ( L C'(V,.0—~ C\V.p) )

2 KUeG) + S ug

I Mx

J

Summarising up we can now conclude that

sl
_$1 (
exp m=1M N crclosed path
with |c| =m

=exp{—:§|% (E Trace p({c)) f(c)—é": :?. A,‘“’(f)m)}

c

Cl=m

Xexp{—ﬁ % 2 Trace p({c)) (f(c)—f,.(mfa?mm ) }

¥ 7 ~
X exp {—mz % 2 é AP — A fum® D)™

=m, J=1 g=1

xexpi— £ & 2 wifm

=1

> Trace o({c)) fic) _
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converges absolutely and uniformly on Bs(f;;9), hence it is non-zero analytic for fe

Be(fn;a)~

n
On the other hand ,ﬁ, ag (1-47(N)) is analytic for fEBs(f0;5), we can get out

conclusion.

By Proposition 1, if (V,E) is not circuit then the continuous function R>s —A(e¥)
€R. is monotone decreasing and there exists h=~A(l)>0 with Ale™)=1 (see Lemma
3-11 [3]). As was shown in (3], if 9, s >h then e~ €U, and Ly(s;p) is holomorphic.

By using Theorem 4 we get

COROLLARY. If (V,E) is not circuit then there is 0>0 such that for every con-
tinuous unitary representation p:m(V,E)~U(N) the L-function Ls;0) extends meromor-

phically to the region R, s>h(l)—0.

REMARK. If le Mf‘;]<l CYE), in particular if / is locally constant, then L-functions

extends meromorphically to the entire complex plane.
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§4. L-functions of Anosov flows

A flow g:X—X on a Riemannian manifold X is called of Anosov typé if the following
conditions hold: The tangent bundle of X splits into three dg,-invariant bundles TX=E*
4 E® @E® such that

1) E! is the line bundle tangent to orbits of the flow,

2) there are C>0 and A>0 with

I dgv) | <Ce ™ |l vl for vEES®, 120,
I dp-«(v) | =Ce™ | vl for veE" t=0,

The non-wondering set consists of points = such that for every neighborhood U
of x and t>0 there is to>¢ with @, (U) N U4 When the non-wondering set coincides
with X, which is in the case when there is a @-invariant measure, by use of Bowen's
Symbolic dynamies, L-functions of an Anosov flow is related to those of profinite graphs
in the following manner. There are irreducible non-circuit profinite graphs (V' E“),a
=0,...,M, with Lipschitz continuous length functions /:E —R, ,and continuous
homomorphisms ¥,;:m(V® E®—m(X) such that for every unitary representation o:m(X)
—UWN)

(-9
y

M
Lofs;®)=Lyofsipe ) L, (s;p0 %)
h(@)=h(I") >h(®), a=1,... M,
with some integer g(a) associated to (V%,E®). Combining this and Theorem 4 we get

THEOREM 5. Let @:X—X be an Anosov flow on a compact manifold. If the non-
wondering set of ¢, coincides with X, then there exisis 0>0 such that for every unilary
representation p:(X)—U(N) the L-function Lo(s;p) has a non-zero meromorphic exten-
sion to the domain e s>h(g)—0.

Remark. We[3] give a piece of information about poles on the line @@, s=h. The
L-function Lo (s;p) associated with a irreducible unitary representation has a pole at
s=h+ —Tu if and only if p is a character (i.e. dim p=1) and p({p))=-exply—Tul(p)
for every closed orbit p. In this case Lo(s;0)={p(s—v—1u) and every poles on @, s
are simple. In particular, if @, is weak-mixing and the image of p is a finite set, then
Los;0) does not have poles on e s=h except a simple pole of the zeta function on s=h.
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Remark. Pollicott[11] show that if the correlation function decays exponentially
fast for all Holder continuous functions then the zeta function of weak-mixing flow has

an analytic extension to a strip h—e< g, s<h.
§5. Examples of profinite graphs
Finite graphs and one-sided shifts of finite type are typical examples of profinite
graphs. We here give some other examples which are not isomorphic to both of these.
Let (V,E) be a finite graph. By blowing up (V,E) at v, €V we construct a new
graph (V,E’) in the following way. Given a surjective map A:¢ '(v,)—S onto some finite
set S, we put V'=(V\ {t})US, the disjoint union, and
E'={e€E | e(e)x vy, £(e) ¥ v}
U {(0,AW) | ve 7' (o) \ ot}
Ui(s,w) | s€S and w=gefor some eca'(v,) with ze v,

U {(ACv), Alu)},

where in case v, & ¢7'(v) the set {(A(v),A(%))} means empty.

Vo A(vy)
=A(z) .

A(Y) Au)

Figure 1 (blowing up at v,)
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one can easily check that
1) if (V,E) is irreducible and v, /'(v,) then (V',E’) is also irreducible,
2) if ¢4: E—V is surjective so is ¢: E'—V".
If we define w: V'=V by

v if v € W\ {uv}

“W= 1 nitv eS8,

then it is a surjective morphism of graphs and satisfies the following two conditions;
() @ ' V)~ s (@) is surjective for every veV’,
(i) if w(e)=w(e’), e,e’ € E’, then ge=¢e’.
We can construct many profinite graphs by using this operation. One of the easiest
one is the following; we construct (V,.,,E,.,) by blowing up (V,E,) at the encircled vertex.
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We can also construct® product profinite graphs and quotient profinite graphs. The
product of two profinite graphs (V,E) and (V' E’) is given by (ljl_n V.XV,, lim E ,XE;)
with the morphism @, X w,. The quotient graph (V,E)/ ~=(lim V,/~_, lim E,,/~,,) is
defined in the following way. Let ~, be an equivalence rei;tion on the‘;-stage V, of
a profinite graph (V,E), which inherites on E, by e~, e’ if and only if ao(e)~,e(e’) and
¢(e)~, ¢(e). One can easily check the properties P1) — P4) when the follwing conditions
hold;

(i) if v~, w then w(¥)~,_, w(w),

(ii) if w,(e)~,-1 @, (e’) then ¢ (e)~, ¢ (¢),

(iii) if e € E,_, and v € V, satisfy e (e)~,.1 @, (v),
then there is ¢’ € E, with {e)~, v and w,(e) ~,; e.

In particular, we can glue two profinite graphs (V,E), (V’,E’) at given points é€V,
7€V’ and get a new profinite graph (V”,E”)/~ by putting V’=VUV’, E’=EUE’ and
defining the relation v~, w when v=w or v=§, w=7,
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