MEROMORPHIC EXTENSION OF L-FUNCTIONS OF ANOSOV FLOWS AND PROFINITE GRAPHS

TOSHIAKI ADACHI*

(Received October 16, 1987)

Introduction

In the preceding paper [3] T. Sunada and the author introduced L-functions of certain classes of graphs and dynamical systems. Applying number theoretical argument we ([1], [3], [4]) obtained some results about homology classes of closed orbits of Anosov flows; the density theorem of Chebotarev's type, equidistribution theorem and so on. In this note we consider the meromorphic region of these L-functions.

Let $\varphi_t: X \to X$ be an Anosov flow on a compact Riemannian manifold X whose non-wondering set coincides with the whole space. Given a unitary representation $\rho: \pi_1(X) \to U(N)$, we define the L-function of φ_t associated with ρ by

(1)
$$L_{\varphi_t} (s; \rho) = \prod_p 1 / \det \{I - \rho(\langle p \rangle) \exp(-s l(p))\},$$

where p runs over all φ_t -prime closed orbits, l(p) is the period of p and $\langle p \rangle$ is an element of $\pi_1(X)$ whose conjugacy class corresponds to the free homotopy class of p. When $\Re es$ is greater than the topological entropy $h=h(\varphi_t)$ of the flow φ_t , the right hand side of (1) converges absolutely, hence $L_{\varphi_t}(s;\rho)$ is holomorphic on $\Re es > h$. We know moreover that $L_{\varphi_t}(s;\rho)$ has a meromorphic extension to some neighborhood of $\Re es \ge h(see[3])$.

We here give more information on the meromorphic domain of L_{φ_t} (s; ρ). For the special case of the trivial representation $\rho=1$, Pollicott[12] shows that the zeta function $\zeta_{\varphi_t}(s)=L_{\varphi_t}(s;1)$ extends meromorphically to a region $\Re es>h-\varepsilon$ for some $\varepsilon>0$. We extend his proof to cases of general representations and show that there exists $\delta>0$ such that for every unitary representation ρ the L-function $L_{\varphi_t}(s;\rho)$ extends non-zero meromorphically to the domain $\Re es>h-\delta$.

When φ_t is the geodesic flow on the unit tangent bundle of a manifold of constant

^{*} Supported partially by Yukawa Foundation

negative curvature, the Selberg trace formula implies that L-functions extend to the entire complex plane. But in general, we have no idea to explane L-functions by trace formulas. We therefore use twisted Ruelle operators acting Banach spaces of Lipschitz continuous sections of flat bundles over a profinite graph. Associated with a continuous unitary representation $\rho: \pi_1(V,E) \to U(N)$ of the fundamental group of a profinite graph (V,E) with the length function $l:E \to R_+$, the L-function is defined in the same way as (1):

$$L_{l}(s;\rho) = \prod_{c} 1 / \det \{I - \rho(\langle c \rangle) \exp(-s \ l \ (c))\},$$

where c runs over all prime cycles on (V,E) and $l(c) = \sum_{i=1}^{n} l(e_i)$ for $c = (e_1, \ldots, e_n)$. Since it is interpreted by what we may call the trace of a twisted Ruelle operator, an estimate about the essential spectral radius implies that it has a non-zero meromorphic extension on $\Re e_s > h - \delta$. We can get our assertion by use of Bowen's symbolic dynamics.

We use terminology and some notations given in [3] without any explanation, the reader should refer it for some basic definitions and results.

§1. Profinite graphs and twisted Ruelle operators

Given graphs (V_n, E_n) , $n \ge 1$, and morphisms of graphs $\omega_n: (V_n, E_n) \to (V_{n-1}, E_{n-1})$ we define

$$\begin{split} V = & \lim_{\longleftarrow} V_n = \left\{ \begin{array}{l} \xi = (\xi_n) \in \prod_{n=1}^{\infty} V_n & \mid \omega_n \ (\xi_n) = \xi_{n-1} \end{array} \right\}, \\ E = & \lim_{\longleftarrow} E_n = \left\{ \begin{array}{l} (\xi, \eta) \in V \times V & \mid \ (\xi_n, \eta_n) \in E_n \end{array} \right\}. \end{split}$$

This new graph (V,E) is called as a profinite graph if the following conditions hold;

- P0) each (V_n, E_n) is a finite graph,
- P1) the map $\omega_n: V_n \to V_{n-1}$ is surjective,
- P2) the map of origine $o: E_n \to V_n$ and terminus $\ell: E_n \to V_n$ are surjective,
- P3) $\omega_n : o^{-1}(v) \rightarrow o^{-1}(\omega_n(v))$ is surjective for every $v \in V_n$,
- P4) if $\omega_n(e) = \omega_n(e')$, e, $e' \in E_n$, then $\ell(e) = \ell(e')$.

Let $\rho: \pi_i(V, E) = \lim_{\longleftarrow} \pi_i(V_n, E_n) \to U(N)$ be a continuous unitary representation of the fundamental group of a profinite graph (V, E). There are n_o and $\rho_o: \pi_i(V_{n_o}, E_{n_o})$

 \to U(N) such that ρ is fuctored as $\rho = \rho_o \circ \operatorname{Proj} : \pi_1(V, E) \to \pi_1(V_{n_0}, E_{n_0}) \to U(N)$. Without loss of generality we may assume $n_o = 1$. We can construct a locally distance preserving normal covering map $\pi : (\hat{V}, \hat{E}, d_\theta) \to (V, E, d_\theta)$ with covering transformation group $\pi_1(V_1, E_1)$; here d_θ $(0 < \theta < 1)$ denotes the distance function defined by

$$d_{\theta}(\xi,\eta) = \theta^{\sup\{n \mid \xi_n = \eta_n\}} \text{ on } V$$

$$d_{\theta}(\mathbf{e},\mathbf{e}') = \theta \sup \{n \mid \mathbf{e}_n = \mathbf{e}'_n\} \text{ on } E$$

and so on. In this paper we suppose (V,E,d_{θ}) is irreducible.

Let $C^1_{\theta}(E)$ denote the Banach space of Lipschitz continuous complex valued functions with the norm $||f||_{\theta} = ||f||_{\infty} + \text{Lip}_{\theta}(f)$, here

$$\operatorname{Lip}_{\theta}(f) = \sup \left\{ \begin{array}{c} \frac{f(e) - f(e')}{d_{\theta}(e, e')} & e \neq e' \end{array} \right\}.$$

Given $f \in C^1_\theta(E)$ we define the operator $\mathscr{L}_f: C^0(\hat{V}, C'') \to C^0(\hat{V}, C'')$ on the space of all C''—valued continuous functions on \hat{V} by

$$\mathscr{L}_{f}g(\xi) = \sum_{\mathfrak{E} \in \dot{\mathfrak{E}}: g(\mathfrak{E}) = \xi} f(\pi\mathfrak{e})g(\mathfrak{e}).$$

Since it leaves invariant the subspace $C^1_\theta(\hat{V},\rho)$ of all Lipschitz continuous functions g on \hat{V} with $g(\gamma\xi)=\rho(\gamma)g(\xi)$ for every $\gamma\in\pi_1(V_1,E_1)$ and $\xi\in\hat{V}$, we can set

$$\mathscr{L}_{f,\rho} = \mathscr{L}_f \left| \begin{array}{c} C_{\theta}^1(\hat{V},\rho) : C_{\theta}^1(\hat{V},\rho) \to C_{\theta}^1(\hat{V},\rho), \end{array} \right.$$

and call the twisted Ruelle operator associated with ρ . We[3] study its spectra and get the following result.

PROPOSITION 1. (1) If $f \in C_0^1(E)$ is positive valued then the Ruelle operator $\mathcal{L}_{f,1}$ associated with the trivial representation has a maximal simple positive eigenvalue $\lambda(f)$ with a positive eigenfunction.

(2) If $f \in C^1_o(E)$ is nowhere vanishing, every spectrum λ of $\mathcal{L}_{f,o}$ satisfies $|\lambda| \leq \lambda(|f|)$.

For a positive valued function $f \in C_0^1(E)$, we define the continuous transformation $G_{\mathcal{F}}$ on the compact space of all Borel probability measures on V by

$$G_{\mathcal{S}}(\mu) = \left(\int_{V} \mathscr{L}_{\mathcal{S},\mathbf{i}} 1 \ d\mu \right)^{-1} \cdot \left(\mathscr{L}_{\mathcal{S},\mathbf{i}} \right)^{*} \mu.$$

Using the theorem of Schauder-Tychonoff we get a measure μ_f with $G_f(\mu_f) = \mu_f$. If one choose a positive eigenfunction u of $\mathcal{L}_{f,1}$ associated with $\lambda(f)$, then the equality

$$\lambda(f)$$
 $\int u \ d\mu_f = \int \mathcal{L}_{f,1} u \ d\mu_f = \int \mathcal{L}_{f,1} \ 1 \ d\mu_f \cdot \int u \ d\mu_f$

leads us to $(\mathcal{Q}_{f,\mathbf{I}})^*\mu_f = \lambda(f) \mu(f)$. In particular, μ_f is a $\mathcal{Q}_{f,\mathbf{I}}$ —invariant measure, provided $f \in C^1_{\theta}(E)$ is positive valued and $\mathcal{Q}_f 1 = 1$.

Let $V = V^1$... \cup V^{ν} denote the decomposition into primitive parts and for $v \in V_m$ set

$$C(v) = \{ \xi \in V \mid \xi_m = v \}.$$

For every positive valued $f \in C^1_\theta(E)$ with \mathscr{L}_f 1=1, we can conclude $\mu_f(V^J) = \nu^{-1}$ and $\mu_f(C(\nu)) > 0$ in the following way. Permuting the indices we may assume that $\ell(e) \in V^{J+1}$ whenever $e(e) \in V^J$, $j=1,\ldots,\nu$, modulo ν . Since \mathscr{L}_f 1=1 we get

$$\mu_f(V') = \int \delta_i d\mu_f = \int \mathscr{Q}_{f,1} \, \delta_j d\mu_f = \int \delta_{j+1} \, d\mu_f = \mu_f(V^{j+1}),$$

which leads us to the first assertion, where $\delta_j \in C^1(V)$ is the characteristic function of V'. To show the second, we should notice that if V' contains C(v) then for sufficiently large n there is a nv-step path c with $o(c) = \xi$ and $\ell(c) \in C(v)$ for each $\xi \in V'$. We therefore get

$$\mu_f(C(v)) = \int \delta_v d\mu_f = \int \mathcal{L}_{f,1}^{nv} \delta_v d\mu_f \ge (\inf f)^{nv} \int \delta_f d\mu_f > 0,$$

where δ_{v} is the characteristic function of C(v).

§2. The essential spectral radius of twisted Ruelle operators

In this section we concern with isolated eigenvalues of twisted Ruelle operators. We first show the following.

PROPOSITION 2. If $f \in C^1_{\theta}(E)$ is nowhere vanishing, the essential spectral radius of $\mathcal{L}_{r,\theta}$ is not greater than $\theta\lambda(|f|)$. Hence every spectrum λ of $\mathcal{L}_{r,\theta}$ with $\theta\lambda(|f|) < |\lambda| \le \lambda(|f|)$ is an eigenvalue of finite multiplicity.

Given a positive valued $f \in C^1_\theta(E)$ with \mathscr{L}_f 1=1 we define the avarage $E_m(g;f)$: $\hat{V} \to C^N$ of $g \in C^1_\theta(\hat{V},\rho)$ on m-stage by

$$E_m(g;f) = \left(\int \delta_{(\pi e_m)} d\mu_f \right)^{-1} \int g_{e_m} d\mu_f.$$

Here the function $g_{\hat{v}}: V \to C^{N}$, $\hat{v} \in \hat{V}_{m}$ is defined by

$$g_{\hat{v}}(\eta) = \begin{cases} g(\hat{\eta}) & \text{if } \eta_m = \pi_m(\hat{v}) \\ 0 & \text{otherwise.} \end{cases}$$

where $\hat{\eta}$ is the element of \hat{V} with $\hat{\eta}_m = \hat{v}$ and $\pi(\hat{\eta}) = \eta$, and $\pi_m : \hat{V}_m \to V_m$ is the covering map induced by π . As $E_m(g;f)$ is m-locally constant (i.e. $E_m(g;f)(\xi) = E_m(g;f)(\xi')$ if $\xi_m = \xi_m'$), one can easily check that it is an element of $C_{\theta}^1(\hat{V},\rho)$ and

$$\|g - E_m(q;f)\|_{\infty} \leq \theta^m \operatorname{Lip}_{\theta}(q),$$

$$\operatorname{Lip}_{\theta}(g - E_m(g; f)) \leq 2 \operatorname{Lip}_{\theta}(g).$$

We now prove Proposition 2. By the scaling transformation of f by $\lambda(\mid f\mid)$ and an associated positive eigenfunction we may assume $\mathscr{L}_{\cup 1} 1 = 1$. Since the image of $C^1_{\theta}(\hat{V}, \rho)$ by the operator $E_m(\cdot; \mid f\mid)$: $C^1_{\theta}(\hat{V}, \rho) \to C^1_{\theta}(\hat{V}, \rho)$ is a finite dimensional subspace, the operator $\mathscr{L}^m_{f, \rho} \circ E_m(\cdot; \mid f\mid)$ is compact. By using the estimate

(2)
$$\|\mathscr{L}_{f,o} g\|_{\infty} \leq \|g\|_{\infty}$$
$$\operatorname{Lip}_{\theta}(\mathscr{L}_{f,o}^{m} g) \leq C \|g\|_{\infty} + \theta^{m} \operatorname{Lip}_{\theta}(g)$$

(see Lemma3-4 [3]), we have

$$\begin{split} \left\| \left(\mathcal{L}_{f,o}^{m} - \mathcal{L}_{f,o}^{m} \cdot E_{m}(\cdot; \mid f \mid) \right) \left(g \right) \right\|_{\infty} \\ & \leq \left\| g - E_{m}(g; \mid f \mid) \right\|_{\infty} \leq \theta^{m} \operatorname{Lip}_{\theta}(g), \\ \operatorname{Lip}_{\theta}(\left(\mathcal{L}_{f,o}^{m} - \mathcal{L}_{f,o}^{m} \circ E_{m}(\cdot; \mid f \mid) \right) \left(g \right)) \\ & \leq C \left\| g - E_{m}(g; \mid f \mid) \right\|_{\infty} + \theta^{m} \operatorname{Lip}_{\theta}(g - E_{m}(g; \mid f \mid)) \\ & \leq (C + 2)\theta^{m} \operatorname{Lip}_{\theta}(g). \end{split}$$

We therefore get the following bound of the essential spectral radius of $\mathcal{L}_{f,o}$

ess.spec.rad.(
$$\mathscr{Q}_{f,o}$$
)
$$= \limsup_{m \to \infty} \left[\inf \{ \| \mathscr{L}_{f,o}^m - K \|_{\theta} \mid K \text{ is a compact operator} \} \right]^{1/m}$$

$$\leq \limsup_{m \to \infty} \theta(C+3)^{1/m} = \theta,$$

which leads us to the conclusion.

In the case f is locally constant we have

PROPOSITION 3. If $f \in C^1_{\theta}(E)$ is n-locally constant, an eigenvalue λ of $\mathcal{L}_{f,\rho}$ with $\theta \lambda(\mid f\mid) < \lambda \leq \lambda(\mid f\mid)$ is that of $\mathcal{L}_{h,\rho} : C^1_{\theta}(\hat{V}_{n},\rho) \to C^1_{\theta}(\hat{V}_{n}\rho)$, where $h: E_n \to C$ is the function with $f(\mathbf{e}) = h(e_n)$ for every $\mathbf{e} \in E$.

Proof. The operator $\mathscr{L}_{f,\rho}$ leaves invariant the closed subspace $\Gamma_n(\rho)$ in $C^1_{\theta}(\hat{V},\rho)$ consisting of n-locally constant functions, hence it induces an operator $\mathscr{L}_{f,\rho,n}: C^1_{\theta}(\hat{V},\rho)/\Gamma_n(\rho) \to C^1_{\theta}(\hat{V},\rho)/\Gamma_n(\rho)$. The space $\Gamma_n(\rho)$ can be identified with $C^1_{\theta}(\hat{V}_n,\rho)$ so that the following diagram is comutative

With respect to the induced norm on $C_{\theta}^{1}(\hat{V},\rho)/\Gamma_{n}(\rho)$, we can show in the same way to prove (2) that

$$\left\| \mathcal{L}^m_{f,\rho,n} [g] \right\|_{\infty} = \inf \left\{ \left\| \mathcal{L}^m_{f,\rho}(g-k) \right\|_{\infty} \mid k \in \Gamma_n(\rho) \right\}$$

$$\leq \theta^m \operatorname{Lip}_{\theta}([g]),$$

$$\operatorname{Lip}_{\theta}(\mathcal{L}^m_{f,\rho,n} [g]) \leq C \left\| [g] \right\|_{\infty} + \theta^m \operatorname{Lip}_{\theta}([g]).$$

Therefore the essential spectral radius of $\mathcal{L}_{c,a,n}$ is not greater than θ . Since a spectrum

of $\mathcal{L}_{f,o}$ is contained in one of the sets of spectra of $\mathcal{L}_{f,o} \mid \Gamma_n(\rho)$ and of $\mathcal{L}_{f,o,n}$ (see p12 [5]), we get the conclusion.

§3. Meromorphic extension of L-functions of profinite graphs

Let (V,E,d_{θ}) be an irreducible profinite graph with a Lipschitz continuous function $l:E\to R_+$. By the property P2) and P4) the cardinarity of V_n is not greater than $\sharp V_1\cdot \mathcal{N}^{n-1}$, $\mathcal{N}=\max_{v\in V_1} \sharp \sigma^{-1}(v)$, hence the dimension of $\Gamma_n(\rho)$ is not greater than $N\cdot \sharp V_1\cdot \mathcal{N}^{n-1}$.

In order to get the meromorphic region of L-functions we shall treat the generalized L-function $L(f,\rho)$ defined for $f \in C^1_{\theta}(E)$, which is given by

$$L(f;\rho) = \exp \left(\sum_{m=1}^{\infty} \frac{1}{m} \sum_{\substack{c: \text{closed path} \\ \text{with } |c| = m}} \text{Trace } \rho(\langle c \rangle) \ f(c) \right)$$

This function is related to the L-function of (V,E,d_{θ},l) by the equality $L_{l}(s;\rho)=L(e^{-st};\rho)$. The generalized L-function converges on $U_{\theta}=\{f\in C_{\theta}^{1}(E)\mid |f|>0 \text{ and } \lambda(|f|)<1\}$ and is non-zero holomorphic for $f\in U_{\theta}$. We extend it meromorphically by using Proposition 2.

THEOREM 4. The generalized L-function $L(\cdot;\rho)$ can be meromorphically extended to the domain

$$U_{\theta}' = \{ f \in C_{\theta}^1(E) \mid |f| > 0 \text{ and } \lambda(|f|) < J \},$$

where $J = \exp \{\frac{1}{2} (\log \theta)^2 (2 \log \mathcal{N} - \log \theta)^{-1} \}$.

Proof. Let $f_0 \in U'_\theta \setminus U_\theta$ and $\theta' = \sqrt{\theta}$. By Proposition 2 we can choose $\varepsilon > 0$ so that the following conditions are satisfied:

- 1) 2 $\log(\lambda(+f_0+)+\varepsilon)$ $\log \mathcal{N} < \log \theta \log(\sqrt{\theta} \lambda(+f_0+)+\varepsilon)$,
- 2) the operator $\mathscr{L}_{f_0,\rho}: C_{\theta'}^1(\hat{V},\rho) \to C_{\theta'}^1(\hat{V},\rho)$ has distinct eigenvalues $\lambda_1,\ldots,\lambda_M$ of finite multiplicity satisfying $|\lambda_j| \ge \theta' \lambda(|f_0|) + 3\varepsilon$,
 - 3) the rest of the spectrum of $\mathcal{L}_{f_0,\rho}$ is contained in $\{z \in C \mid |z| \le \theta' \lambda(|f_0|)\}$.

By perturbation theory there exists positive $\delta < \min |f_0|$ such that the following five conditions hold for every $f \in B_{\theta'}(f_0, 4\delta) = \{f \in C^1_{\theta'}(E) | \|f - f_0\|_{\theta'} < 4\delta\};$

- 1) $\lambda(+f+) < \lambda(+f_0+)+\varepsilon$,
- 2) the operator $\mathscr{L}_{0,\rho}: C^1(\hat{V},\rho) \to C^1_{\hat{\sigma}}(\hat{V},\rho)$ has eigenvalues $\lambda^{\omega}(f), j=1,\ldots,M, a=1,\ldots,$

m, such that

$$|\lambda_{j}^{(a)}(f)| > \theta^{*}\lambda(|f_{0}|) + 2\varepsilon,$$

$$\lambda_{k}^{(a)}(f) \neq \lambda_{k}^{(b)}(f) \text{ for } j \neq k,$$

- 3) the rest of the spectrum λ of $\mathscr{Q}_{r,o}$ satisfies $|\lambda| < \theta^* \lambda (|f|) + \varepsilon$,
- 4) if we denote the associated decomposition by $C^1_{\theta'}(\hat{V},\rho) = V_1(f) \oplus \ldots \oplus V_M(f) \oplus V(f)$, then the projection $\pi_i(f)$ onto $V_i(f)$ is analytic for $f \in B_{\theta'}(f_0;4\delta)$,
- 5) there exist transformations $F_{\rho}(f): C^{1}_{\theta}(\hat{V},\rho) \to C^{1}_{\theta}(\hat{V},\rho)$ with $\pi_{\rho}(f) = F_{\rho}(f)^{-1} \circ \pi_{\rho}(f_{0}) \circ F_{\rho}(f)$, which are analytic for $f \in B_{\theta}$ $(f_{0};4\delta)$.

We shall show that

$$\exp \left\{ -\sum_{m=1}^{\infty} \frac{1}{m} \left(\sum_{\substack{c: \text{closed path} \\ \text{with}}} \text{Trace } \rho(\langle c \rangle) \ f(c) = \sum_{\substack{j=1 \ a=1}}^{M} \sum_{a=1}^{m_j} \lambda_j^{(\alpha}(f)^m \right) \right\}$$

converges absolutely and uniformly on some neighborhood of f_0 . Define $f_n: E_n \to C$, $n = 1, 2, \ldots$, for each $f \in C^1_{\theta}(E)$ by

$$f_n(e) = \sup_{\tilde{\omega}_n(\mathfrak{E}) = e} \mathscr{R}_e f(\mathfrak{E}) + \sqrt{-1} \sup_{\tilde{\omega}_n(\mathfrak{E}) = e} \mathscr{G}_m f(\mathfrak{E}),$$

where $\tilde{\omega}_n : E \to E_n$ is given by $\tilde{\omega}_n(e) = e_n$ for $e = (e_n) \in E$. Since $f_n \circ \tilde{\omega}_n$ is n-locally constant, if we take sufficiently large n_1 , we get

$$\begin{split} \| f_{n} \circ \tilde{\omega}_{n} - f_{0} \|_{\dot{\theta}} & \leq \| f_{n} \circ \tilde{\omega}_{n} - f \|_{\dot{\theta}} + \| f - f_{0} \|_{\dot{\theta}} \\ \\ & \leq 3 \theta^{n} \| f \|_{\theta} + 2 \delta \\ \\ & \leq 3 \theta^{n} (\| f_{0} \|_{\theta} + \| f - f_{0} \|_{\theta}) + 2 \delta \\ \\ & \leq 3 \delta \end{split}$$

for every $f \in B_{\theta}(f_0; 2\delta)$ and $n \ge n_1$.

Choose positive a so that

$$2\log(\lambda(\mid f_0\mid)+\epsilon)\mid \log\theta\mid^{-1}<\alpha<\mid \log(\sqrt{\theta}\mid \lambda(\mid\mid_0\mid)+\epsilon)\mid (\log\mathcal{A})^{-1},$$

set $n(m) = [\alpha m]$, where [*] denotes the integer part of *, and take m_1 so that $n(m_1) > n_1$. If we put $R = (\|f_0\|_{\theta} + \delta)(\min |f_0| - \delta)^{-1}$, then for every $f \in B_{\theta}(f_0; \delta)$ and $m \ge m_1$,

$$|\frac{1}{m} \sum_{|c|=m} \operatorname{Trace} \rho(\langle c \rangle) \left(f(c) - f_{nm} \circ \tilde{\omega}_{nm} \right) |$$

$$\leq (1 + R \theta^{nm})^m R \theta^{nm} \sum_{|c|=m} |f(c)|.$$

Therefore

$$\begin{aligned} &\limsup_{m\to\infty} \mid \frac{1}{m} \sum_{c} \operatorname{Trace} \ \rho(\langle c \rangle) \ \left(f(c) - f_{nm} \circ \widetilde{\omega}_{nm} \right) \mid 1/m \\ &\leq \theta^{\alpha} \lambda(\mid f \mid) \leq \theta^{\alpha} (\lambda(\mid f_{0} \mid) + \varepsilon) < 1, \end{aligned}$$

(see Lemma 5-2 of [3]), and we get the sum

$$\exp\left\{-\sum_{m=m_1}^{\infty}\frac{1}{m}\sum_{|c|=m}^{\infty} \operatorname{Trace} \rho(\langle c\rangle) \left(f(c)-f_{nm}\circ\tilde{\omega}_{nm}\right)\right\}$$

converges absolutely and uniformly on $B_{\theta}(f_0;\delta)$.

By Proposition 3 the set of eigenvalues of $\mathscr{Q}_{f_n,\rho}: C^1(\hat{V}_{n},\rho) \to C^1(\hat{V}_{n},\rho)$ consists of $\lambda_j^{(a)}(f_n \circ \tilde{\omega}_n), j=1,\ldots,M, \ a=1,\ldots,m_j, \ \text{and} \ \mu_i(f_n), \ i=1,\ldots,K, \ \text{with} \ |\ \mu_i(f_n)\ |\ \leq \theta^*\lambda(\ |\ f_0\ |\) + \varepsilon.$ Since the dimension of $C^1(\hat{V}_n,\rho)$ is not greater than $N \# V_1 \in \mathcal{V}^{n-1}$, we get

$$\lim_{m\to\infty} |\frac{1}{m}| \frac{\sum\limits_{i=1}^K \mu_i (f_{nm})^m}{|i|^{1/m}} \leq e^{i\alpha} (\theta^i \lambda^{(i)} | f_0|) + \epsilon) < 1,$$

hence the sum

$$\exp\left\{-\sum_{m=m_1}^{\infty}\sum_{i=1}^{K}\mu_i(f_{n(m)})^m\right\}$$

also converges absolutely and uniformly on $B_{\theta}(f_0;\delta)$.

The operator $\mathscr{Q}_{f,\rho,j} = F_j(f)^{\circ} \mathscr{Q}_{f,\rho}^{\circ} F_j(f)^{-1}$ leaves invariant the space $V_j(f)$. By the analyticity for $f \in B_{\theta'}(f_0; 4\delta)$ it satisfies

$$\parallel \hat{\mathscr{Q}}_{f,\alpha_j} - \, \hat{\mathscr{Q}}_{f',\alpha_j} \parallel_{\theta'} \, \leq \, C \, \parallel f - f' \parallel_{\theta'}$$

with some positive C for every $f, f' \in B_{\theta}(f_0; 3\delta)$ and $j = 1, \ldots, M$. For each $f \in B_{\theta}(f_0; \delta)$ and $m \ge m_1$ we can make the following estimate

$$\Big|\sum_{\alpha=1}^{m_f} \lambda_j^{(\alpha)}(f)^m - \lambda_j^{(\alpha)}(f_{n(m)} \circ \widetilde{\omega}_{n(m)})^m\Big|$$

$$= |\operatorname{Trace} \left(\hat{\mathcal{Q}}_{f,o;j}^{m} - \hat{\mathcal{Q}}_{f_{n(m)}}^{m} \circ \tilde{\omega}_{n(m),o;j} : V_{j}(f_{0}) \to V_{j}(f_{0}) \right) |$$

$$\leq (\operatorname{Const}) \cdot \left\| \left(\hat{\mathcal{Q}}_{f,o;j}^{m} - \hat{\mathcal{Q}}_{f_{n(m)}}^{m} \circ \tilde{\omega}_{n(m),o;j} \right) \circ \pi_{j}(f_{0}) \right\|_{\theta}^{s}$$

$$\leq (\operatorname{Const})_{k=1}^{m-1} \cdot \left\| \left(\hat{\mathcal{Q}}_{f,o;j} \circ \pi_{j}(f_{0}) \right)^{k} \right\|_{\theta}^{s}$$

$$\circ \left(\hat{\mathcal{Q}}_{f,o;j} - \hat{\mathcal{Q}}_{f_{n(m)}} \circ \tilde{\omega}_{n(m),o;j} \right) \circ \pi_{j}(f_{0})$$

$$\circ \left(\hat{\mathcal{Q}}_{f_{n(m)}}^{m} \circ \tilde{\omega}_{n(m),o;j} \circ \pi_{j}(f_{0}) \right)^{m-k-1} \|_{\theta}^{s}$$

$$\leq (\operatorname{Const}) \cdot \left\| f - f_{n(m)} \circ \tilde{\omega}_{n(m)} \right\|_{\theta}^{s}$$

$$\times \sum_{k=1}^{m-1} \cdot \left\| \hat{\mathcal{Q}}_{f,o;j} \circ \pi_{j}(f_{0}) \right\|_{\theta}^{k} \cdot \left\| \hat{\mathcal{Q}}_{f_{n(m)}}^{m} \circ \tilde{\omega}_{n(m),o;j} \cdot \pi_{j}(f_{0}) \right\|_{\theta}^{m-k-1}$$

$$\leq (\operatorname{Const}) \cdot \theta^{s,n(m)} \cdot \left\| f \right\|_{\theta} \cdot \sum_{k=1}^{m-1} \lambda(|f|)^{k} \cdot \lambda(|f_{n(m)} \circ \tilde{\omega}_{n(m)}|)^{m-k-1}$$

$$\leq (\operatorname{Const}) m \cdot \theta^{s,n(m)} (\|f_{0}\| + \delta)(\lambda(|f_{0}|) + \epsilon)^{m},$$

hence

$$\lim_{m \to \infty} \left| \frac{1}{m} \sum_{j=1}^{M} \sum_{\alpha=1}^{m_j} \lambda_j^{(\alpha)}(f)^m - \lambda_j^{(\alpha)}(f_{n(m)} \circ \tilde{\omega}_{n(m)})^m \right|^{1/m}$$

$$\leq \theta^{\alpha/2} \left(\lambda(|f_0|) + \epsilon \right) < 1.$$

We therefore get the sum

$$\exp \left\{ -\sum_{m=m_1}^{\infty} \frac{1}{m} \sum_{j=1}^{M} \sum_{\alpha=1}^{m_j} \lambda_j^{(\alpha)} (f)^m - \lambda_j^{(\alpha)} (f_{n(m)} \circ \tilde{\omega}_{n(m)})^m \right\}$$

converges absolutely and uniformly on $B_{\theta}(f_0; \delta)$.

The property P2) and P4) imply that the set of all m-step closed paths on (V,E) can be identified with that of all m-step closed paths on (V_n,E_n) by the map induced by $\tilde{\omega}_n$, hence

$$\begin{array}{lll} \Sigma & {\rm Trace} \ \rho(\langle c \rangle) \ f_n \circ \ \tilde{\omega}_n(c) \\ c: {\rm closed} \ {\rm path} \ {\rm in} \\ (V,E) \ {\rm with} \ \mid c \mid = m \\ &= \sum_{\substack{c: {\rm closed} \ {\rm path} \ {\rm in} \\ (V_n,E_n) \ {\rm with} \ \mid c \mid = m} \end{array}$$

= Trace
$$\left(\mathscr{L}_{fn,\rho}^{m} : C^{1}(\hat{V}_{n},\rho) \rightarrow C^{1}(\hat{V}_{n},\rho) \right)$$

= $\sum_{j=1}^{M} \sum_{\alpha=1}^{m_{j}} \lambda_{j}^{(\alpha)} (f_{n} \circ \tilde{\omega}_{n})^{m} + \sum_{i=1}^{K} \mu_{i}(f_{n})^{m}.$

Summarising up we can now conclude that

$$\exp\left\{-\sum_{m=1}^{\infty} \frac{1}{m} \left(\sum_{\substack{c: \text{closed path} \\ \text{with } \mid c \mid = m}} \operatorname{Trace} \rho(\langle c \rangle) f(c) - \sum_{\substack{j=1 \ a=1}}^{M} \sum_{\substack{a=1 \ a=1}}^{m} \lambda_{j}^{(a)}(f)^{m}\right)\right\}$$

$$= \exp\left\{-\sum_{m=1}^{\infty} \frac{1}{m} \left(\sum_{\substack{c \in \mathbb{Z} \\ m=m_{1} \mid m}} \operatorname{Trace} \rho(\langle c \rangle) f(c) - \sum_{\substack{j=1 \ a=1}}^{M} \sum_{\substack{a=1 \ a=1}}^{m} \lambda_{j}^{(a)}(f)^{m}\right)\right\}$$

$$\times \exp\left\{-\sum_{m=m_{1}}^{\infty} \frac{1}{m} \sum_{\substack{j=1 \ a=1}}^{M} \sum_{\substack{a=1 \ a=1}}^{m} \lambda_{j}^{(a)}(f)^{m} - \lambda_{j}^{(a)}(f_{n(m)} \circ \tilde{\omega}_{n(m)})^{m}\right\}$$

$$\times \exp\left\{-\sum_{m=m_{1}}^{\infty} \frac{1}{m} \sum_{\substack{j=1 \ a=1}}^{K} \mu_{i}(f_{n})^{m}\right\}$$

converges absolutely and uniformly on $B_{\theta}(f_0;\delta)$, hence it is non-zero analytic for $f \in B_{\theta}(f_0;\delta)$.

On the other hand $\prod_{j=1}^{M} \prod_{a=1}^{m_{j}} (1-\lambda_{j}^{(a)}(f))$ is analytic for $f \in B_{\theta}(f_{0}; \delta)$, we can get out conclusion.

By Proposition 1, if (V,E) is not circuit then the continuous function $R \ni s \mapsto \lambda(e^{-st})$ $\in R_+$ is monotone decreasing and there exists h=h(l)>0 with $\lambda(e^{-ht})=1$ (see Lemma 3-11 [3]). As was shown in [3], if $\Re_e s > h$ then $e^{-st} \in U_\theta$ and $L_t(s;\rho)$ is holomorphic. By using Theorem 4 we get

COROLLARY. If (V,E) is not circuit then there is $\delta>0$ such that for every continuous unitary representation $\rho:\pi_1(V,E)\to U(N)$ the L-function $L_i(s;\rho)$ extends meromorphically to the region $\Re_e s>h(l)-\delta$.

REMARK. If $l \in \bigcap_{0 < \theta < 1} C_{\theta}^{1}(E)$, in particular if l is locally constant, then L-functions extends meromorphically to the entire complex plane.

§4. L-functions of Anosov flows

A flow $\varphi_t:X\to X$ on a Riemannian manifold X is called of Anosov type if the following conditions hold: The tangent bundle of X splits into three $\mathrm{d}\varphi_t$ -invariant bundles $TX=E^t\oplus E^s\oplus E^u$ such that

- 1) E^t is the line bundle tangent to orbits of the flow,
- 2) there are C>0 and $\lambda>0$ with

$$\| d\varphi_t(v) \| \le C e^{-\lambda t} \| v \| \qquad \text{for } v \in E^s, \ t \ge 0,$$

$$\| d\varphi_{-t}(v) \| \le C e^{-\lambda t} \| v \| \qquad \text{for } v \in E^u, \ t \ge 0,$$

The non-wondering set consists of points x such that for every neighborhood U of x and t>0 there is $t_0>t$ with $\varphi_{t_0}(U)\cap U\neq \phi$. When the non-wondering set coincides with X, which is in the case when there is a φ_t -invariant measure, by use of Bowen's Symbolic dynamics, L-functions of an Anosov flow is related to those of profinite graphs in the following manner. There are irreducible non-circuit profinite graphs $(V^{(a)}, E^{(a)})$, $a=0,\ldots,M$, with Lipschitz continuous length functions $l^{(a)}:E^{(a)}\to R_+$, and continuous homomorphisms $\psi_a:\pi_1(V^{(a)},E^{(a)})\to\pi_1(X)$ such that for every unitary representation $\rho:\pi_1(X)\to U(N)$

$$L_{\varphi_l}(s;\rho) = L_{l^{(0)}}(s;\rho \circ \psi_0) \prod_{a=1}^{N} (s;\rho \circ \psi_a)^{(-1)^{q(a)}},$$

$$h(\varphi_l) = h(l^{(0)}) > h(l^{(a)}), \quad a = 1, \dots M,$$

with some integer q(a) associated to (V^a,E^a) . Combining this and Theorem 4 we get

THEOREM 5. Let $\varphi_t: X \to X$ be an Anosov flow on a compact manifold. If the non-wondering set of φ_t coincides with X, then there exists $\delta > 0$ such that for every unitary representation $\rho: \pi_1(X) \to U(N)$ the L-function $L_{\varphi_t}(s;\rho)$ has a non-zero meromorphic extension to the domain $\Re_e s > h(\varphi_t) - \delta$.

Remark. We[3] give a piece of information about poles on the line \Re_e s=h. The L-function $L_{\varphi_t}(s;\rho)$ associated with a irreducible unitary representation has a pole at $s=h+\sqrt{-1}u$ if and only if ρ is a character (i.e. dim $\rho=1$) and $\rho(\langle p\rangle)=\exp(\sqrt{-1}ul(p))$ for every closed orbit p. In this case $L_{\varphi_t}(s;\rho)=\zeta_{\varphi_t}(s-\sqrt{-1}u)$ and every poles on \Re_e s are simple. In particular, if φ_t is weak-mixing and the image of ρ is a finite set, then $L_{\varphi_t}(s;\rho)$ does not have poles on \Re_e s=h except a simple pole of the zeta function on s=h.

Remark. Pollicott[11] show that if the correlation function decays exponentially fast for all Hölder continuous functions then the zeta function of weak-mixing flow has an analytic extension to a strip $h-\varepsilon < \Re_e s < h$.

§5. Examples of profinite graphs

Finite graphs and one-sided shifts of finite type are typical examples of profinite graphs. We here give some other examples which are not isomorphic to both of these.

Let (V,E) be a finite graph. By blowing up (V,E) at $v_0 \in V$ we construct a new graph (V,E') in the following way. Given a surjective map $A: (V_0) \to S$ onto some finite set S, we put $V = (V \setminus \{v_0\}) \cup S$, the disjoint union, and

$$E' = \{e \in E \mid o(e) \neq v_0, \ell(e) \neq v_0\}$$

$$\bigcup \{(v, A(v)) \mid v \in \ell^{-1}(v_0) \setminus \{v_0\}\}$$

$$\bigcup \{(s, w) \mid s \in S \text{ and } w = \ell e \text{ for some } e \in o^{-1}(v_0) \text{ with } \ell e \neq v_0\}$$

$$\bigcup \{(A(v_0), A(v_0))\},$$

where in case $v_0 \not\in \ell^{-1}(v_0)$ the set $\{(A(v_0),A(v_0))\}$ means empty.

Figure 1 (blowing up at v₀)

one can easily check that

- 1) if (V,E) is irreducible and $v_0 \not\in \ell^{-1}(v_0)$ then (V',E') is also irreducible,
- 2) if $\ell: E \rightarrow V$ is surjective so is $\ell: E' \rightarrow V'$.

If we define $\omega: V \rightarrow V$ by

$$\omega(v') = \begin{cases} v & \text{if } v' \in V \setminus \{v_0\} \\ v_0 & \text{if } v' \in S, \end{cases}$$

then it is a surjective morphism of graphs and satisfies the following two conditions;

- (i) $\omega: e^{-1}(v') \rightarrow e^{-1}(\omega(v'))$ is surjective for every $v' \in V'$,
- (ii) if $\omega(e) = \omega(e')$, $e,e' \in E'$, then e = e'.

We can construct many profinite graphs by using this operation. One of the easiest one is the following; we construct (V_{n+1}, E_{n+1}) by blowing up (V_n, E_n) at the encircled vertex.

We can also construct product profinite graphs and quotient profinite graphs. The product of two profinite graphs (V,E) and (V'E') is given by $(\lim_{n \to \infty} V_n \times V_n') \lim_{n \to \infty} E_n \times E_n'$ with the morphism $\omega_n \times \omega_n'$. The quotient graph $(V,E)/\sim = (\lim_{n \to \infty} V_n/\sim_n, \lim_{n \to \infty} E_n/\sim_n)$ is defined in the following way. Let \sim_n be an equivalence relation on the n-stage V_n of a profinite graph (V,E), which inherites on E_n by $e \sim_n e'$ if and only if $o(e) \sim_n o(e')$ and $o(e) \sim_n o(e')$ and $o(e) \sim_n o(e')$ one can easily check the properties P1) — P4) when the following conditions hold;

- (i) if $v \sim_n w$ then $\omega_n(v) \sim_{n-1} \omega_n(w)$,
- (ii) if $\omega_n(e) \sim_{n-1} \omega_n(e')$ then $\ell(e) \sim_n \ell(e')$,
- (iii) if $e \in E_{n-1}$ and $v \in V_n$ satisfy $o(e) \sim_{n-1} \omega_n(v)$,

then there is $e' \in E_n$ with $e(e') \sim_n v$ and $\omega_n(e') \sim_{n-1} e$.

In particular, we can glue two profinite graphs (V,E), (V',E') at given points $\xi \in V$, $\eta \in V'$ and get a new profinite graph $(V'',E'')/\sim$ by putting $V''=V \cup V'$, $E''=E \cup E'$ and defining the relation $v \sim_n w$ when v=w or $v=\xi_n$, $w=\eta_n$.

REFERENCES

- [1] T. Adachi: Distribution of closed geodesics with a preassigned homology class in a negatively curved manifold, to appear in Nagoya Math. J.
- [2] —: Closed orbits of an Anosov flow and the fundamental group, Proc. A. M. S. 100(1987), 595-598.
- [3] T. Adachi and T. Sunada: Twisted Perron Frobenius Theorem and L-functions, J. Func. Anal. 71(1987), 1-46.
- [4] ——: Homology of closed geodesics in a negatively curved manifold, J. Diff. Geom. 26(1987), 81-99.
- [5] I. Erdely and R. Lange: Spectral decompositions on Banach spaces, Lect. Notes Math. 623, Springer 1977.
- [6] D. A. Hejhal: The Selberg trace formula for PSL(2,R) vol 1 and vol 2, Lect. Notes Math. 548 and 1001, Springer 1976 and 1983.
- [7] T. Kato: Perturbation theory of linear operators, Springer 1966.
- [8] W. Parry and M. Pollicott: An analogue of prime number theorem for closed orbits of Axiom A flows, Ann. of Math. 118(1983), 573-591.
- [9] ---: the Chebotarev theorem for Galois covering of Axiom A flows,
- [10] R. Phillips and P. Sarnak: Geodesics in homology class. Duke Math. J. 55(1987), 287-297.
- [11] M. Pollicott: On the rate of mixing of Axiom A flows, Invent. math. 81(1985), 413-426.
- [12] ----: Meromorphic extention of generalized zeta functions Invent. math. 85(1986),

147-164.

- [13] D. Ruelle: Zeta-functions for expanding map and Anosov flows, Invent. math. 34 (1976), 231-242.
- [14] ---: Thermodynamic formalism, Addison-Wesley 1978.
- [15] T. Sunada: Geodesic flows and geodesic random walks, Adv. Stud. Pure Math. 3 (1984), 47-85.

Department of Mathematics Faculty of General Education Kumamoto University Kumamoto 860, Japan