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1. INTRODUCTION

In [GRS], .M. Gel'fand et al. introduced the general Airy system which generalizes the
classical Airy differential equation:

(1.1) d®y/dz® —zy =0.

It is known and is easy to show that (1.1) admits a solution given by the integral of the form

of Laplace transform

(12) vw) = [,
A

where the path of integration A is given as follows. Let Lx (0 < k < 2) be the half straight
line in the complex u-plane defined by

Li = {s€®*™/3 | 0 < s < +00}

with an orientation which directs from 0 to co. Let A be any linear combination of Ay :=
—Lg + L; (0 £ k <1< 2). Then, if z is in any compact set of C, the integral (1.2) converges
uniformly in z and gives an entire solution to (1.1). If we choose any two paths of {Ax}, the
functions defined by the integral (1.2) over these paths give a fundamental system of solutions
to (1.1). This fact can be seen, for example, by computing their Wronskian determinant.

As for the general Airy system, Gel'fand et al. gave a solution by the integral of the
form similar to (1.2):

/ eF A gy AL A duy,
a
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where P(u, 2) is a polynomial in v = (u1, ..., ur) with coefficients depending rationally on the
parameters z ( [GRS], see also §2.2 (2.10)). They mentioned few remarks about the domain
of integration A. But it seems to me that the discussion on a domain of integration A given
in [GRS] is not sufficient, because they didn’t give a rigorous proof to some of their statements.
So I think it is worth to give in this note some supplementary remarks to make clear this point
for further study, for example, the study of asymptotic behavior of the function as z tends to
the singularity of the general Airy system. As is indicated in [GRS] §4, we understand A as
a cycle of a certain locally finite homology group and study its structure. The definition of
such homology group will be given in §2.2.

This note is organized as follows. In Section 2, we review the definition of general Airy
integrals and state the main result. Section 3 is devoted to a study of polynomial maps

depending on several parameters, which will be used in proving the main theorem in Section
4.

2. DEFINITIONS AND MAIN RESULTS

2.1 General Airy function.

Let r and n be positive integers such that r + 1 < n+ 1. Let M(r + 1,7 + 1) denote the
set of (r + 1) x (n + 1) complex matrices. An element z € M(r 4 1,n + 1) is written as z =
(20, . - ., %) With the i-th column vector z;. We also write z = (2’ 2""), where 2’ = (20,...,2r),

2" = (zr41,---,2n). Put
Z={z€M(r+1,n+1)|detz’ #0},

which is a Zariski open subset of M(r + 1,n + 1) and will be the domain of definition of the
general Airy functions.
Let J be the Jordan group of size n + 1 , namely,

J=4 Y ht' |k ec,ho;éo} C GL(n+1),

0<ign

where A = (8i+1,j)o<i,j<n is the shift matrix of size n + 1. An element h = 3, hiA* € J is
also denoted by h = [ho,...,hs]. Notice that J is a maximal abelian subgroup of GL(n +1).

It is shown in [GRS] that there is an isomorphism
(2.1) J~C* xCt,

where C* is the complex torus and C" is a vector group. This isomorphism is established as
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follows. Define a series of rational functions 6x(z) in = = (zo,z1,...,Za) by
T T = '

2.2 log (1 —‘T+---+—"T")= 9x(x)T*,

(22) og (1+2 =) = 2o

where T is an indeterminate. Then the correspondence
(2.3) h = [ho,...,hn] — (ho,01(R),...,8.(R))

establishes the isomorphism (2.1). Here, for h = [ho,...,hs], we denote by 8x(k) the value
obtained by substituting (ho, ..., kn) into 6x(z), by the abuse of notation. We introduce also
a biholomorphic map ¢ : J — C* x C* by

L([ho, ey hn]) = (ho, hl, ceny hn).

Let x : J — C* be a character of J. Then the isomorphism (2.1) realized by the corre-
spondence (2.3) tells that there is a vector @ = (ag, . ..,an) € C**!, ag € Z such that

x(k) = hg® exp (E aib; (h)) .

i=1

This character will be denoted by x(:,a) to indicate its dependence on the parameters a. In

the following, we consider only the characters of J satisfying the assumption:
(2.4) ap=-r—-1, o, #0.

The set of « satisfying the condition (2.4) is a complex manifold biholomorphic to C*~! x C*.
Let  be the complex manifold of pairs (z, ) with z € Z and « satisfying (2.4). Let P" bea
projective space with the homogeneous coordinates ¢t = (to,...,¢-). Take a character x(-; )
of J satisfying (2.4) and put

(2.5) w(t, z,@) = x(t "} (t2); ) - 7,

where

(2.6) =Y (1) tidto A---dt; -+~ Adt,
i=0

the symbol gi?. implying that the term dt; does not appear in the expression. Note that for
w = (z,a) € Q fixed, w is a holomorphic r-form on P"\ H,, where H, = {t € P" | tzo = 0}. In
fact, by virtue of the condition (2.4), the form w is invariant under the homothety ¢ — ct (c €
C*); it implies w is a well defined r-form on the projective space P".
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Definition 2.1. The integral

(2.7) /A - w(t,z, @)

in called the general Airy integral.
The problem considered in this paper is the following.

Problem 2.2. Determine a possible chain A(z, @) which depend continuously on (z,a) so

that the integral (2.7) converges for each (z,a) and defines an analytic function of z and a.

Once a chain A(z, @) is determined as desired we call the function defined by the integral
(2.7) a general Airy function.

Remark 2.3. Any homology cycle with a compact support gives only zero value to the
integral, since P" \ H,, is homeomorphic to C” and is contractible.

2.2 Main theorem.
Put
E={(t,z,a) € P" x Q |tz #0}.
Let # : E —  be a fiber bundle with the projection =(,z,a) = (2, ). The fiber over
w = (z,a) € Q is denoted by E,, :==P" \ Hy. Put

(2.8) flt,z,0) =) aubi(tz),

i=1

which is a rational function on P” x  with the pole on H = {(t,z) € P" X Q | tzo = 0}. Then
the differential form w in (2.5) can be written in the form

(2.9) w=e =D . (tz)""" 1. 7,

Remark that if the 0-th column vector of z has the form *(1,0,...,0) the defining equation
of Hy, has the form to = 0, and if we take an affine coordinates (u1,...,ur) of Ew defined by
uy = t1/to, ..., ur = tr/to, then (tz0)~""'-7 = du1 A- - -Adu, and f turns into a polynomial in
u with coefficients depending on w = (2, a), which we denote by Py (u). Thus the differential

form w is written as
(2.10} w=e™Mdu; A-- Adu,.

Therefore the integral (2.7) can be a considered as a kind of oscillatory integral with a poly-
nomial phase Py (u).
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We want to take a cycle in some locally finite homology group as a domain of integration
A = A(z, @) in the integral (2.7) (cf. Remark at the end of §2.1). To get an idea, we make
here a heuristic consideration. Take w = (z, @) such that 20 = *(1,0,...,0) and fix it. Then
by the above remark, the differential form w has the form (2.10) and the support |A| of A
cannot be compact. In order to make the integral of w converge, we must take A so that the
term e become exponentially small as u € A tends to infinity and this decrease dominates
the eventual increase of the measure of A.

Keeping in mind the above consideration, we introduce, following [P2], a family of closed

subsets of E to which the support of a cycle must belong. For any ¢ < 0 we put
St ={vecC|Re()>ec}, 57 = {veC| Re(v) <c}.

Let @ be the family of closed sets A C E such that

(2.11) AN f7Y(S¥) is compact for any ¢ < 0.

The following Lemma is easy to check.

Lemma 2.4. The family ® is a family of supports in the homology theory, namely it satisfies
the conditions:

(1) IfA,A' € ®, then AUA’ € ®.

(2) If A€ ® and A’ C A is closed, then A’ € &.

(3) For any A € ® there is A’ € ® such that A’ is a neighbourhood of A.

Restricting each element of ® to a fiber E,,, we get a family ®., of closed subsets of E,,
satisfying the conditions (1), (2) and (3) of Lemma 2.4. Therefore, &, is a family of supports
in E,,. If there is no fear of confusion we write ® in place of ®,,. For w €  we consider a
locally finite homology group with coefficient in Z in which any homology class is defined by
a cycle whose support belongs to ®,,. The k-th homology group is denoted by HY (Ew) and
is called the homology group with supports in the family ®.,. The main theorem of this paper
is the following.

Theorem 2.5.
(1) For any w € Q, we have
0 ifk#r,
HP (Ey) =~ /
¢ ifk=r,
where p = ("71).
(2) H=UweaHF(Ey) forms a local system on Q of free Z-module of rank .
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Let A : w +— A(w) be a local horizontal section of the local system H on . Then the
integral (2.7) gives an analytic function of w which can be continued analytically along any
path in § by virtue of (2) of the theorem.

3. POLYNOMIAL MAP DEPENDING ON PARAMETERS

3.1. Polynomial map.

To prove Theorem 2.5, we need some results on a geometry of polynomial maps depending
on several parameters. ‘

Let f: C” — C be a polynomial map. We equip C” with the standard hermitian metric:
[lul|® = 3, lus|®. It is well known ([B], [P2], [V-L]) that there exists a finite subset £y C C,
called the bifurcation set of f, such that the restriction

F:C\fH(Er) - C\ By

is a locally trivial C* fibration. Assume that the bifurcation set Xy is chosen as small as
possible. The set I contains all the critical values of f. It may contains points other than
critical values. Take ¢ € I; which is not a critical value of f. Then, for any neighbourhood
V of ¢ and for any large open ball B C C” centered at the origin, the restriction

F:f7(V)NE@\B)»V

cannot be locally trivial fibration. In this sense, a point ¢ € Iy is called a critical value
coming from (a critical point at) infinity.

Let @ € C" and let O, be the ring of convergent power series at a. The Milnor number of
f at a is defined by

pa(f) = dime O/ < 81 f, ..., 8-f >, 0:f = 0f [us,

where < 81 f,...,0-f > is the ideal of O, generated by &1, ...,8:f. The number #a(f) is
finite if and only if a is either a regular point or an isolated critical point of f. In particular,
pe(f) = 0 if and only if a is a regular point and pa(f) =1ifaa nondegenerated critical point
of f.

The total Milnor number of f is defined by

pw(f) == dimcClua, ..., ur]/ <01 f,...,0nf >

where < 81 f,...,08,f > denotes the ideal of C[u] generated by the entries; it is known to be
equal to 3 ccr Ha(f). Let grad f = (81 f,.. .,0rf) be the gradient vector of f. The norm of
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grad f is defined to be || grad f||* := 3, 18: f|* = (grad f, grad f). When p(f) is finite, it is
interpreted geometrically as follows ([M]). Take a sufficiently large closed ball B in u-space
centered at the origin so that all the critical points of f are contained in the interior of B.
Then p(f) is equal to the mapping degree of the map,
grad f 2r—1
——=:0B—> § ,
|| grad 1|

where $%*~! is the unit sphere in C".

A sufficient condition for the nonexistence of critical values coming from infinity is known.

Definition 3.1 ([B]). A polynomial f € C[u] is said to be tame if there is a constant § > 0
such that the set {u € C" | || grad f|| < 6} is compact.

Remark 3.2. (i) A polynomial f is tame if and only if there exists a constant § > 0 and a
sufficiently large R > 0 such that

llgrad fll > & for any [u|| > R.

(ii) If f is tame, the set of critical point of f is finite, therefore any critical point is isolated.
In fact the set of critical points of f is an algebraic set defined by 8 f/Ouy =..-=08f/0u, =0
which is compact by the tameness of f. This implies that the set of critical points is finite.

Proposition 3.3 ([B]). If a polynomial map f : C" — C is tame, the bifurcation set Ly
consists only of the critical values of f.

For a tame polynomial map f, the reduced homology group H. (f ' (v),Z), veC\ Xy, is
determined from local informations at critical points of f. Let a be a critical point of f and
f(a) = cis its critical value. Take a small ball B in C" centered at a so that f ~!(c) and 8B
intersect each other transversally. If we take a small disk D centered at ¢ so that any fiber
f7'(v),v € D, intersect with B transversally, then f : F/Y(D°)NnB — D°,D° = D\ {a},
is a locally trivial fibration so called Milnor fibration. We know ([M]) that Milnor fiber is
homotopic to a bouquet of (r — 1)-spheres:

Bnfto)y=8tv...v s,
N————
Ba(f)
It follows that the reduced homology group is

Hi(BN f~'(v),2 ° Tl
k( nf ('U), )_ Z#a(f) k=r-1.



18 H. KIMURA

The inclusion BN f~(v) — f~'(v) induces an injective homomorphism H.(BNf(v),Z) —
H.(f*(v),Z) and the image is generated by vanishing cycles attached to the critical point a.

Gathering the local contribution from each critical point, we have the following.
Proposition 3.4 ([B], [P2]). If f is tame, for any v € C\ Iy we have

(o). Z 0 k#r—1,
k(f (v), ) - e
3.2. Tame polynomials with parameters.
For the application to Airy integral, we need similar results of §3.1 for polynomials
depending on several parameters. Let 2 be a C*° manifold and let f be a polynomial of

u = (u,...,ur) whose coefficients are C** functions on 2. For w € Q, we put fu = f(-,w).

Definition 3.5. A polynomials f(u,w) is said to be locally uniformly tame if for any w € Q2
there exist a neighbourhood W of w, a positive constant § and sufficiently large R > 0 such
that

(3.1) ll(grad, fuw)(w)|| =6 for any |jull > R and w' eW.

where grad,, f. is the gradient of f, with respect to u. We sometimes write grad f in place

of grad,, f if there is no fear of confusion.

Example 3.6. (i) Any polynomial of one variable
f=aw" +au"t +--+an

with parameters (ao, @1,-..,@n) € C* X C" is locally uniformly tame.
(ii) f = u?+ud+ai1us+azuz+as is locally uniformly tame with Q = {(a1, a2, az) € C*},

see also Proposition 3.9.

Proposition 3.7. Suppose that f(u,w) is a locally uniformly tame polynomial in u with
coefficients depending smoothly on the paramenter w € Q. Then the total Milnor number of

fuw is constant with respect to w in any connected component of §2.

Proof. Let w® be any point of §. Since f is locally uniformly tame, we can take a connected
neighbourhood W of w°, a constants § > 0 and a closed ball B of a large radius such that the
condition (3.1) holds. For any w € W we define the map

g‘rad f‘w 2r—1
—=—uP_ 9B - 857 .
| grad,, full :
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For any w € W, we take a continuous curve w(t) in Q which join w® to w. By virtue of the con-
dition (3.1), the map grad f.(¢)/|l grad fu(s)l| gives a homotopy between grad f,0/|| grad f,o||
and grad fu/|| grad fu(l. Thus p(fw) = u(fye). O

With f(u,w), we associate a map F : C” x Q — C x  defined by

F(us w) = (f(u! w)vw)-
Let 3 be the bifurcation set of F, namely, the image of the set of critical points of F.

Proposition 3.8. Suppose that f(u,w) is a locally uniformly tame polynomial on C* x Q.
Then the restriction
F:(C"xQO\FI(Z)-Cx\Z

is a locally trivial C*> fibration.

Proof Take any point 8° = (v°,4°) € (C x Q) \ E. Let V C C be an open disk centered at
v® and W C Q be an open ball in a coordinate neighbourhood of w® in Q with the system of
coordinates (w1, ..., wn) such that U := V x W is relatively compact in (C x 2) \ . We may
assume that the condition (3.1) holds for W. Define a vector field X; on F~!(U) by

- Ofw O
X: = llgrad ful 2 30 2 2

Notice that || X1|| = 1/|| grad fu|| is bounded in F~(U) by virtue of the choice of U and of
the condition (3.1) of the locally uniform tameness of f. Take any point b = (v',w') € U
and define a vector field X on F~}(U) by

(¢}
= (' - )X1+Z('wJ —w) Bw;”

Note that X» is also bounded on F~!(U). Let s — @(s,u,b') denote the integral curve of
X> which pass (u,uw®) € F~1(b°) at s =0. Fix b* for the moment. The boundedness of X;

assure that ¢ is defined on some interval s € [0, ¢) for any (u,w®) € F~!(4°). Moreover, since

df (¢(s, u, ")) ad f
d T <‘ ~ ) 1)

=o' —°,

we see that F'(¢(s,u,b')) = (v° + s(v' —v°), s(w' —w®)). This implies that the integral curve
s — ¢(s,u,b') can be prolonged at least to be defined on [0, 1] for any point (u,w®) € F~1(8%).

Now by the theorem on ordinary differential equations stating the dependence of solutions on
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initial data and parameters, we see that the map F~'(8°) x U — F~(U) defined by the
correspondence (u,w®,b') — ¢(1,u,b") is a diffeomorphism and gives a local trivialization of
the fibration. O

3.3 Example.

We consider here an example of locally uniformly tame polynomials of several variables.
The example presented here may be well known, but we decided to include its proof for the
completeness of presentation of this paper. Let p = (p1,-..,pr) be a sequence of positive
integers called a system of weights. A polynomial g(u) is said to be quasihomogeneous with
respect to the system of weights p when g(u) is written as

i i
PR S
i1p1++irpr=N

for some positive integer N and with some nonzero coefficient. In this case we write deg,g =
N and say that g is of p-degree N. In general, if g is a polynomial with a quasihomogeneous
part of highest p-degree = N, we also denote deg,g = N.

Proposition 3.9. Let f(u,w) = fi(u) + f2(u,w), where fi(u) is ¢ quasihomogeneous poly-
nomial with the isolated critical point 0 and fa(u,w) is a polynomial in u with coefficients
depending smoothly on w €  such that deg, fo < deg, f1. Then f(u, w) is locally uniformly

tame.

Proof. First we show that fi(u) is tame. It is sufficient to prove that there exist a positive
number § > 0 and a sufficiently large number R > 0, such that || grad fi(u)|| > 6 holds for
all ju|| > R. Let $?~! = {u € C" | |lu|| = 1} be the unit sphere in u-space centered at the

origin. For any a = (a1,...,ar) € S%~! we consider in C" a curve
Ya(t) := (', ..., t""ar), t20.

Since fi(u) has only one isolated critical point u = 0, the gradient vector grad fi does not

vanish on S27~1. It follows that for some positive constant §; we have
max Iajf1| 2 61 on S2r—1.
P
On the other hand, since d; fi is quasihomogenous of p-degree N — p;, we have

(5 £1)(7a(®)) = £ 7% (3;£1)(a)-
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Therefore, if i is chosen for @ € §°"~! so that max; |(9; f1)(a)| = |(8:f1)(a)|, we have

lI(grad f1)(va (DIl = I1(EY** (B f1)(a), - . ., £V 27 (8- F1) ()]
> N7 f1)(a)|
> tN=rig,.

This implies that fi(u) is tame. Next we show that f (u,w) is locally uniformly tame. Let
W be any compact subset of 2 and restrict f(u,w) on C” x W. Take a € S2 . Since
0jfa(u,w),j =1,...,r, is a linear combination of monomials of p-degree less than N —p; — 1

and W is compact, there is a constant C; > 0 such that we have
185 f2(Ya(t), w)| < C;tN 777! forVae S ', YweW,t>R>0.
For a € $*"~!, let i be as above. Then we have

I(grad £)(va (), w)ll > 1(8: /1) (Ya(t)) + (8: f2)(va(t), w)|
2 |(8:f1)(va ()] = 1(8:£2) (a (8), w)

2V (5 - &)

> 61tN —pi

i

for t > R, with R > 0 sufficiently large. This proves that f(u,w) is locally uniformly

tame. O

4 PROOF OF THEOREM

4.1 Homology group with a family of supports.
Consider an integral

(4.1) f P E g L u)duy A A duy,
A

where P(u) and a(u) are polynomials in (ui,...,u,) and are called phase and emplitude,
respectively. In [P2], F. Pham constructed the homology group whose cycle A gives a meaning
to the integral (1.1). In this subsection we review his results and in the following subsections
we apply them to prove our theorem.

Hereafter we assume that P is tame and Sp is the set of its critical values. Foranyc <0
let S} and S be as in §2.2 and ¥ be the family of supports in C" consisting of closed sets C'
satisfying
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(4.2) VYc<0,CNPY(SY) is compact.

Denote by HY the locally finite homology group with coefficients in Z and with a family of
supports V.

By virtue of Proposition 3.3, the inclusion
(43) (€, PH(SD)) = (€7, PTH(S7)

is a homotopy equivalence for ¢ < ¢’ < 0 such that S contains no point of Lp. The family
{(C", P~(57))}e<o forms a projective system. Taking into consideration of the definition of
locally finite chains and the definition of the family ¥, the group of locally finite chains c¥
with a family of supports ¥ is identified with a projective limit of the system of groups of
relative chains
C¥(CT) =lmCu(C",PT(8)) (c— —o0).

Using the fact that the inclusion (4.3) is a homotopy equivalence for sufficiently small ¢ <
¢ < 0, the homology group for CJ(C”) can be identified with a relative homology group:

(4.4) HY(C") ~ H.(C",P7Y(SD)) (c<0).

Once the identification (4.4) is established we follow the standard argument of singularity
theory using deformation retraction and excision ( [B], [P2]). Since C” is contractible, the

homology exact sequence for the pair (C", P~!(SZ')) leads to
(4.5) Hi(C™, PY(ST)) = Hiea(PTY(SS),2) = Hi—1 (P (v),2),

where Hy_1 denotes the reduced homology group and v is an arbitrary point in S¢ . The second
isomorphism is obtained by deformation retraction by using the triviality of the fibration
P:P~Y(S;) — S;. Now by virtue of Proposition 3.4, we have the following proposition.

Proposition 4.1 ([P2]). For a tame polynomial, we have for any v € C\Zp

. 0 k#r,
Wt ~, -1 ~
HE (') = B (P (0)2) = { e g
More concretely, cycles for HY (C7) are described as follows. Note that the isomorphism
H(C",P~Y(57)) ~ Hr—1(P~}(S5), 2) is established by taking a boundary of a relative cycle.
Take ¢ € Zp and let L. be the half line in C which starts from ¢ and goes to infinity in the

direction arg(v —c¢) =60, T < 8 < %’1 We choose 8 so that L. contains no other point
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of p than c. On each point v € Le \ ¢, we take vanishing cycles ec1(v), ..., ecm. (v) which
vanish at critical points over c, depend continuously on v and are linearly independent in
Hr_1(P~'(v),Z), where m. = 2 aep-1(c) #a(P). Then Aci := UyeL eci(v) gives an element
of HY(C"). We have a generator {Aci|ceZp,i=1,...,mc} of H¥(C").
4.2 Application to the Airy integral.

Let f be the rational function on P” x § defined in §2.1, namely, f(t,z,a) = 3.7, :6;(t2)
with a pole divisor H = {(t,z,a) € P" x Q) | tzo = 0}. We have set E := (P" x ) \ H. We
extend it to a holomorphic map F: E — B:=C x Q by

F(t,z,0) = (f(t,2,0),z,a)

Let C be the set of critical points of F and ¥ := F(C) C B be the set of its critical values.
For w € 2 we denote the restriction of F to E,, ;= P" \ Hy = C" by F,.

We want to show that the restriction F : E\ F~(£) — B\ T gives a locally trivial
C*-fibration by the help of Propositions 3.8 and 3.9. In order to make emerge the principal
part of the holomorphic map F,, for each w € £, let us consider the action of G = GL(r+1)
on P" x Q defined by

(4'6) g- (t1 2, C‘f) = (tg_l’gz’a)'

Since the defining equation £zo = 0 of the divisor H is invariant by the action of G, the action
of G on P" x Q induces that on E. We also define the actions of G on © and on B by

(4.7) g-(z,0) =(gz,a) for (z,a) €N
(4.8) g-(v2,a)=(v,g2,a) for (v,2,e) € B

Remark that the following two fibration structures are preserved by the action of G. Firstly,
we see that the action of G is compatible with the fibration structure (E, ,2), namely,

m(g-e)=g-n(e), g€G, ecE.

Secondly, the action of G preserves the fibration structure of the map F : E — B, namely, we
have the commutative diagram

E—22 L, FE

NP

B —£
This fact follows from the invariance of f by the action of G on E :

(@" )t 2,0) == f(tg™", g2,0) = f(t, 2, ).
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The following lemma is an immediate consequence of the G-invariance of f.

Lemma 4.2. Both the set of critical points C and the set of critical values £ are invariant
by the action G.

Take any point w = (2,&) € Q. By the definition of Z, we have det z' # 0, where
z = (2/,2"). So we put g = (2')”! and consider the action of g on . Then g-w =
((Lr41,(2)*2"), @) and Hg., = {t € P" | to = 0}. Taking this fact into account, put

Q' ={(z,0) €Q| 2" =111}

and consider the inclusion map i : ' — Q. Let (¢*E, m, Q') be the restriction of (E,=,Q) to

the fibers over 2. Then we have the commutative diagram

Gxi*E —— FE

lxvrl l,r

GxQY —— Q,

where the maps denoted by the horizontal arrows are those induced from the actions of G on
E and Q. These maps are biholomorphic. Note that the fibration (i*E,n, ') is trivial and
the total space i* E is identified with C" x Q' by taking the affine coordinates of the fiber E,,
as
u=(1,u1,...,ur) = (to/to,t1/t0,- - -, tr/to)-
We first restrict our consideration to the fibration F : i*E — B’ :=C x . Put &' :=
ZNnB.

Proposition 4.3. The restriction F : i* E\F~'(Z') — B'\X' is a locally trivial C* fibration
with 0 ke

- _ Ty

He 1 (F71(b),2) {

¢ k=m,

where p = (":1).

To prove Proposition 4.3, we put

P(u,w) =) aifi(uz), w=(z,0)€,
i=1
where u = (1,u1,...,ur), and we apply Propositions 3.7 and 3.8 to P. We see that P is
a polynomial in uy,...,u, whose coefficients depend holomorphically on w € €. Let p =
(1,2,...,7) be a system of weights of u1,...,ur. It induces a structure of graded ring on the

polynomial ring C[u]. We need the following two lemmas.
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Lemma 4.4. For w = (z,a) € @, the polynomial P(u,w) in u has p-degree n and the
quasihomogeneous part of p-degree n is given by

(4.9) Pp(u) = anbn(1,u1,...,ur,0,...,0).

Proof. Put l(u) = (1,l1(u),...,In(2)) = uz. Since z has the form (1,41, 2"), we have I (u) =

u1,...,lr(u) = ur. By the definition (2.2) we have

(_1)k+l
O0m(l,2z1,...,2,) = Z % Z ' Tiy *** Tig
1<k<m iyt tip=m,i; >1
First we show that deg, 6 (I(u)) < m. In fact, for an index (i1,.. ., ix) such that i; +-- - +ix =
m, we have
deg, liy (u) -+l (u) Sia + - +ik =m
because /;(u) = u; for 1 < i < and deg,, li(x) < r for i > r+1. This proves the first half of the
assertion. To show the latter half, note that 6,(1,u,...,u.,0,...,0) is a quasihomogeneous
polynomial in w1, ..., u, which is a sum of terms I, (u) - - - L, (u) satisfying é1 + --- +ix = n

and 1 <4y,...,% < r. Since deg, 0., (I(u)) < n for m < n, it is sufficient to show
(4.10) deg,[0n(I(v)) — 0n(1,u1,...,ur,0,...,0)] < n.

Since 05 (l(u)) — 6n(1,u1,...,ur,0,...,0) is a linear combination of L, (u)--- L, (1) with an
index (31, ...,4x) satisfying i1 + - - - + ix = n, with some i, > r + 1, we get
deg, [0 (I(u)) — 0.(1,vs,...,u0,..., 0)) <. max deg, l;, (u)- - - I, (u)
i14--Fip=n

<ip 4ot ip=n

This proves (4.10) and the second assertion of the lemma. 0O

Lemma 4.5. The family of polynomials P(u,w) (w € ) is a locally uniformly tame and,
for any w, the total Milnor number of P(u,w) is p = (":1).

Proof. Taking account of Proposition 3.9, it is sufficent to show that the quasihomogeneous
polynomial Py (u) defined by (4.9) has only one isolated critical point u = 0. A proof of this
fact is already given in [K1]. However, for the sake of completeness of presentation, we give
its another simple proof. Consider the polynomial map ¢ : € — C" from (z1,...,%-)-space
to (u1,...,ur)-space defined by

¢*ui = (—=1)* x (i-th elementary symmetric function of z ).



26 H. KIMURA

Then using the relation

™ oo T k
log(1 +mT+ - +uT) =log[[A-zT)=->_ " %T",
i=1 k=1 i=1

and noting that the left hand side equals to Y7, O (u)T*, we see that
§Pa= =Rt 4ot al).

Differentiating both sides with respect to z;, we get

n—l_ad"Pn _Zapn%
j

—aﬂm o .
¢ Ox; 8u,~ Oz;

If P, (u) has a critical point other than 0, the power sum ¢* P, must have a critical point other
than 0, which is absurd from the form of the derivative of power sum. Thus P, has only one
isolated singularity u = 0. Now we can apply Proposition 3.9 to conclude that P(u,w) is
locally uniformly tame. The total Milnor number of P(u,w) is equal to that of P,(u) by
Proposition 3.7. Since Pn(u) is quasihomogeneous, by the well known formula ([AVG] §12.3,
Corollary 3), the Milnor number p is computed by

p:

S n n—-1

1G-9-("7")

i=1

This proves the lemma. 0O

Proof of Proposition 4.3. Apply Proposition 3.8 to the polynomial P(u,w). O
Combining Proposition 4.3 with the action of G on E, we can obtain the following:

Proposition 4.6. The restriction F : E'\ F~Y(Z) — B\ T is a locally trivial C* fibration.
For any b € B\ Z, we have

ﬁk_l(F_l(b)’z) ~ { 0 k ?é T,

¢ k=r,
where p = (*7).

Proof. The actions of G on E and B defined by (4.6) and (4.8) induces the biholomorphic
maps

Gxi*E—E, GxB - B
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which are compatible with the map F:

Gxi*E —— E

lXFIi‘El lF

GxB —— B,

Notice that g - ¥ = ¥ by Lemma 4.2. Take any point bp € B \ I. There exist go € G
and by € B’ \ £’ such that go - by = bo by virtue of the bijection G x B’ — B. Take an open
neighbourhood by € V C B’\X' such that the restriction F : F~}(V\(Z'NV)) - V\(Z'NV) is
a trivial C*°-fibration and let U be any neigbourhood of go. Then the maps in the commutative

diagram
UxFY(V\(Z'NnV)) —— E

1x F‘l l F
Ux(V\(Z'nNnV)) —— B
give a local trivialization. The second assertion is a consequence of Proposition 4.3. 0O

Combining the result in §4.1 with Proposition 4.6, we can show Theorem 2.5.

Proof of Theorem 2.5. As is shown in §4.1, for each w €2, we have H (Ew)~ Hr—1(F~(b),Z)
for any b € (C x {w}) \ Zw. On the otherhand we know that Hy_1(F~(b),Z) = 0if k # r by
Proposition 4.6. This proves the first part of the theorem. We show the latter half. Take
any point wp € £ and choose vo such that (vo,wo) € Byy \ Tw,- We take a small simply
connected neighbourhood wo € W C  so that b(w) = (vo,w) € B\ T for any w € W,
Then combining Hy (Ey) ~ H.—1(F~'(b(w)), Z) and the local triviality of the fibration F :
E\F'(Z) — B\X, we see that ,,cy Hy (Ew) is trivial and is identified with V x HZ (Eu,).
This proves the theorem. 0O

4.3 Action of G on the homology groups.

We can relate the homology group HY (E,,),w € 2\ &, directly to the homology group
H?(E,) for some w € Q' by using the action of G on the fibration (B, 7, 82). To state this, we
recall some definition. Let X and Y be topological spaces equipped with families of supports
® and ¥ respectively. A continuous map ¢ : X — Y is said to be admissible for ® and ¥ if
#(A) € ¥ for any A € @ and if, for any compact set K C Y and for any A € &, AN ¢~ (K)

is compact. In this case the map ¢ induces a homomorphism of homologies:
&t HE(X) — HE(Y).

Lemma 4.7. Let the action of G on E be that defined by (4.6). Then each g € G defines an
automorphism of E admissible for ®.
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Proof. Let A € ®. By the definition of @, AN f ~1($7) is compact for any ¢ < 0. We want to
show that, for any g € G, g- AN f~1(S¥) is also compact. Since f is invariant by the action
of G, we have g- f~1(S8}) = f~1(S¥); it follows that

g-AnfHSH =g-(AnfTHSED)

and that it is compact. Next we check the latter half of the conditions of admissibility. Let
K be any compact subset of E. Since the action of G is holomorphic, g~ ! K is compact.
Therefore, AN g~' - K is also compact. O

Notice that the action of g € G on E sends Ey to E,.., and that this map is admissible
with respect to ®,, and ®g4.,,. This remark leads to the following:

Proposition 4.8. For any g € G and w € , we have the isomorphism

gv : HY(Eb) — HY (Eg.v).
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