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Abstract

We deduce the polynomial Hamiltonian structure from the Hamiltonian system given
by [4] by means of the holonomic deformation of linear ordinary differential equations
of the Az-type. The completely integrable Hamiltonian system obtained in the present
article can be viewed as an extension of the second Painlevé equation to the case of
several independent variables. We obtain also the family of particular solutions of the
Hamiltonian system and give an integral representation of such solutions.

Introduction.

Consider a linear ordinary differential equation of the form:

01 Yt n@D 4 ooty =0,

with the coefficients

g
p(e) = —P@)-)
k=1

- /\k ?
(0.2)
— 9 _ -3
p2(z) = —(2a+ 1)z ZZIH,:B +Zz—)\k
3=
where
g :
(0.3) P(z) = 22" +) " jrja’ .
=1

We make the following assumption: none of the regular singular pointsz = A (k=1,---, g)
is logarithmic singularity. Under this assumption, the coefficients H; (j = 1,---,g) of p2(x)
can be written as rational functions of A = (A1,--+, Xg), = (g1, -+, ptg) and 7 = (r1,-- -, 7g).
In fact, since the exponents at = Ax are 0 and 2, we obtain by the use of Frobenius method
the following equations:

(0.4) s+ o u+ 88 =0 (k=1,---,9).
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where

g

1
a(()k) = —P(Ak) b Z Ak — Al y

1=1,(£k)
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k) _ _ g _ \g—7F t

O = —@a+ 1M -2 HAMTT+ Y sy
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By solving the linear equation (0.4) with respect to Hj, we can obtain the rational functions
H; = H; (r,),p). When considering the linear equation (0.1)-(0.2), we suppose that H; are
the rational functions of this form.

Since P(x) can be regarded as a polynomial representing the versal deformation of the
singularity of the A,-type, we call the linear equation (0.1)-(0.2) that of the Ag-type. The first
author of the present article studied in [4] the holonomic deformation of the linear equation
(0.1)-(0.2) in the case g = 3; he introduced the deformation parameters s = (s1, 82, 3) such
that

3
(0.5) r =8+ ng, To = 82, T3 = 83,

and proved the following theorem:

Theorem ([4]) The holonomic deformation of (0.1)-(0.2) is governed by the completely
integrable Hamiltonian system of partial differential equations:

Ok _ 8H; _% _ OH;

(H) &J— - al-‘k ? asJ __aAk (J9k=112)3)'

We call the Hamiltonian system (H) as the Az-system.

In the case g = 1, by regarding s = 71 as deformation parameter, we obtain by the
holonomic deformation the following Hamiltonian system:

dx

(0.6) %= xS, o

1
E, 5—2A[I+a+§,

see [5]. Here we put A = A; and p = p1. This is called the second Painlevé system; in fact

(0.6) is equivalent to the second Painlevé equation:
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When g = 2, the holonomic deformation was studied [3]. In fact we obtain the Hamiltonian
system (H) with the Hamiltonians:

H = % z_: ﬁ (£ — POk — 20+ 1)AF]
(0.7)

- _ Z E((f\k) I}‘i _ {P(Ak) + ﬁ}pk - (2a + I)Ai] )

where  A(z) = (z — Mi)(z — X2), Q(x) = = — A1 — Az, and A'(z) = £A(z). Here, as the

deformation parameter s = (s, s2), we can take:
81 =7, S2=T2.

The Hamiltonian system with (0.7) is called the A, system. When g < 2, the coefficients of
the polynomial P(z) can be regarded as the deformation parameter, while we have to find
the change of variables such as (0.5) when considering the holonomic deformation in the case
g=>3.

The second Painlevé system (0.6), i.e. the A;-system at our terminology, possesses the

polynomial Hamiltonian:
H A 1 —1“2_ \2_*.2)“_(0.'.1)\
(S, ’ ) 2 ( 2 2 :

On the other hand, in the cases g = 2 and g = 3, the Hamiltonians induced directly by
the holonomic deformation are rational in the canonical variables. It is known ([3]) that,
when g = 2, we can obtain from (0.7) polynomial Hamiltonians by means of certain canonical

transformations. In fact, the Hamiltonian system with (0.7) is transformed into

aqx aL,- Opx 3L .
0.8 = =, —_—= ,’C=1,2 N
( ) ) s 6Pk a s a Ik (.7 )

with the Hamiltonians:
|
L, = —5%P: + p1p2
1 1 1 1
- (qf +ag2 + 532) n- ((Ilqz ~ 55241 + —2-31) p2 — (a + 5) a1,
(0.9)

1 2 1 ( 2 1 ) 2
L = = - - = -
2 2P1 + 2 g1 +q2 282 P2 —1p1p2

- (o= )= (3 o= o) (o 3)
q1q2 22(]1 21 f 48 g2 21t11 482 P2 [ 2 q2
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We rewrite here the results obtained in [3], [6], where the notation is slightly different from
ours. The data of the system (0.8)-(0.9):

(a,p,L,s)

is called the polynomial Hamiltonian structure of the Az-system. Here we write ¢ = (g1,492),
p = (p1,p2), L = (L1, L2) and s = (s1,82). It is shown in [6] that, when a = —3, the system
(0.8)-(0.9) has particular solutions of the form:

8 o
(0.10) (pr,p2) =(0,0), @ = 3_sll°gu’ @ =5 logu ,

where u = (u31,u2) is given by:

(0.11) u=e 1% /1 exp (- / ) P(g)) dt |

~ being a certain path in the complex plane. Here P(§) = 2¢3 4+ 282£ + 51, namely, the poly-
nomial (0.3) with g = 2. Moreover, when a = —3, the A;-system (0.6) possesses particular

solutions of the form:

d
p=0, /\—Elogu,

u=f7exp(—§£3—ss) d ,

see [5], [6].
The purpose of the present article is double; we will determine the polynomial Hamiltonian
structure for the Az-system and then obtain particular solutions, having integral representa-

tions of the form:
2 3 1
/exp [—355 — 5383 — 5587 — (31 + Zs?,) £ - 53233] d¢.
o

By taking into consideration (0.5), we obtain again the primitive function of the polynomial

—P(¢)-

In section 1, we will establish the polynomial Hamiltonfan structure for the As-system.
We associate with the system (H) the 2-form:

3 3
Q=) due Ad\ - dH; Ads;

k=1 j=1
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which can be written in the form:

Q =Zﬂijdsi/\d8j ,

i<J

3
J= (2 Ot _ o oHy] 0y (8,
Qt"'_kz_; [a_r\ka_pk a/\k 3[14;] N 83,- HJ a.Sj H‘ :

Here (%) denotes the differential with respect to s; such that A = (A1, A2,A3) and p =
(M1, p2, p3) are viewed to be independent of s;. It is known that the system (H) is completely
integrable if and only if £2;; does not dependent on \, y, see [2, Proposition 6.4, Chapter 1).

And the transformation of the Hamiltonians structure:
p: (\wHs)— (NEH,S)

is canonical, if and only if

3 3 3 3
D due Ada - dHjAds; = dfi, Ad - dH; nds;,
k=1

=1 k=1 i=1

where X = (\,A2, %), B = (#,, B2, 3) and 3 = (31,52,53). Consider in particular the
transformation of the Hamiltonians:

(0.12) Hi=H:+fi(s) (i=1,2,3),

where fi(s) are arbitrary functions of s, and we put A=\, T =g, 5=3s. Then the necessary

and sufficient condition that (0.12) is canonical is given by:

3fi _ af F] P
Bs; — s (:,7=1,2,3).
On the other hand, the Hamiltonian system (H) remains invariant under an arbitrary trans-
formation of the form (0.12). We consider in what follows the transformation (0.12) which
is not necessarily canonical.
Section 2 is devoted to the studies on particular solutions of the Asz-system. We will

show that such solutions are defined by the completely integrable linear system.

1. Polynomial Hamiltonian structure.

Let e; ( = 1,2,3) be the j-th elementary symmetric polynomial of \;, A2, Az, and eg.k)
be the j-th elementary symmetric polynomial of the two variables, A; (i = 1,2,3 (# k)). We
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set:
A(z) = (z — M)z = A2)(z — As) ,
(1.1) P(z) = 22" + 3532 + 2822 + 51 + %sg .

Then the Hamiltonian of the As-system (H) is the following:

3
1 .
(1.2) =3 > [NeN*uE - Usep - NeN 22+ 1DX] (1=1,2,3),
k=1
where
*= (), Ne= W@,
and s
i NiNj + NN
e = gk - kVik NV
Upe = NeN*POW) = Y s vamt
1=1, (k)

A'(z) being the derivative of A(z), see [4].

Firstly we consider the variables o = (01,02,03) defined by
(1.3) oi=(-1Y""e; (=1,2,3).
It is easy to see:

Proposition 1.1 The transformation
. H,8) = (0,0, H, 5)

is canonical if and only if

B 1 —(Az+2A3) A2As 2t
(1.4) pz 1 =11 —(M+A3) MAa p2
U3 1 —(M+2A2) e p3

where p = (p1, p2,p3) -

Here, for the sake of simplicity of presentation, we use the same notation; in the quartette
(o,p, H, 8), we regard H; as functions of o, p and s. By means of (1.3) and (1.4), the explicit

form of H is written as follows:
H, ¢ ) . o1
(1.5) Hp | = Q| — EA pz | - (a+ 5) o2 |,
Hj3 Qs p3 o3

[
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where

Q1 = p3 — 0203 — 201p2p3 + 2p1p3 ,
Q2 = —20193 + (03 + 0192)p3 + 20102 + 201 p2p3 — 201p1p3

Qs = p} + 0}p3 + (03 — 0103)p3 — 2010192 + 2(0102 + 03)p2ps — 20201P3 ,

and A = ((akl))k,l=1,2,3 is the matrix such that

ann = 200%+ 202 + 3s3 ,
3
a2 = 202° +3s302 — 28201 + 51 + Zs% ,
3
ass = 203° + 28303 — (31 + Zsﬁ) 02— 01,
a2 = a1 = 20102 + 203 + 2s2 ,
3 2
a3 = a3 = 20103+ 51+ 1%
3
o3 = 20903+ 3s303 — (81 + ng) o1+1.
3
az2 = 209203 + 38303 — (s1 + ng) o1 + 2.

Now the Hamiltonians H; are polynomials in the canonical variables. We will rewrite them
and obtain the polynomial Hamiltonians, symmetric with respect to the independent variables.

In fact, as to the Az-system (0.8)-(0.9), we have the symmetry:

(520) 2= () =

and then
. 2 2
D dpcAdgr =) dL;Ads;=0.
. k=1 =t

For the As-system, we make the transformation of the Hamiltonians:

Hy Fl 0
— 1
(1.6) Hy | =|H | +(a+ 5) 3
H3 Es .%,82

and then consider the change of variables:

!
81 =t1—Zt§, sg =1z, s3=13;
(1.7) ‘

1 1
O1=q, 02=q—13, O3=g+taq—t2-
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Proposition 1.2 The change (1.7) of variables extends to the canonical transformation:
(a’p’-ﬁ‘ s) - (q’p’L,t)

where H = (H1, H2, Hs), ¢ = (01,92,93), P = (p1,P2,p3), L = (L1, L2, L3) and t = (t1,12,t3)

Proof. Besides (1.7), we consider the following change of variables:

1
Pl=P1—§t3P3, p2=p2, P3=P3;
(1.8) _ _ L . .
H, = I, H2=L2—§P3, H3=L3+§t3L1—P2+§¢11173'

It is not difficult to verify the following equality:

3 3 3 3
Y dpw Adow =) dH; Ads; = > dpw Adg =Y dL; At
k=1 k=1

i=1 i=1

This proves the proposition; we do not enter into details of computation.

We can deduce from (1.5), (1.6), (1.7) and (1.8) the explicit form of the Hamiltonians L;:

L ) R’ P ) Q1
(1.9) Ly | = 3 Ry | -B| p2 | - (a+ 5) q |,
Ls Rs 3 a3
where
Ri = p}—qp3—2q1p2p3 +2p1p3
1 1
R, = —2q1p§ + (q1Q2 + ‘2-t391 +q3 — §t2) P§

+2p1p2 + (2¢I§ — t3)p2ps — 2q1p1Pps ,
1 1 1 1 1
Rs = pi+ (qf - —ts) Ps + (q§ — q1gs — t3qi + taq1 — Stagz + —t§) P
2 2 2 2 4
—2q1p1p2 + (29192 + taqr + 2g3 — t2) p2p3 — 202P1P3
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and B = ((Bjk))j.k=1,2,3 is the symmetric matrix such that

1
Bu = qf +qz2 + §t3 N
1 1 1
B2 = q% —t2q1 — §t3¢I2 + §t1 - Zt§ ,
2 1 1 1, 1.3
= —tot [ — i — -
Pss a3+ 5 t2tsq 2t1Q2 4t2 + 8t3 ,
(1.10) ’ .
B2 = Pa=qe- §t3Q1 +aq3+ §t2 ,
Bia = fBa= L Ltags + 1t
13 = 31 = 143 3 2q1 2 342 3 1,
B 1, 1 1 1
P2z = P2 =gqzq3+ (4t3 2t1) qQ — -2-t2q2 2t2t3 .

Note that the Hamiltonians L; now possess the following symmetry:

7] a3 .,
(1.11) (g]) L = (—az) Lj (z #J) .
Moreover we show the following proposition.

Proposition 1.3 For the polynomial Hamiltonian structure (q,p, L,t), we have

3 3
D dpiAdg =) dL;Adt;=0.
k=1

i=1

Proof. If we regard ¢, p and L as functions of ¢, it can be written in the form
3 3
OL; 8L; OL;dL;
1.12 dpi A dgi = T — — =L | dt; A dt;
D Y e € = L
=1 i<j I=1
and
3
> dL; ndt; =
j=1
(1.13) 3
OL; 8L; OL;8L; 7] 7]
9(S2idhs 9%0L; (—)L~ R TAPYY
EY (- m) o) () ] ene

By means of (1.11), for 1 < i < j < 3, it suffices to show

3
OL; 8L; _ 0L % _
(1.14) IZ; (apz Oq  Oq Op ) =0
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Now, for 1 < i,j < 3, we compute %f—;- and %%ji , by using the explicit forms: (0.9) of the
Hamiltonians. Substituting these equalities into the left hand side of (1.14), we can show by
computation that (1.14) holds. This proves the proposition.

2. Particular solutions.

In this section, we study particular solutions of the A-system when o = —% . In this case,
we obtain from (1.9):

o (B 146 (B ) P

O =2 R |-(ZB
Ogr 2 2 9qx 2 <6qk ) p2
L3 Ry p3

Since R; (j = 1,2, 3) are quadratic in p, the system of equations:

Opx _ _9L;

ot Aqx
admits a particular solution of the form:
(pl,pz,ps) = (070;0)‘
Then we deduce from (1.9) that ¢ = (g1, g2, ¢s) satisfies equations of the form:
8 .
(2.1) % =—Bix, (,k=1,2,3).
3

Since B = (Bjk)jk=1,2,3 Is a symmetric matrix, it is easy to see:

Proposition 2.1 For a solution q = (q1,92,43) of (2.1), the one-form:

3
w=_ gdt;
=1
s closed.

Now we introduce a new variable u by:
(2.2) w=dlogu

or equivalently

q; = ati log u.
)
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By substituting this into (2.1) and using (1.10), we can verify the following proposition.

Proposition 2.2 The function v = (u1,us,us) satisfies the following completely inte-

grable linear system:

Ou  _ _Bu 1.
az ~ Tht, 2
Ot18t2 -2 33t1 ots 2 2%
8u 1, 8u , 1, 8u 1
3 oot . 27°0n 206, 2’
. @ = ta_u+lt3_u_(lt _ltz)u
a2~ B 2°8t, \2' a3 %
8%u 1 1.5\ Ou ou
— = = - t
Bt20ts (ztl 4t3) 3 T2 T tzt"‘”’
8%u 1, Bu du 1 13
3_t§ = _§t2t36t + Zhat + - (tz 5t )u .
We show the
Proposition 2.3. The system (2.3) has solutions of the form:
(24) ul(t) = / exp [_S(£7 t).— %t2t3] dfa (l = 1) 21 3) 4)3
o7

where v are paths in the complez plane described in Figure 1, and

S, t) = §§5 4 ta€® 4 1287 + (t1 + %tg) .

Proof. Supposing that u is written in the form:
u(t) = /e_t1€¢(€, t2,13) d€,
¥

we obtain the system:

g—Z = ()\ + t3)¢a
(2.5) % = —(/\3+t3)\+%tz)¢,

8 1
a—f\’ - (2,\4 + 36322 4 220 + §t§) 6.
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Y3

Y4

84!

Figure 1:

It is easy to see that

&(€,t2,t3) = exp [-?—)Es — t3€% — t28® — %tﬁ{ - %tzta]

solves (2.5). This proves Proposition 2.3.

Let J be the linear space of solutions of (2.3). It is known ([1]) that the linear map & from
J to C* such that

u(0)
R N u1 (0) 4
(2.6) o: J>ou(t) w2(0) eC

u3(0)

is an isomorphism, where u; = g—t‘: for i =1,2,3. Here we evaluate values of the functions at
(t1,t2,t3) = (0,0,0), for the right hand side of (2.3) is polynomial in ¢. J is of the dimension
four. Finally, we prove the

Proposition 2.4 The solutions (2.4) of (2.3) form the basis of the linear space J.

Proof. By means of (2.6), it suffices to show that, for w; (I = 1,2,3,4), ®(u) are
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linear independent vectors in C*. In order to compute the vector ®(w), we put 8 = e3™ and
o 2.5
a =/ El_le-ge d¢ (t=1,2,3,4).
0

Then we deduce from (2.4) that the matrix

(®(u1), B(u2), B(us), B(ud))

is given by:
(6 —1)ay 0 0 0 1 6 ¢ ¢
0 (1 —6%)a, 0 0 1 62 ¢ 6°
0 0 (1 —6%as 0 1 6 ¢ ¢°
0 0 (] (1-6%aq 1 6% 68 ¢

Since (1 — 6')a; # 0, ®(w) (I = 1,2,3,4) are linearly independent. It follows that w (I =
1,2,3,4) form basis of J.
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