Kumamoto J. Math. 45
Vol. 10, 45~73 March (1997)

On Some Hamiltonian Structures of Painlevé Systems, II1
Atusi MATUMIYA

{Received November 29, 1995)

0. Introduction

This paper is the third part of our series of papers. In the second part([12]), we have
given a description of the space E; for the J-th Painlevé system (H J), which gives a symplectic
structure to E; (J = V,IV,II1,II). The purpose of this paper is to prove that there exist no
other Hamiltonian systems on the symplectic space E; than the J-th Painlevé system (Hyj)
for J =V, IV,1II,1I as we have shown the fact for J = VI in [11].

The J-th Painlevé system which is equivalent to the J-th Painlevé equation is a Hamil-

tonian system
(H,) dz/dt = 8H; /8y, dy/dt = —8H; 8z,
where H; for J =V ~ II is a function given by

Hy(2,9,t) = $la(@ ~ 1" = {so(e ~ 1 + male — 1) = nt}y + n(z — 1)
(5= {00 + me)? = Z.}),
Hrv(z,y,t) = 2zy° — {2 + 2tz + 2k0}y + Koo,
Hir(z,y,t) = %[2z2y2 — {200tz + (20 + 1)z — 2not}y + Noo (Ko + Koo )tz],
Hi(e,t) = 5v° - @ + Dy - @+ D)a,
z,y, and ¢ are complex variables and Ko, K¢, Koo, 7, M0, 7o, @ are complex constants([4]).
In order to state our results, we recall the results of our paper [12]. The space E;(J =

V,IV,II1,II) is constructed as follows. We first take a minimal compactification X, of C?
([6]) obtained by glueing four U; = C? 5 (z, ¥:i),% = 0,1,2, 3, via the following identifications:

To=x1, yo=1/4,
zo=1/x2, yo=x2(€ — z2y2),

T2=23, y2=1/ys,
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where € is a complex constant depending on the parameters in Hy. Secondly, for every
t € B, we make a finite number of quadric transformations to Y. x t and get m Lastly
we obtain E;(t) by removing some divisors which consist of vertical leaves and inaccessible
singular points and we define E; by

E;= U EJ(t) X t.
teBy

Then a description of each E;(J = V,IV,III,II) is given as follows:
i) The space Ev for the fifth Painlevé system in case of n # 0 is obtained by glueing five
copies of C% x By:

V(00) x By = C? x By 3 (z,y,t) = (z(00), y(00),¢),
V(0c0) x By = C? x By 3 (z(000), y(000), t),
V(1) x By = C? x By 3 (z(100), y(100),t),

V(000+) x By = C? x By 3 (z(000+), y(000+), t),
V(000—) x By = C? x By 3 (z(000-), y(000-),t),

via the following symplectic transformations

(0.1) #(00) = y(0co)(ko — z(000)y(000)),  ¥(00) = 1/y(0c0),

¢ 1
ML et ),

(0.2) z(00) = 1 +z(loo), ¥(00) = ~2(to0)? T Z(1o0)

(0.3) z(00) = 1/z(c00+), y(00) = z(c00+)(e(+) — z(000+)y(c00+)),
(0.4) z(000+) = y(000—) (Koo — £(000—)y(000-)),  y(000+) = 1/y(c00-),
where

(0.5) By = C - {0},

(0.6) e(+) = (Ko + Kt + Koo) /2.
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ii) The space Erv for the fourth Painlevé system is obtained by glueing four copies of
02 X B[v:
V(00) x Brv = C* x Brv 3 (x,y,t) = (z(00), y(00), ),

V(000) x Brv = C? x Brv 3 (2(000), y(0c0), £),
V(000) x Brv = C? x By 3 (2(000), y(000), t),
V(ooo0) X Brv = C? x Brv 3 (z(c000), y(c000), t),

via the following symplectic transformations

(0.7) (00) = y(0c0)(ro — x(000)y(0c0)), ¥(00) = 1/y(0cc),

(0.8) z(00) = 1/z(000), y(00) = z(000)(koo — x(000)y(c00)),

z{000) = z(ococc),

(0.9) 1/2 ¢ 2hoo — Ko + 1

y(o00) = " z(ooc0)3 z(0000)2 z(0co00) +y(00c0),
where
(0.10) By =C.

ili) The space Er11 for the third Painlevé system in case of nonee # O is obtained by
glueing four copies of C% x Bris:
V(00) x Brir = C? x Brir 3 (z,y,t) = (z(00), y(00), t),
V(000) x Brrr = C? x Birr 3 (z(0c0), y(0c0), t),
V(000) x Brir = C? x Biyr 3 (z(000), y(co0), t),
V(0oneot) X Brrr = C? x Byyr (z(coneot), y(coneet), t),

via the following symplectic transformations

(0.11) z(00) = z(0c0), y(00) = —% + :(()0—-;; + y(0o0),
(0.12) z(00) = 1/z(000), y(60) = z(c00)(e — x(000)y(co0)),
(0.13) z(000) = z(coneot), y(co0) = oot Roo 4 y(00Tot),

"~ z(coneot)? + z(conoot)
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where
(0.14) B =C—{0},
(0.15) € = (Ko + Koo)/2.

iv) The space Ej; for the second Painlevé system is obtained by glueing three copies of
C? x By;:
V(00) x Brr = C* x B 3 (2,9, ) = ((00),y(00), £),

V(OOO) X BII = C2 X BII ) (.’B(OOO), '.‘l(ooo)at),
V(o000) x Brr = C? x Br1 3 (z(0000), y(0000), t),

via the following symplectic transformations

(0.16) z(00) = 1/z(000), ¥(00) = x(c00)(e — z(000)y(cc0)),

z(000) = z(cooo),
(0.17) 2 ¢ 20

y(oo0) = " z(oo0)?  z(00m0)?  z(0000) +y{ooco),
where
(0.18) Bir=C,
(0.19) €=—a-— %

In Section 1, we state main results. In the following sections, Sections 2, 3, 4, and 5, we
prove THEOREM 2 according to J =V, IV, I11,11.

1. Main Theorems

By a Hamiltonian system holomorphic on E;, we mean a family of Hamiltonian functions
{K (%; z(*), y(*),t)}« such that each K(¥) = K(;z(*),y(*),t) is a holomorphic function in
the chart V(x) x B; and every K (*) is the transform of K(00) by the symplectic transforma-
tion between (z(*), y(*),t) and (z(00),y(00),t). Let {K(*)}. be a holomorphic Hamiltonian
system on E;. We say that it is algebraic or meromorphically continued to the space E;if
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each K (%) is meromorphically continued to V(%) x By which is the closure in E;. Then our

main theorem is stated as follows.

THEOREM 1 Any Hamiltonian system which is holomorphic and algebraic on E; (J =
V ~ II) must coincide to the J-th Painlevé system (Hj).

It should be noticed that, although a Hamiltonian system {K(*)}. on E; does not define
a function on Ej, the difference {K(*) — K'(*)}. of any two Hamiltonian systems {K(*)}.
and {K'(x)}. on E; defines a function on E;, by adding functions of ¢ if it is necessary.

Therefore we see that the above theorem is equivalent to the following theorem.

THEOREM 2 Any function holomorphic and algebraic on E; is a function which depends

only on t.

2. Proof of THEOREM 2 for J=V

In this section we prove THEOREM 2 in the case of J = V. Let f be a holomorphic
and algebraic function on Ev, namely, holomorphic on Ev and meromorphically continued to
Ev. Since f is holomorphic on a chart V(00) x By 3 (z,y,t), f is developpable into a power

series of  and y as

o0
(2.1) F=)Y ait)ey,
i,5=0
which is convergent for any z,y € C and t € By. We will prove that f is a function
depending only on ¢, namely, ai;(t) = 0 for all (i, 5) # (0,0), by using the assumption that f

is horomorphic on every chart of Ev and f is meromorphically continued to Ev.

2.1 Linear equations for a;;(t)

In this subsection, we derive linear equations for the coefficients a:; (t) from the assumption
that f is holomorphic on every other chart.

For the sake of simplicity, we use the notation as follows: for functions g(z,y,t) and
h(z,y,t), g(z,y,t) = h(z,y,t) means that g(z,y,t) — h(z,y,t) is a function entire in = and
y and the symbols 8, d:, Ok, , and Jx, denote the differential operators 8/8«, 8/8¢,8/0k oo,
and 8/8ko respectively. And (uij)ocicm-1,0<j<n—1 denotes an m X n matrix with (,7)-
components uij, (Ui)ocicm—1 denotes an m X 1 matrix ( m-column vector ), and
(ui5)i>0,0<j<n—1 denotes an oo X n matrix.

First, we study the condition that f is holomorphic on V(0c00+) X Byv. Let (X,Y,t) :=
(z(c00+), y(000+),t) and & := £(+), where &(+) is a constant given by (0.6). From (0.3), it
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follows that

(=] oo (=]
(i . 1 .
=Y aux e -xyy=3"> Gt 5 (€ = XYY

i,j=0 pu=1j=0

oo oo J 1 a
=‘uz=:1jz=;kz=;au+aa( k') ( )X“‘

oo p—1 oo

=33 s L L s

p=1 k=0 =0

As f is holomorphic on X = 0 by assumption, all the coefficients of Y*/X*~% (u>1,0<
k < p — 1) must vanish. Therefore we obtain

(22) }:me m aﬁ(0=0 (#>1, 0<k<u-1),
j=0

the left-hand side of which is the coefficient of Y*/X*™* (0 < k < p —1). We write these

equations in matrix form as

(2.3) (apo @uy1n ---) (%33(€i)> =0 (p21).

i20,0<5<p—1

Secondly, we study f in V(co0-) x By 3 (X,Y,t). From (0.3) and (0.4), it follows
2 =1/Y (Koo — XY), y =Y (ko — XY ){e — (koo — XY)}. Therefore, by using (2.2), we have

=] oo o0
= (Koo — XY )k—#
f= ZZZ““""” kl aek( J)T
pu=1 k=p j=0
c© oo oo k—p
[N (-1)! 8" , s :
= Z Z Za,,.,.,,, Pl Gk Z T B (Ko NXY)
p=1 k=p j=0 1=0 ot
#=1 c© oo

—1)* 8% 1
S G L G 2w

1 =0 j=u k=p

p'i;g

T
Il

Here we used (2.2) in the first equation. Therefore we have

k k
ZZ“M-J,J( kl,) 35"( )( 1) ( k_“)—oa

(2.4) prpr—

(#>1, 0<i<p-1)



ON SOME HAMILTONIAN STRUCTURES OF PAINLEVE SYSTEMS, III 51

by observing the coefficients of X'/Y*~'(0 <1< u—1). We write these equations as

(e2pn G2u41,p41 <-+)
2.5 ey .
( ) (Z ( 1) ak( u+=)$ . )) =0 (’1, > 1)
k=u i20,0<i<p—1

Thirdly we study f in V(0oco) x By 3 (X,Y,t). By (0.1), we have

oo v—=1 oo

Xk
f= ZEZ%V“ kl Ok k( O)Yu—k

v=1 k=0 i=0
Therefore we have
1)* o*
(2.6) Za.m(k) (o) w21, 0<k<v-1),

i=0

by observing the coefficients of X*/Y*~* (0 < k < v — 1). These equations are written as

(2.7) (a0, @141 -~-)(%3,’;0(n3)) =0 (v2>1).

i20,0<j<r—1

Lastly, we study f in V(1o0) X Bv 3 (X, Y,t). We notice that the transformation between
(z,9,t) and (X,Y,t)isgiven by z = 1+ X, y = a/X*+B8/X +Y, where a := —qjt, B := w:+1.
Here we notice a # 0. In order to obtain simple expressions of the coefficients of Y*/X™ (7 >

1, A > 0), we introduce new variables v;- defined by

i = k . i
s=Fen(t) w0 0 4 o e ()
k=0 3/ 7 ii20
We notice
()
1/ /ogiien

for every positive integer N. By the use of v},

f= Za.3(1+X)(—+ +Y). ZZ«;,X‘(—+§+Y).

t,7=0 3=0 i=0

Now we assume that a;; = 0 (j > J) for some positive integer J, which implies v;; =
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0 (§ > J). Under this assumption, we obtain

co J-1 J-3i
f= ZZ ‘X'(X2+ +Y) Zva_,X'(f— %+Y)

i=0 j=0 =0 j=0

oo J-1 (J )' p ﬂ 9
_ i i 7 ,
SSawe v GR(a)(4)
i=0 j=0 0<p,q,r<J—jiptgtr=J—j
oo J-1

_ i 9 59+7( (I —3) —Yr__
_ZZW‘J Z ql'rlﬂ %) xar e

i=0 j=0 0<q,rg+r<J-j

By decomposing the set of 2(J — j) — (¢+4), which appear in powers of 1/X, into even integers
or odd integers, namely, by putting 2(J — j) — (g + 1) = 2J — 2k or 2J — 2k — 1, we obtain

J—1J=k=1
Yl‘
— +r o (I—
=2 Z{ > s gt ) g

k=0 r=0 \2j+(q+i)=2k

q99+7 (. (J~7) YT
+ Z ‘-" q|1-vﬁ 2 ( )X2J—(2k+l)-—2r }
2j+(q+4)=2k+1

J-1J- 2k [k—q/2] yr
2k—q—2j qgq9+r (. (J—7) —
— {Z Z vy qb,.vﬁ 8" (@) smr—war

k=0 q=0 j=0
2k41 [k+1/2—-¢/2] Vad
(2k41)~q—2j LB an N C L) A SN
+ Z Z Vi-; qlrlﬂ " (e )X2J-(2'°+’)‘2'}
q=0 3=0

Here, for a real number a, [a] denotes the maximal integer not greater than a. Since f is

holomorphic on X = 0, we have

2k (k—aq/2)

Y BT (20 =0,

g=0 j=0

2k+1 [k+1/2—q/2]
- Z S2k+1) q—23 ﬂqaq+r (aJ—: ) — 0

—j Tl
q=0 =0 r
for0<k<J—-1,0<r<J—k-1, which are written as
(@ s 8 (See)
(2.8) J: 0<i<k,0€j<J—k—1

+ Po(O!,ﬁ, ”) =0,
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(v g2t vb_k)(}—!ai(a“))

0<i<k,0<i<J—k—1

29 _ 1 ; —i
(29) FOF e ) (feetne)
7 0<i<k,0<i<I—k—1

+P1(a)ﬂav) =0,

for 0 < k £ J —1. Here Po(ar, B8, v) and Pi(a, 8,v) are row vectors which vanish in the case of
v5_;=0 (0<j<k-1,0<i<2k—1-2j).

2.2 Reduction of f to a polynomial

In this subsection, we prove that f = 2;,520 ai;(t)z'y’ is a polynomial of = and y. By
recalling the construction of Ev, we see that V(00) x By contains a divisor {(z1,%1,t) €
C? x By | ;1 = 0,21 # 0,1} where 2 = z,,y = 1/y1. Therefore, by our assumption,
f(z1,1/y,t) must be meromorphic on y1 = 0,z; # 0, 1, which implies that

aij =0 (7 > N)

for some nonnegative integer V. Then, from (2.3), we have

1.,
(auo aut1,1 "')(733(6 )) =0,
r 0<i,j<N

for every u > N. Therefore by noting
15,
det (,—'t%(e )) = 1,
7 0<i,j<N

Qutj; =0 (F: >N,j2 0),

we obtain

which shows that f is a polynomial of z and y .

2.3 Completion of the Proof of THEOREM 2 for J =V
In order to prove the theorem for J = V|, it is sufficient to show

Proposition 2.1 For every positive integer m, a;; =0 (i or j> 3m) implies

a;; =0 (i or j>3m-3).

From now on, we assume

(2.10) a;; =0 (i or j>3m)
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for an arbitrary fixed positive integer m. We first obtain
Proposition 2.2 ai; =0 (i—j>m).
Proof.  Under the assumption (2.10), from (2.3) we have

1.,
(auo @urra -+ asm,Sm—u)(‘-Tae’(e')) =0.
J? 0<i<3m—p,0<j<pu—1

Therefore, for every pu such that 3m —p < p—1 e 2p > 3m, we have

1.0
(a'llvo Qu+1l *** A3m3m—p ) (?33(6 )) =0,

0<4,j<3m—p

which yields
@i =0 (2# >3m, 0<j<3m-— F-),

det (1’63(5’)) =1.
7 0<i,i<3m—p

In the same way, from (2.5) we obtain

since

(G2pp  G2p41u+1 **° Q3m3m—p)
puti
1 k 1 k—
( Z ( ) a ( ”-H)Jl "eo( “)) =Oa
k=p+3j 0<i,j<3m—2p

for every p such that 2u < 3m < 3y, which shows

Gutii =0 (2u<3m<3u, p<j<3m—p),

because
pti
( S Gl sty ot o >) = (~pEmem-mth 4
k=pt+j 0<1,j<3m—2u
Now, by using again (2.3) for (au,0 @u+1,1 **+ @2u-1u-1), We obtain

Gurii =0 (2u<3m<3p, 0<j<p—1).

Thus we have shown Proposition 2.2.
We next show

Proposition 2.3 a;i; =0 (j—i>m or j>2m).
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To prove Proposition 2.3, we introduce a notion of a state. By a state S(k,1) of a poly-

nomial f = Y a;;z'y’, we mean a state
ai; =0, j>l or j—i>l-k.

Assume that f is in a state S(k,l). Thena;;4q—x) =0fori > k,a;; =0forj >l,anday; =0
for 0 < i< kori>3m. Therefore, ifl —k > k+ 1, which means the number of equations is
greater than or equal to that of unkowns, it follows from (2.7) that @iir(1—k) =0for0<i<k.
In short, if I > 2k+1, then we can reduce S(k,!) to S(k+1,1) by using the linear system (2.7).
We call this process Reduction A. On the other hand, if 2[( + 1)/2] > 3m — k + 1, then we
can reduce S(k,1) to S((k — 1)*,(l - 1)*) (a* = max {a,0}) by the following Proposition
2.4. We call this process Reduction B.

Proposition 2.4 Ifa;; =0 (j > J), namely, vi =0 (j > J), for a positive integer J,
then
vj_;=0 (0<j<n, 0<i<2n+1-2j),

where n := [(J — 1)/2].

Proof.  We prove the proposition by the following induction. Ifa;; =0 (5> J) ie.
v; =0 (j > J), then by putting k£ =0 in (2.8) and (2.9), we have

1
vg:'UJ:O’

because « # 0.
Suppose vy_; =0 (0<j<k-1,0<i<2k—1-2j)forksuchthatl <k<n=
[(J —1)/2]. Then from (2.8) and (2.9), we obtain

_ 1 . -
(211) (F o3 b (Fole’ ) —o,
J: 0<i<k,0<<TJ—k—1

(35 o vs_k)(%az;(a’-‘))
(2.12) 7 0<i<k,085<T—k—1

_ 1 . i
+ ('U.zlk v_";'ilz vee vf}_k ) (T‘ﬁa",“ (Ot" ‘)) =0.
J: 0<i<k,0<i<T~k—1

Now from k < n = [(J —1)/2], we get J —k — 1 > k. So, from (2.11), we have

(3 B vg_k)(i,az;<aJ-")) ~o.
7 0<i i<k
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Since
det (l' ;(a./-i)) = o FHVI-FR) #0,
J: 0<i,j<k
we obtain
(2.13) P =0 (0<j<k).

In the same way, from (2.12) and (2.13), we obtain

VDM — 0 (0<j< k),
therefore
vi_; =0 (0<j<k0<i<2k+1-2j).

Then we can prove the proposition by induction with respect to k.

Proof of Proposition 2.3 We want to show that we can reduce a polynomial f satisfying
(2.10) to the state S(m, 2m) by a successive use of Reductions A and B. We say that a state
S(k,1) is reducible if Reduction A or B is possible and it is érreducible if neither Reduction A
nor B is possible. Then, a necessary and sufficient condition for a state S(k,!) to be reducible
is 1 > 2k + 1 or 2[(! + 1)/2] > 3m — k + 1, and hence 5(0,3m) is reducible and S(m,2m) is
irreducible.

Let us consider a set T of all states S(k,!) such that

0<k<3m, 2m<l<3m, 1>2—-1, I>3m—k—2

We see that every state in £ except S(m,2m) is reducible and I is steble under Reductions
A and B, which means that every state in £ — {S(m, 2m)} is reduced to a state or states in
by Reductions A and B, by noting that Reduction A is impossible for S(k,!) with I =2k —1
or I = 2k and Reduction B is impossible for it with ! =3m -k —2orl=3m—-k-1.

We introduce a linear order > in the set £ by: S(k,l) > S(k’,V’) if and only if I > I, or
l=0and!l—k>U—k". Then we see that S(0,3m) is the highest state and S(m,2m) is
the lowest one with respect to the order, and moreover, Reductions A and B reduce a state
in & — {S(m,2m)} to strictly lower ones in ¥. By virtue of these properties, we can verify
that there exists a chain of Reductions A and B which reduces S(0,3m) to S(m,2m). Thus
we have proved that if f satisfies (2.10) then it must be in the state S(m,2m). Thus we have
proved Proposition 2.3. O

Proof of Proposition 2.1 From Propositions 2.2 and 2.3, we have already obtained
ai; =0 (i—j or j—i>m)andai; =0 (§j>2m) ie vi =0 (j> 2m). So from
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Proposition 2.4, we have
(2.14) Vim_;j =0 (0<j<m—1, 0<i<2m—1-2j).

By letting J = 2m, k = m in (2.8) and (2.9), from (2.14) we have

- 1,.; m—1
(2.15) (32 msd e v&)(qaz,(a’ )) —o,
7: 0<i<m,0<j<m—1

_ 1 i, 2m—i
(Zm wZmol ) (T,a;(a )
(2.16) J: 0<i<m,0<i<m—1
. i L -
+ (vg:_: v%::_f e v?n ) (._'ﬂa&‘i‘l(azm 1)) = 0.
7 0<i<m,0<j<m—1

Now we set

1) e (DT

(-1
1

Multiplying both sides of (2.15) on the right by the matrix M., we obtain

2m 2m—2 0 m-—i m—i _
(vim Vam—1i ‘' Um) (( . )a ) =0.
J 0<i<m,0<j<m—~1

Therefore, by observing the (m — 1)-th component, we obtain
2m—2 0’

(2.17) movdm +vim =3 =

because « # 0. Here we note

(2.18) (v3m 222 .. o) ((2’" ‘,’“")am-i) =0,
J 0<i<m,0<j<m~1

which is obtained by multiplying (2.15) on the right by My (0 < k < m).

57
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Next we observe the second row vector on the left-hand side of (2.16):

2m— 1, 2
(vBm vim—i o m)( BoLt (a"”))
0<i<m,0<j<m—1
2 2m—2 0 2m— -
=B (vim Vam_1 vm)(O - 0 (m g l)O‘m ‘)Osi_<_m)
- 0
=B(vim Vimoi 0 Um)

(00 (femy+EerE el )
0<i<m
—B(vlm wnd - v&)(o 0 (m ":,:")am-‘)os,-sm).

Here we used (2.15) and (2.18) in the first and the second equalities respectively. Therefore,
(2.16) is written as

(v2m+l 2mml o o) (%62‘(0:’"‘"))
(2 19) J: 0<£i<m,0<j<m—
+B(vim vam_i o V) (0 o 0 (m(mr;i)am—i)osism) =°

Multiplying (2.19) on the right by M., we obtain

(02 Zml L gl ((m - i) am—i)
m— .
J 0<i<m,0<i<m—1
+8 ('UZm v';’::: e ‘U?n ) (0 e 0 (m(mf;i)am_i_l)ost’Sm)= 0
By comparing the (m — 1)-th component of the system, we have
(2.20) movamt! £ o2 + mBugm =0,

since o # 0.

And by putting g = m,l =m — 1 in (2.4), we have
(2.21) a3m-1,2m-1+ (2m € — mKoo)a3m,2m =0.
By Proposition 2.3 and the equation (2.6) for v = m,k = m — 1, we have

(222) am—1,2m—1 + MK0Cm,2m = 0.
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Thus we have obtained (2.14), (2.17), (2.20), (2.21), and (2.22), from which we show the

vanishing of the remaining a;;’s. These equations is written as
(v1 u2)®v =0,

where u; := (am,2m Gm+1,2m a3m,2m), Uz = (am—l,2m—1 am,2m—-1 -** a3m—1,2m—1),

((Pl 0 @3 ¢s wr o )
by = ,
0 w2 w4 ws w8 Y10

= ("), (Gr)

y P2i= y
0<iL2m,0<j<2m~1 0<i<2m,0<j<2m -3
o= (o)) S (=y)
4 1=
0<l<2m 2m -2 0<t<2m

and

1i

w2 ) e ()
2m+1 0<i<am 2m—1 0<i<2m
pri="(mro 0 --- 0), ps:=%(1 0 - 0),
po:="(0 .-+ 0 2me—mKo), @r0:=%0 --- 0 1).
Since
detdy = m # 0,

we obtain %) = 0 and uz = 0, which is equivalent to

(2.23) Am+4i2m = Gm-1)4igm—1 =0 (0 <1 < 2m).

Now, from the equation (2.4) for p = m,l = m — 2 and (2.23), we obtain
a3m—2,2m-2 =0,

which proves Proposition 2.1. O

Thus we have completed the proof of THEOREM 2 in the case of J = V.

3. Proof of THEOREM 2 for J = IV

In this section we prove THEOREM 2 in the case of J = IV by the same way as that
in the previous section. Let f be a function holomorphic and algebraic on E;v. We expand
f into power series of = and y as (2.1) convergent for any z,y € C and ¢ € Bjv, where
(z,y,t) = (x(00),y(00), t) is the coordinate system of V (00) x B;v.
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3.1 Linear equations for ai;(t)
We first study the function f in V(0o0) x By 3 (X, Y, t). From (0.8), we have

oo p—1 oo

Yk
f= ZZZ“}H‘J:J B k( )X“‘

p=1 k=0 j=0

Because f is holomorphic on X = 0 by assumption, we obtain

1

(3.1) (apo autra --+) (?6:]:“ (K5) =0 (u21).

)izo,OSa‘Su—l
Secondly we study f in V(0oo) x Brv 3 (X,Y,t). From (0.7), we have

oo v—1 oo

B IPITHEC BATEES

v=1 k=0 i=0

Therefore we have
1,5

(3-2) (aop @ip+r ) (T,Q’eo("o)) =0 (v21).
J: i20,0<i<v—

Lastly we study f in V(coo0) X Brv 3 (X, Y, t). We notice that the transformation between
(z,y,t) and (X, Y, t)is: z=1/X,y= a/X +t+B8X - X2Y, where o := 1/2, 8 := Ko — Koo — 1.
Here we assume that a;; =0 (i-+j > M), for some positive integer M greater than 2. Then

we have
M £
tqﬂ" (_ 1)3 aq+r+a p Y,;
F= Z z Fe=3d Z g'rls!  Qoatrts (a )Xi—q—2r—35 i
£§=0 j=0 0<q+r+8,9,7,357

where for a function g(z) we denote 8g(z)/8z|z=o by 3g(a)/dc. In the rest of this subsection,
we obtain linear equations for a;;(t) from the condition that f is holomorphic on X = 0. From
the condition that all the coefficients of Y*/X™~3* (0 < s < p1) must be zero, where
p = [(M +2)/3] — 1, it follows that

1 i
(3.3) (amo am-11 -+ aom) (T'atjx(a )) =0.
J: 0<i<M,0<i<m

By observing the coefficients of Y2/ XM 13 (0 < s < p;) with p := [(M +1)/3] — 1, we
have

1. )
(ampo am-11 - ao,M)(tr‘a",“(a’))
: ¥ 0<i<M,0<i<pa

(3.4) .
+(em—10 @M-22 -+ GoM-1 ) (v,ai(a')) =0.
) 0<i<M—1,0<i<p2
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By observing the coefficients of Y*/X™~273* (0 < s < p3) with pa := [M/3] — 1, we have
2001 i,
(amo am-12 -+ aom)| (B+ aaa)-.-,ai (o)
o 0<i<M,0<i<ps

- 1 j i
(3.5) +(em-10 am-21 --- aom-1) (tT!a‘]"H(at))
7 0<i<M—1,0<5<ps

+(em-20 am-31 -+ aom-2) (%6{,(0’)) =0.

0<i<M-2,05j<ps

3.2 Reduction of f to a polynomial

Since V(00) x B;y contains a divisor {(z1,y1,t) € C* x Brv | 11 = 0,z # 0} where
& = z1,y = 1/y1, by our assumption, f(z1,1/y1,t) must be meromorphic on y; = 0,z; #0,
which implies that a;; =0 (j > N) for some positive integer N. Therefore, by (3.1) for every
# > N, we have au4j,; =0 (0 < j < N,u> N), which shows that f is a polynomial of z
and y.

3.3 Completion of the Proof of THEOREM 2 for J = IV
In order to prove the theorem for J = IV, it is sufficient to show

Proposition 3.1 For every positive integer m, ai; =0 (i or j>2m) implies

a;; =0 (i or j>2m-2)

From now on, we assume
(3.6) ai; =0 (i or j>2m)

for an arbitrary fixed positive integer m. We first obtain
Proposition 3.2 ai; =0 (i—j>m).

Proof.  Under the assumption (3.6), we have

1.
(auo @us1n --- azm,zm-n)(j—,&"w('ﬂoo)) =0

0<i<2m—p,0<5i<p—1

from (3.1). Therefore, for every p > m, we obtain

Gutii =0 (0<j<2m—p). O

Secondly we obtain
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Proposition 3.3 ai,j =0 (j—i>m).

Proof.  Under the assumption (3.6), we have

(a0, aipyr - azm-u,zm)(?aio(% =0

) 0<iL2m—v,0<5<v -1

from (3.2). Therefore, for every v > m, we obtain

ip+i=0 (0Li<2m—v). (m]

Thirdly we obtain
Proposition 3.4 aij =0 (i+37>3m).

Proof. We prove this proposition by induction. For an arbitrary fixed integer k such
that 3m < k < 4m, we assume a;; =0 (i+j > k). By this assumption and (3.6), from (3.3)

we have

1,5, itk—2m
(@2mk—2m = Qk—2m,2m) (T‘al.(a th-2 )) =0,
J: 0<i,j<am—k
because 4m — k < [(k + 2)/3] — 1. Hence we obtain
ak-j; =0 (k—2m<j<2m) ie a;;=0 (t+j=k)

Then we can prove the proposition by induction with respect to k. O

Proof of Proposition 3.1 From Propositions 3.2, 3.3, and 3.4,
3.7 aij=0 (i—j>m or j—i>m or i+j>3m).

Therefore, from (3.3) and (3.7), we first have

1 .
(3.8) uIp1 = U (qag(a"’"“)) = 0,
J: 0<i<m,0<j<m—1
where u1 := (G2mm G2m-1,m+1 -+ @m,2m ). Secondly from (3.4) and (3.7), we have
(3.9) urp2 + u2p3 =0,
where uz := (@2m—1,m 0G2m-2,m+1 ‘' Gm2m—1 ), and

t o ) 1 . .
Y2 == (?6&.” (OtH'm)) y P3i= (Wa&(aﬂ-m))
J: 0<i<m,0<i<m—1 J: 0<4,jEm—1
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Thirdly, from (3.5) and (3.7), we obtain
(3.10) U194 + U205 + uzpwe = 0.

where u3 := (@2m-1,m-1 @G2m-2,m *'* @m-_12m—1)and

001 i itm
ori= 0+ Goa ot @) ,

0<i<m,0<j<m—1

t . 1., itm—
) o (Fotat) .
J: 0<i,j<m—1 J: 0<i<m,0<j<m~1

Lastly, we have
(3.11) Am—1,2m—1 + MKeolm 2m = 0
from (3.1) for 4 =m and (3.7). And we have
(3.12) Am-1,2m—1 + MKGm,2m =0

from (3.2) for » = m and (3.7).
Now we have obtained a (3m-2) -system for (3m+2) unknowns. By using the equations
(3.8), (3.9), (3.10), (3.11), and (3.12), we have

(w1 uz us)®rv =0,

P1 P2 Pa Y7 P9
where ®rv:=| 0 3 s O 0 ,

0 0 ws ws w0

(p7;=t(m50 0o --. 0), ‘P8:=t(1 o --- 0),
wo:="(0 --- 0 mKo), ro:=%0 --- 0 1).
Since
det®rv = m(—l)m-lcvam2 #0,
we obtain
a;; =0 (i+j>3m-2),
which yields Proposition 3.1. O

Thus we have completed the proof of THEOREM 2 in the case of J = I'V.
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4. Proof of the THEOREM 2 for J =111

In this section we prove THEOREM 2 in the case of J = III. Let f be a holomorphic
and algebraic function on Er;;. We expand f into power series of « and y as (2.1) convergent
for any z,y € C and t € Bir1, where (z,y,t) = (2(00),3(00),t) is the coordinate system of
V(00) x Birr.

4.1 Linear equations for a;;(t)
First, from (0.12), the function f in V(000) x Brrr 3 (X,Y, 1) is given by

P BT X _ k k k
szzz s - 3o @) g

where ¢ is a constant given in (0.15). Since f is holomorphic on X = 0 by assumption, we

obtain
1,5,

(1) (uo Gurrs ---)(f.a:(s )) =0 (u21),
7 i20,0<j<u—-

Secondly we study f in V(0oo) X Brsr 3 (X,Y,t). We notice that the transformation
between (z,y,t) and (X,Y,t)is: z=X,y= a/X?+B/X +Y, where a := —not, B := Ko+ 1.
We assume that a;; =0 (v :=2j —i > M), M being an integer greater than 1. Then we

M oo Y
=Y Y e ) = ﬂqaq“(a’)m

v=1j=[(v+1)/2] 0<g,rg+r<j

obtain

At first, from the condition that all the coefficients of Y /X M-2r (0 < r < p1) must be zero,
where p; := [(M + 1)/2] — 1, it follows that

1
(4.2) (G2py+2-Mr1+1 @20y +4-Mypr42  “**) (T,ai(a'“‘“)) =0.
J: i20,0<5<m

And next from the condition that all the coefficients of Y"/XM~2"=1 (0 < r < p2) must be

zero, where p2 = [M/2] — 1, we have
p
B i+1, itpri+1
(@2p142-M,pr+1  G2p1+4-M,p14+2 ***) ('.73? CH
7 i20,0<7<p2

1 i itpet1
+ (@20243-Mp2+1  G20245—M,p2+2 ---)(T,ag,(a ) =0.
7 i20,0<i<p2

(4.3)

Lastly, we study f in V(coneot) X Birr € (X, Y, t). The transformation between (z,y, t)
and (X,Y,t)is: & =1/X,y=a+bX — XY, where a := f)oot, b 1= € — Koo. We assume that
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a;; =0 (i > I), where I is the integer greater than 1. Then we obtain

oo I

f= ZZ%’ Z bqfl!—r})"az+r(aj)Xi¥—;_2r_

j=0 i=0 0<q,r,q+r<j

By observing the coefficients of Y”/X'~%" (0 < r < 1), where 03 := [(I +1)/2] — 1, we
obtain

(44) (aro arn --°) (%%ai) =0.

i20,0<j<0oy

And by observing the coefficients of Y7/X'~2"=1 (0 < r < 03), where o3 := [I /2] — 1, we
obtain

b oivt s
(ar0 arn '“)(Fai“a)
* i>0,0<i<o2
4.5 =
(4.5) )
3!

+ (ar-1,0 ar-11 )(J

Bia,’) =0.
i20,0<i<0;

4.2 Reduction of f to a polynomial

Since V(00) x By; contains a divisor {(z1,41,t) € C* x By1s | y1 = 0,21 # 0} where
(z = 21,y = 1/w1), by our assumption, f(z1,1/y1,t) must be meromorphic on 71 =0,z #0,
which implies that a;; = 0 (j > N), for some positive integer N. And by (4.1) for every
1> N, we have a,4;;; =0 (0<j<N, p> N), which shows that f is a polynomial on z
and y.

4.3 Completion of the Proof of THEOREM 2 for J = II]

In order to prove the theorem for J = III, it is sufficient to show
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Proposition 4.1 For every positive integer m, ai; =0 (i or j > 2m) implies

ai; =0 (i or j>2m-—2)

From now on, we assume
(4.6) aij=0 (i or j>2m)

for an arbitrary fixed positive integer m. We first obtain
Proposition 4.2 a;; =0 (i—j>m).

Proof.  Under the assumption (4.6), we have

1,0
(@u0 @utr1 - a2m,2m-u)(j—,33(€ )) =0

0<i<2m—p,0<<p—1

from (4.1). Therefore, for every u > m, we have

autsii =0 (0<j<2m—p). m]

Secondly we obtain

Proposition 4.3 a;; =0 (25 —1>2m).

Proof. We prove the proposition by the following induction. For arbitrary fixed integer
k such that m < k < 2m, we assume a;; = 0 (v := 2j —i > 2k). By this assumption and
(4.6), from (4.2) we have

1 .
(aok Gzk+1 - a4m-2k.2m)(ﬁ3i(a'+k)) =0,

0<i,j<2m—k

because 2m — k < k — 1. Hence we obtain
ai; =0 (25 —i=2k).
And in the same way, from (4.3) we obtain
ai;j =0 (2j—i=2k—1).

Then we can prove the proposition by induction with respect to k. m}
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Proof of Proposition 4.1 From Propositions 4.2 and 4.3, we have
4.7) ai; =0 (i—j>m or 2j—i>2m or i>2m or j>2m).

Then from (4.2) and (4.7) we first obtain

1 i
(4.8) u1p1 = w1 (ﬁag,(a +”')) =0,
) 0<i<m,0<j<m—1

where u; := (ao,m @G2m+1 ‘- G2m2m)-
Secondly from (4.3) and (4.7) we obtain

(4.9) urp2 + uzp3 =0,

where Uz = (a1,m a3, m+1 ccr A2m-1,2m-1 ), and

P = (%ai‘l-l(ai-i-m)) ,p3 1= (%a&(ai+m))

0<i<m,0<j<m—1 0<i,j<m—1

Thirdly from (4.4) and (4.7) we obtain

1 .
(4.10) Uaps = Uz (T‘Bi(a"”")) =0,
) 0<i<m, 0<i<m—1

where u3 := (azm,m @2m,m+1 ' G2m2m)-
Fourthly from (4.5) and (4.7) we obtain

(4.11) u3ps + ugps = 0,

where u4 := (02m—1,m-1 azm—-1,m °** Q2m—-1,2m-1 ) and

b_; i+m 1, i+m—
5 1= (T,ai“(a + )) )6 = (,—,a:(a * l))
7 . 3!

0<i<m,0<j<m— 0<i<m,0<j<m—1

Lastly from (4.1) for » = m and (4.7), we obtain
(4.12) G2m—-1,m—1 + MEzm,m = 0.
Therefore, from (4.8), (4.9), (4.10), (4.11), and (4.12), we have

(ur u2 uz ug)®Prr =0,
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w1 p2 0 0 0 o O
0 ¢ 0 0 0 O u
0 0 91 vs v7 w0 0 |’
0 0 0 we ws 0 12

where @551 :=

pr:=%(me 0 .- 0), @g:=%(1 0 .-+ 0), @o:=%0 .-+ 0 1),
pro=p2:=%0 -+ 0 -1), @u:=%0 --- 0 1).
Since
det®;rr = (—1)'"+1a2"‘2a2"‘2m #0,
we obtain
(a1 w2 us wa)=0,
which proves Proposition 4.1. O

We have thus completed the proof of THEOREM 2 for J = II1.

5. Proof of THEOREM 2 for J =11

Let f be a holomorphic and algebraic function on Ey;. We expand f into power series of
z and y as (2.1) convergent for any z,y € C and t € Byy, where (z,y,t) = (z(00),y(00),1) is
the coordinate system of V(00) x By;.

5.1 Linear equations for a;;(t)
We first study the function f in V(000) x Brr 3 (X,Y,t). From (0.16), we have

oo p-1 o

F= ZZZ ""‘M( 1|) z ( )xu—k’

p=1 k=0 j=0

where £ is a constant which was given in (0.19). Since f is holomorphic on X = 0 by

assumption, we obtain

1
) (nn auins ) (L6") =0 (ux1).
J: 120,0<j<pu—-1

Next we study f in V(ooo0) x Brr 3 (X,Y,t). The transformation between (z,y,t) and
(X,Y,t)is: z=1/X, y=a/X%+t+bX — X°Y ,where a := 2,b := e+ 20 Here if we assume
that a;; =0 (£ :=2j +i > M) for some positive integer M greater than 3, then we have

M [£/2) ye

b 1 r+s8
(5.2) f= ZZag..z,-,j Z tql%ag‘* + (a )m

£=1 j=0 0<q,7,8,q+1+5<7



ON SOME HAMILTONIAN STRUCTURES OF PAINLEVE SYSTEMS, III 69

In the rest of this subsection, from the condition that f is holomorphic on X = 0, we obtain
linear equations for a;;(t). By observing the coefficients of Y*/XM~4* (0< s < p) in (5.2),

we have

1,5
(5.3) (emo am-21 - oM-20y.,) (-—,347:(‘1 )) =0,

7 0<i<i,085<pm
where p; := [(M + 3)/4] — 1,11 := [M/2]. And by observing the coefficients of Yo/ xM—1s-1
(0 £ 5 < p2) in (5.2), we have

1.,
(5.4) (am-10 am-3zy --- aM—l—2u3,02)(T|'83,(a )) =0,
7 0<i<v3,0<5 <0z

where p2 = [(M + 2)/4] — 1, v2 = [(M — 1)/2]. And by observing the coefficients of
Y*/XM~42=2 (0 < 5 < p3) in (5.2), we have

1 . )
(amo am—21 -+ amM-2u,,, ) | t=8011(a)

i

7 0<i<v1,0<5<p3

1 . .
+(am—20 am-41 --- aM—z—zua,us)(T,ai(a') =0,
7 0<i<v3,0<7<ps

(5.5)

where p3 := [(M +1)/4] — 1 and vs := [(M — 2)/2). And by observing the coefficients of
Y /XM=4=3 (0 < s < ps) in (5.2), we have

1., i
(aM,o aMm-21 “°° aM-Zvl,vx)(bﬁa]z-‘-l(a ))

0<i<¥,0<5<p,

1,.; i
(5.6) +(am-10 am-31 ‘- AM-1-20p0,) (t,—’ai'“(a ))
7 0<igv2,0<5< 04

1.
+(am-30 amM-s51 -+ aM-3-2040,) (T,a;(a‘) =0,
7 0<i<v4,0<5<p4

where p4 := [M/4] — 1 and vq := [(M - 3)/2).
5.2 Reduction of f to a polynomial

Since V/(00) x B contains a divisor {(z1,41,t) €C* x Bry | 1 =0} where z = 2,y =
1/y1, by our assumption such that f(z1,1/y1,t) must be meromorphic on y; = 0, we have
ai; =0 (j > N), N being some nonnegative integer. And by (5.1) for every u > N, we
have @,4;; =0 (0<j < N,u > N), which shows that f is the polynomial of z and y.

5.3 Completion of the Proof of THEOREM 2 for J = I]

In order to prove the theorem for J = I, it is sufficient to show
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Proposition 5.1 For every positive integer m, ai; =0 (i or j> 2m), then

ai;=0 (i or j>2m-2).

From now on, we assume
(5.7) aij=0 (i or j>2m)

for arbitrary fixed positive integer m. We first obtain
Proposition 5.2 a;; =0 (¢—j>m).

Proof.  Under the assumption (5.7), we have

(@po @ut1n -+ azm,zm—u)(%az(fi)) =0 (p21)

0<i<2m—p, 085 <u—1

from (5.1). Therefore, for every u > m, we have

@uti; =0 (07 <2m—p). 0

Secondly we obtain
Proposition 5.3 ai; =0 (2j+i>4m or 2j+i=4m—1).

Proof. We prove this proposition by induction. For arbitrary fixed integer k such that
2m < k < 3m, we assume a;; = 0- (2§ + i > 2k). By this assumption and (5.3), (5.7), we

have

1 i, ik
(azmk—-m G2m-2k-m+1 °*° G2k—im,2m) (T'a:(aﬁ- ™) =0,
J: 0<i,j<8m—k

since 3m — k < [(2k + 3)/4] — 1. Hence we have
ai; =0 (25 +1i=2k).
In the same way, from (5.4) and (5.7), we have
ai; =0 (2 +i=2k—1).
Therefore, by induction with respect to k, we obtain

(5.8) ai; =0 (2j+1i>4m).
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Next from (5.4) and (5.8), we have
1, i+m
(a2m—1,m a2m-3,m+1 °°° Q1,2m-1 ) 'Tl'ag(a' ) =0.
J: 0<i,j<m—1

Therefore we have
aij =0 (2j+i=4m-1),

which completes the proof of the proposition. 0o

Proof of Proposition 5.1 From Propositions 5.2 and 5.3, we have
(5.9) ai; =0 (i—j>m or 2j+i>4m or 2j+i=4m—1).

From (5.3) and (5.9), we first obtain
1. i+m

(510) ui1p1 (= Uy Tag(a ) = 0,
7 0<i<m,0<j<m—1

where u; := (a2mm G2m-2,m+1 - Qo2m).
Secondly, from (5.5) and (5.9), we obtain

(5.11) u1p2 + u2p3 =0,
where up := (a2m—2,m azm-4,m+1 °*° @0,2m-1 ) and
= [t Lgitigitm = [ Lgi(gitm
P2 = tT| a (a ) y P3=EA a(a )
J: 0<i<m,0<j<m~1 J: 0<i,j<m-—1

Thirdly, from (5.6) and (5.9), we obtain
(5.12) u14 + uszps =0,

where u3 := (a2m-1,m-1 @2m-3,m '+ @1,2m-2) and

1 .. . 1. i+m—
G R e N
7 0<i<m,0<i<m—1 J: 0<i,j<m—1

Lastly, from (5.1) for 4 = m and (5.9), we have
(5.13) MeA2m,m + G2m—1,m-1 = 0.
Therefore, from (5.10), (5.11), (5.12), and (5.13), we obtain

(w1 w2 u3)®r=0,
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Y1 P2 P4 Pe
where P;p:=] 0 @3 0 0},
0 0 s 7

we:="t(me 0 --- 0), pr:=%1 0 --- 0).
Since
det®;; = (—1)""“’mr::,3'"2 #0,
we have
ai; =0 (2§ +1i=4m,4m —2,4m - 3),
which proves Proposition 5.1. o

We have thus completed the proof of THEOREM 2 for J = I1.
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