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Introduction

A locally conformal Kéhler structure on a complex manifold (W, J) is a family of local forms
{Us, Qa}ae a consisting of an open cover {Ualsc s of W and a Kahler form . on each U.
satisfying that (1) each Q. is invariant under the complex structure /, (2) if U.N Us+9, then
Qs=Ag.*Qq, where Ag. is a positive constant. A manifold equipped with this structure is said
to be a locally conformal Kdihler manifold. (Abbreviated to l.c. Kéhler manifold.) As usual,
{Aqs} satisfies the cocycle condition so that there is a family of functions {fz} on each U, for
which fa*fi'=Am. If Qp=As"Qa, then foQs=foQe on U.NUs. Thus a locally conformal
Kahler structure {Us, Qa}ae » defines a 2-form Q on (W, J) such that Q| Us=/s"Qo. If we set
9(X, V)=Q(X,JY) and go(X, Y)=0.(X, JY), then g is a Hermitian metric on the complex
manifold W and each g, is a Kahler metric on U, with g| Us=fa"ge. A 2n-manifold M is said
to be an I ¢. K-const manifold if each g, has constant holomorphic sectional curvature. On the
other hand, by the property that g| Us=/fa* gs, if each g is of constant sectional curvature, then
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g is (locally) conformal to a euclidean metric, i.e., (M, g) is conformally flat (z>1). In this
note, we study the following :

(1) Which manifold occurs as l.c. K-const manifolds ?

(2) Which manifold occurs as conformally flat l.c. Kahler manifolds ?

Obviously Kahler manifolds are typical examples of l.c. Kahler manifolds. In this case, the
question (1) is referred to the complex space form problem. Moreover, a Kahler manifold of
constant holomorphic sectional curvature ¢ is locally holomorphically isometric to the complex
projective space CP”, a complex euclidean space C”, a complex hyperbolic space Hé up to a
constant scalar multiple of the Kahler metric according as c=+1,0, —1. As to (2), it is known
that any conformally flat Kahler manifold of dimension 2% >4 is flat (i.e., locally isometric to
a euclidean space). The scalar cuevature of a conformally flat Kahler 4-manifold is known to
be zero. Moreover, in this case M is Bochner flat. So a conformally flat Kahler 4-manifold
is locally holomorphically isometric to the complex euclidean space or the product of the
complex hyperbolic line H¢ and the complex projective line CP' (=2-sphere). In §1, we
answer Question 1 (cf. Theorem 4) and § 2, § 3 answer to Question 2. (Compare Corollary 6,
Theorem 8). In particular we obtain the following classification in dimension 4. (See § 3 for the
details.)

Theorem Let (M, g) be a compact conformally flat l.c. Kahler 4-manifold. Then there exists
a function 7 : M - R* such that (M, r-g, J) is holomorphically isometric to one of the following
l.c. Kahler manifolds. (In other words, M is conformally equivalent to one of the following l.c.
Kahler manifolds preserving the complex structures :

1. A complex euclidean space form Té/F (FCU(2)).
2. A fiber space ]HI:‘:>I§ CP! ("CPU(1, 1) xPU(2)).
3. An infra-Hopf manifold S3>!§Sl (FCU(@2)x 8YH,

where T is a discrete uniform subgroup of PU(1, 1) X PU(2) and F is a finite subgroup of U(2)
X S! acting freely.

Note that the group of l.c. Kahler transformations of M, Aut r.c.x(M), is a subgroup of the group
of holomorphic transformations of an l.c. Kahler manifold M. (See § 4 for the definition.) In
§ 4, using the Obata, Lelong-Ferrand’s theorem in Conformal geometry, we shall prove that if M
is a compact l.c. Kahler manifold of dimension 27 >2, then Aut ..c.x(M) is a compact Lie group.
As an application, in § 5 we provide the structure of a compact Lie group Aut r.c.x(M).
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1. Bochner flat l.c. Kihler manifolds

In the sequel of [8] we have examined locally conformal K&hler manifolds since Tricerri and
Vanheck [23] have defined a generalized Bochner curvature component and proved that it is
a conformal invariant (i.e., equal if the two Hermitian metrics are conformal under the complex
structure fixed on it). Qur technique will be generalized into locally conformal Kahler
manifolds. (Compare [9].) The geometric properties of locally conformal Kahler manifolds
have been extensively developed by Vaisman, Ornea, Kashiwada and others (cf. [25], [26], [27],
[28], [19], [20]). Especially a Hopf manifold S'X S$**~! is known to be an l.c. Kahler manifold
but not globally conformal Kahler.

When we examine compact l.c. Kahler manifolds with vanishing (generalized) Bochner tensor,
the classification is different from that of the Kahler manifolds [8]. Indeed, we have shown
that among all compact l.c. Kihler manifolds, a Bochner flat l.c. Kihler manifold but not
globally conformal Kéhler is an infra-Hopf manifold Sz"">l§ SY(FCU(n)X 8Y), which is finitely
covered by the Hopf manifold S**'x S'. (Compare [9], [12].)

In order to derive this classfication of comact locally conformal Kahler manifolds of dimension
2n (n>1), we have proved the following uniformization in [9] as well as that of [8].

Theorem 1. Let (M, g,]) be a locally conformal Kihler manifold of dimension 2n(n>1). If
the Bochner curvature tensor B with respect to the Hermitian metric g vanishes, then M is
uniformized over Y& with respect to G. The model space (Y&, gv), which is the connected
simply connected Kdhler manifold endowed with the transitive group of biholomorphic transfor-
mations G, is one of the following :

(1) A projective geometry (PU(n+1), CP").

(2) A complex similarity geometry (C*X(U(n)X R*), C").

(3) A hyperbolic geometry (PU(n, 1), HE).

(@) A projective-hyperbolic geometry (PU(m, 1) XPU(n—m+1), HE X CP* ™) ; (m=1,2, -,
n—1).

Moreover, the uniformization {U., a}aes of (M, g,]) has the following property that
Ca*Gga=Pagy

where cq is a constant defined on U, and the canonical complex structrure Jv on Y& satisfies
that

Pax°f =] v° Pax,
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(In p.28 [9], we forgot to write g« for g above))

Concerning the above theorem we remark the following : First, in general, a uniformization
on a manifold M with respect to (G, Y& is a maximal collection of charts {Us, @a}ac s of M
satisfying that :

M = U Ua,

aeh
@a: Uz ~ @a(Us) (C Y@ is a homeomorphism, and

if UzN Us#8, then the coordinate change gss= ps° @' extends to an element of G

Second, in view of the paper [8] we have not used any tensorial propeties of Kéhler metric like
Ricci curvature tensor, and scalar curvature tensors, but only using vanishing of the Bochner
curvature tensor and its coincidence with the Chern-Moser-Webster curvature tensor. Given a
Kahler manifold M, because of the classification (determination) of spherical CR manifolds
with (positive dimensional) Lie group actions (they are CR-equivalent to S***! with maximal
free toral actions, or S#*!'—S?™-! where S?"! is the boundary of complex m-dimensional
hyperbolic space HE, m=1, 2, -*-, n, up to conjugacy), the universal covering space M is unifor-
mized over the complex Kahler manifold of the above four types, among which only
HZ X CP™™ comes out as the product case, in addition, if M is complete (for example M is
compact), M is conformally equivalent to the product H& X CP* ™ with the product Kahler
metric. (In other words, its conformal class of (M, ¢g) is holomorphically isometric to the
product.) Hence we concluded that the constant holomorphic sectional curvatures ¢, c; of H&
and CP*™ in the product HEX CP"* " satisfy ci.=—ce.

On the other hand, around 1970’s, using the tensor calculus, there are several results concerning
Bochner curvature flat metric under curvature assumptions (cf. (4], [5]). From this point, we
look at what restraint paused on Kahler metrics on a Bochner flat Kahler manifold M%*, and
deduce that ¢i=—c¢. by calculation of the scalar curvature of HE&X CPP*"™. First, Theorem 3
of [17] says that if a Kahler space with vanishing Bochner tensor has constant scalar curvature,
then either it is a space of constant holomorphic sectional curvature, or a locally product space
of two spaces of constant holomorphic sectional cuevature H >0 and —H. Moreover, in [16]
they study the curvature condition when the product metric supports a Bochner curvature flat
metric. In fact, if the Kahler metric g of M*" is of form g +g¢. and g supports a Bochner flat
metric, then g1 and g are metrics of constant holomorphic sectional curvatures satisfying some
condition on the scalar curvature. Especially, if M?" is product M =N, X N; with dim N,=2m,
dim N:=2(n—m), then the scalar curvature R; of g: (i=1, 2) satisfies that

R R _
(*) m D+ == =
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It is also remarked that a non-flat metric of Bochner flat Kahler manifold cannot be a direct
sum of more than two Kahler metrics.

Let R.zz be the curvature tensor, and R.s=R%7 and %R=g”3Rpa the Ricci tensor and the
scalar curvature on M?* respectively. Since the constant holomorphic sectional curvature
satisfies that Rages = —’%_C(gaﬁgp? + gasgme). In particular, letting g.5= 0.3 we have

R _{% if a8
Baga™—
¢ if a=4.

Then the scalar curvature of M satisfies that

%R=¢?R,,;= ZSP?R,W

= z — Risaz= ZRW
ap o

= ) (Rrara+ Raaaat++ Riass) =S h(k +1),
where

ZRTali=RTuT+ Ruz+--+Riur=c +%+ +%=%(k+ 1)-

a
So, Ri=cim(m+1) for HE and R:=con—m)(n—m+1) for CP* ™. Substituting these scalar
curvature into (%), we obtain that ¢;+¢;=0.
Combining these with our result yields that

Remark 2. If the Kéihler metric of a Bochner curvature flat manifold M** is the product as
a Kahler metric, then it must be (locally) a product of only two manifolds M{" and MF™™, with
constant holomorphic sectional curvature but has opposite sign.

Note that if each g. has the contant holomorphic sectional curvature, then by the definition of
Bochner curvature tensor, B=0 for g,. Since the Bochner curvature tensor is conformal
invariant (cf. [23]), the Bochner curvature tensor B of g also vanishes. By the definition, an
l.c. K-const manifold M?" is a Bochner flat l.c. Kahler manifold provided that »>1.

Let (M, g) be an l.c. Kahler manifold of dimension 2z (z>1). Suppose that M is Bochner flat.
(We retain the notation in [9].) First recall that the Hermitian metric g has the form; g| U.
= fa* ga Where f. is a positive function and g. is a Kihler metric defined on a neighborhood U
of M.
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On the intersection U.N Us+®, Uniformization Theorem 1 shows that ps=hop, for he g
Then, except for (2) complex similarity geometry (C*X(U(z) X R*), C"), we note that

G=Iso( Y&, gr).
So we have

(%) Pigr=okgy.
Since ca*ga=pzgy and gs=Asa* ga =%'ga by the cocycle condition as before, we have

csfil=carfat on UsN Us.

This defines a global function 7: M — R* such that 7| Us=c.*fz". (Compare [9].)
On the other hand, using the above uniformization we have a developing pair (locally conformal
Kahler immersion and holonomy map) from the universal covering space of M :

(o, dev) : (m(M), M) — (G, Yc).

As above G=Iso( Y&, gv), the pullback by dev defines a m(M)-invariant Kahler metric on M.
So it induces a Kahler metric % on M such that P*h=dev*gy, where P: M~ M is the covering
map. Let r-¢ be a conformal class of g on M. Then calculate

f'gl Ua=t'fa'ga| Us
=(cafa")*(faga)
=Ca‘ga=¢:g}'| U..

We can assume that P: U, U, is homeomorphic. By the construction of developing map,
paoP=dev|U.. We have

Pz g)| Ua=P*(z-g| Ua)
=P*(p¥gy)| Ua
=dev*gy| U.=P*h| U,,

i.e., 79| Ua=h| Ua for each . Hence r-g=h.
As a consequence if we consider the conformal class (M, r+g) of (M, g), then M is globally
conformal Kahler.

On the other hand, for (2) complex similarity geometry 6= C"*(U(#n) X R*)CSim(R?*"), we
cannot expect the above (* %) because R* acts as similarities on C” with respect to the
euclidean metric go. By Uniformization Theorem 1 again, we have
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Ca*Ga=Pagy

where (Y&, gvr)=(C", g). Therefore, each g. is flat, in other words, (¥, g) is an l.c. Kahler-flat
manifold. (See [25] for the definition.) In summary we have the following result noted by
Vaisman.

Proposition 3. A Bochner flat l.c. Kihler manifold (M, g) must be either l.c. Kéhler-flat or
globally conformal Kihler.

I. Suppose that (M, g) is globally conformal Kihler, i.e., (M, r-g) is Kahler. By Uniformiza-
tion Theorem 1, (M, z-g) is uniformizable with respect to ( Y&, gv)=CP", HE, HEX CP*™. In
addition if (M, r-g) is complete with respect to the Riemannian metric r-g (for example, when
M is compact), then M is conformally equivalent to Y¢ preserving the complex structures. For
this, if (M, r-g) is complete, then the developing map dev : (M, dev*gr)—(Yc, gv) is a covering
map so a homeomorphism where P*(r-g)=dev*gy as above. In particular, dev induces a
{complex structure-preserving) conformal diffeomorphism of (#, g) onto the Kahler manifold
Ye/o(m(M)) where o(m(M))C 6.

II. Suppose that (M, g) is L.c. Kahler-flat. By Uniformization Theorem 1, there is the develop-

ing pair:
(o, dev) : (m(M), M) — (C"*(U(n) X R*), C").

Since the complex similarity group C*X(U(#)X R*) is the subgroup of Sim([R?"), the group of
similarity transformations of M, M is said to be a similarity manifold. (Compare[6].)

Let go be the euclidean metric invariant under the group of rigid motions Ec(#)=C"XU(n). If
M is complete with respect to the pullback metric dev*g, dev is a homeomorphism of M onto
€~ such that p(m(M)) is contained exactly in Ec(#). Since Ec(#)=Iso(C”, g) in this case,
(* %) holds. As in I, there exists a smooth function 7 on M such that the conformal class r-g
is a Kahler metric. (M, r-g) is holomorphically isometric to a complete complex euclidean
space form C*o(m(M)). (Equivalently, (M, g) is conformally equivalent to C*/o(m(M))
preserving complex structures. Note that all distinct affine isomorphism classes of
C*/o(m(M)) consists of finitely many by the Bieberbach theorem on affine rigidity.) Other-
wise, M is an incomplete similarity manifold. Just taking a domain from C”—{0}, there are
infinitely many incomplete l.c. K&hler flat manifolds. Moreover, even if M is compact, dev :
M — C" is not necessarily a homeomorphism. Because the holonomy o(m(M)) dose not
preserve ¢ in general. However when M is a compact incomplete similarity manifold, the
theorem of Fried [6] shows that dev : M — R?>"—{0} is a homeomorphism such that o(m(M))
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CO(2n) X R* (up to conjugacy). As a consequence, o(m(M)) stabilizes the origin, and since

om(M)CC*X(U(n) X R*), we have that o(m(M))CU(%) X R* for which R**=C". Then dev
induces a homeomorphism dev of M onto the infra- Hopf manifold S‘sz""’ for a finite
subgroup FCU(xn). We show that dev is a conformal diffeomorphism preservmg the complex
structures. Let P: C"—{0}— S’ >1§ S%-1 be the covering map. Recall from [9] that a locally
conformal Kahler structure {Va, ®g}aca on S‘>I§S”“l defines a Hermitian metric % such that
B| Va=s4" he for some function sq in which k«(X, Y)=0.(X, JY) is a Kahler metric satisfying
that P*ke=gy'| V. for each @€ A. Here Y'=C"—{0}. Calculate:

P
dev*h=(Pega)*h
= @k P*sq* phgy:
s
=dev*ss* Ca* g

P
=dev*ss-ca*fa'*g on Ul

Chasing over the intersections U.N U; as before, we obtain a global function ¢ : M — R* such
that ﬂan=d/e\V*Sa’Ca'fa_ . In particular, ge\v*h=;z-g on M. It is easily seen that such
diffeomorphism preserves the complex structure. (Compare [9].) Hence (M, x-g) is holomor-
phically isometric to the infra-Hopf manifold (S‘>P§ Sl h).

Finally we can state the following result as to the problem in Introduction, which is also a
generalization and refinement of Theorem 3.4 of Vaisman [25].

Theorem 4. Let (M, g) be an l.c. K-const manifold of dimenstion 2n (n>1).

(1) Suppose that the holomorphic sectional curvature of ga, ka=0 for some a. Then M is a
stmilarity manifold . According to whether (compact) complete or compact incomplete,
M is conformally equivalent to a (compact) complete complex euclidean space form
C*o(m(M)), or an infra-Hopf manifold S'>F<_Sz"".

Here the conformal diffeomorphism preserves the complex structures.

(i) Suppose that the holomorphic sectional curvature of ga, ka#0 for some a. Then (M, g)
is globally conformal Kdhler, i.e., there exists a smooth function v on M such that the
conformal class t-g is a Kahler metric. Moreover, (M, 7-g) is locally holomorphically
isometric to CP" or HE according as ka>0, ka<0. In paticular, if M is compact, then
(M, t-g) is holomorphically isometric to the complex projective space CP" or the Kéhler
hyperbolic space form HE/o(m(M)) where o(m(M)CPU(n,1). It is unique up to the
scalar multiple of the Kdihler metric.

Note that by the definition of l.c. K-const manifold, the product H2 X CP*~" does not show up.



Locally conformal Kahler manifolds 27

In (i), it is known that all Chern classes vanish (especially in the case that M is incomplete but
not compact). I was taught by Kashiwada that a more general version of Theorem 4 can be
obtained by using the Hermitian Einstein-Weyl connection. (See [18] for the related work.)

2. Conformally flat l.c. Kihler manifolds

As is noted in Introduction, the Riemannian metric of constant sectional curvature is locally
conformal to the euclidean metric. Let (M, g) be an l.c. Kahler manifold of dimension 2z (»
>1) where g is the canonical Hermitian metric obtained in Introduction. Then (M, g) is
conformally flat if and only if each ga is of zero sectional curvature provided that 2n>4. We
treat the case that 2z is bigger than 4 in this section.

Proposition 5. Let (M, g) be an lLc. Kahler 2n-manifoid (n>2). If (M, g) is conformally flat,
then M is uniformizable over R*® with respect to Sim(R?*"). In particular, M is a similarily
manifold.

In contrast to conformally flat Kahler manifolds, we shall prove the following.

Corollary 6. Let (M, g) be a compact conformally flat L.c. Kahier manifold of dimension 2n(n
>2). Then M is conformally equivalent to either a complex euclidean space form C"/T' (T'C
Ec(n)), or an infra-Hopf manifold Sz"">1§S' (FCU(n) X SY) preserving the complex structures.

Proof of Proposition 5. As n>2, the Weyl curvature tensor W(g)=0. Since g is locally
conformally equivalent to g. on each U, W(gs)=0o0n U.. Thus each U. is a conformally flat
Kahler manifold. It is known (see p. 69 in [29], cf. also [1], [22]) that whenever z>2, any
conformally flat Kahler 2z-manifold is flat. Let go be the standard euclidean metric on R as
before. As we can assume that each U, is simply connected passing to a small open subset of
U. if necessary, there is an isometric embedding (developing map) @:(Us, ga)—=(R?", ).
Applying to each neighborhood U. in M, we obtain a family of charts {Us, @a}aes on M.
Suppose that UsN Us=#0. Since @a: U~ R*" is a local isometry as well as g,: Uz~ R™, we
have

9o X, YV)=00(2a)s X, (@a)+ Y), 9s(X, Y)=0((9s)4 X, (@e)x ¥)

for X, Ye TA{U.NUs). Put gee=0s 07" : 9o UsNUp)— @s(UzN Up). Recall that gs=~Asa*ga
for a constant As on UsNUs. If v, w € TounR?", then
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9{(9sa)+0, (gsa)x w) = Go((@2)+(@a)5' v, (@s)+(@a)5' w)
=gs((a)3'v, (Pa)x'w)
=Apa* 9a((¢ﬂ);] v, (9’");] w)

=Asa* o0, w).

As As is a constant, gs. is a locally homothetic transformation defined on a neighborhood of
R?*". Then the local change gs is a restriction of an element of Sim(R?*")=R? X (0(2%) X R*).
Hence {Us, Pa}aea gives a uniformization on (M, g) with respect to (Sim(R?"), R?"). a

Proof of Corollary 6. Now, M is a compact similarity manifold. By the result of Fried [6],
the developing map dev: M- R* is homeomorphic or dev: M~ R*—{0} is homeomorphic
according as whether M is complete or incomplete. Put I'=p(m(M)) and E(2z)=R***0(2%)
which is the group of rigid motions of R?*". Then dev induces a homeomorphism dev: M
— X/T where X=R?" with 'CE(2#x) or X=R*"—{0}=5%""'X R* with 'CO(2#) X R* respec-
tively.

Case 1. (E(2%), R*™). Let & be the induced Riemannian metric on R?**/T". Since gz lies in
E(2n)=Iso(R*", g)*, the above equation implies that Azz=1 on U.N Us. By the definition of
Aga, fa=Js. We can define a global function 7 : M — R* to be (z)=fs zx) if x€ Us. If we
note that @.*g=g. for each e € A, and that d/e\vl Us=Po@a,

dev*do| Ue=0P*Go| Ua
=¢:go| Ua
=ga=fs'g
=z'+g|U..
Thus we have cfe\v*éo= 7’-g. Hence (M, g) is conformally equivalent to the euclidean space
form (R**/T, Go).

Py
Since g is Hermitian with respect to J, conjugate by dev, there is a complex structure on R**/T"
invariant under &. Then T sits inside C*XU(#) so that R**/T is isometric to C*/TI.

Case 2. (O(2n)xX R*, S 'X R*). We have the family of local Kahler metrics { Vi, #a}aca and
the Hermitian metric % on the infra-Hopf manifold Sz"">"§S' satisfying that :

Bl Va=5sa*ha, hs=apa*ha, asa=const,

aﬁa=$a'3;l, gol Va=P*ha.
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If we note that

dev*hcl Ua (¢ P*)hal Ua
= o3(g| Ve)=ga,

and from the property that gs=As"g. on U.N U, we obtain that aze=Ag.
As sq is defined on Va=d/§r( U.), the equality @s.=As implies that @/*sp-ﬁ"'=@/*sa-f; ! on
UsNUs. So there is a global function ' : M — R* such that ¢’| Us=dev*se-fs'. Then,

(Te\v*hl Ua=gg/*(3a'ha)=@*3a'ga
~
=dev*se-fal-g| Ua

=li"g| Ua.

Since d/e;( U.)=V, for each a, d/e\v*h= #+g. Hence (M, g) is conformally equivalent to the
infra-Hopf manifold (S' X S$?*!, #). As above, the complex structure J on M defines a complex
structure on S‘x S2%~! which makes % Hermitian, yielding that FCU(#) X S'CO(2#)x S'. As
a consequence, dev is a conformal diffeomophism of M onto S’ X S?"! preserving the complex

structure on each. a]

3. Conformally flat l.c. Kihler manifolds of dimension 4

Let W be the Weyl curvature tensor as a Riemannian manifold M. If dim M =4, there is the
further decomposition of Weyl curvature tensor W= W, + W-. (See [23] for example.) Sup-
pose that (M, g, J) is a Kahler 4-manifold. Then there is the Bochner curvature tensor B on
M. Itiswell known that B= W_ for Kahler metrics in dimension 4. A Riemannian 4-manifold
with W_=0 is said to be self dual. As a consequence a self dual Kahler 4-manifold is a
Bochner flat Kahler 4-manifold.

Proposition 7. Let (M, g,]) be an lLc. Kahler 4-manifold. If (M, g,]) is conformally flat,
then M is wuniformizable with vespect to either the complex similarity geomelry
(C*H(U2)X RY), C?) or the projective-hyperbolic geometry (PU(1, 1) X PU(2), HE X CP*).

Proof. If (M, g)is conformally flat, then the Weyl curvature tensor W(g)=0. Since the Weyl
curvature tensor is a conformal invariant, W(g.)=0 for each @. In particular, W-(g.)=0 from
the decomposition of Weyl curvature tensor. By the above remark, as B= W-, we have B(g.)
=0. Again by the conformal invariance of the Bochner curvature tensor, B(g)=0. Hence,
(M, g,]) is a Bochner flat l.c. Kahler manifold. So it is uniformizable with respect to the four
geometries of Uniformization Theorem 1. Moreover, the uniformization {Us, @a}aca of {M, g,
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J) satisfies that ca* go= @%gy for some constant c.. On the other hand, as above W(g.)=0 for
each @. Each (U, g.) is also conformally flat. By the tensor calculus, the scalar curvature of
a conformally flat Kdhler manifold is zero (for example, cf. [29]). The scalar curvature of
each (Us, ga) is zero. The above relation that c.* g«= @&gr implies that the scalar curvature of
our model space ( ¥Z, gv) is also zero. Hence the geometry ( Yé, gv) must be either one of the
complex similarity geometry (C*>(U(2)XR*), C") or the projective-hyperbolic geometry
(PUQ1, 1) XPU(2), Hi2 X CP'). The only thing is left to check that each geometry admits a
conformally flat geometry. In fact, let (Conf(S™), S”) be the conformal geometry where
Conf(S")=PO(%+1,1). Then it is known that (Conf(R"), R") is the similarity geometry
(Sim(R"), R")=(R**%(0(x) X R*), R") where S"—{0}=R" by the stereographic projection.
The complex similarity geometry is a subgeometry of the similarity geometry (Sim(R"), R").
The sphere complement S”"—S""! is conformally equivalent to the product of the real hyper-
bolic space and the sphere HE X S"~™ in which the conformal subgroup Conf(S"—S™")=
PO(m, 1) X O(n—m+1), which is the group of isometries of the the product HE X S" ™. (See
[11]) Soif =4, m=2, the conformally flat geometry (Conf(S*— S'), $*—S") is identified with
(PO(2, 1) XO(3), HIZ X S?). If we note that H& is isometric to HZ under the low dimensional Lie
group identification, we have the canonical isomorphism :

(PUQ, 1) X PU(2), HE x CP)=(PO(2, 1)’ X O(3)", H& X S?).

Hence both geomotry admits a conformally flat structure.

o
Theorem 8. Let (M, g) be a compact conformally flat l.c. Kahler manifold of dimension 4.
Then M is conformally equivalent to one of the following l.c. Kdhler manifolds preserving the
complex structures.
(5) A complex euclidean space form TE[F (FCU(2)).
(#) A fiber space 1HI&>F< CP' (CCPU(1, 1) XPU(2)).
(51) An infra-Hopf manifold S“;SSl (FCU@2)x SY.

Proof. If (M, g) is conformally flat, then (M, g) is a Bochner flat l.c. Kdhler manifold which
is uniformizable over (C*X(U(2) X R*), C*) or (PU(1, 1) XPU(2), H¢ X CP') by Proposition 7.
As in the proof of [9] (also the arguments of § 1, 2), (M, g) is conformally equivalent to either
a complex euclidean space form C?/T' (I'CEc(2)), or an infra-Hopf manifold S“’>’§S 1
(FCU(2) X SY) according as whether M is complete or not, or (M, g) is conformally equivalent
to the S? bundle over hyperbolic orbifold ; IHIé>r§ CP'. Note that in each case, some finite cover
of M is either a complex torus 7¢, a Hopf manifold $®x S! or the product S*X 3}, where X,
is a closed orientable surface of genus g=2.
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a
Remark 9. We notice that (Conf(S*—S?), $*—S?)=(PO(3,1)x0(2), H& XS"). Choosing a
torsionfree discrete uniform subgroup T'CPO(3,1), we have a compact hyperbolic 3-manifold.
Since HR/T is of dimension three, HR/T is a CR-manifold but not admitting a circle action.
The construction of (9] gives a locally conformal symplectic structure on the product HE/T' X S*.
So we obtain a conformally flat locally conformal symplectic 4-manifold HR/T'XS'. By our
construction, a complex structure on the CR-manifold HR /T provides an almost complex structure
on HR/T' XS, which is not integrable because the characteristic vector field on CR-manifold
HR/T is not Killing, (equivalently the CR-manifold H&/T is not K-contact.) We donot know
whether there exists an exotic l.c. Kdhler structure on H/T'XS'. Compare [20].

4. Transformation groups of l.c. Kihler manifolds

Let (M*", ], {Ua, Qa}ac a) be an Lc. Kahler manifold associated with the canonical Hermitian
metric g. We denote by Aut r.c.«(M) the group of locally conformal Kahler transformations, .
e., an element f : M- M is a diffeomorphism such that fuoJ=J°fs, and when f(x) € U, for each
xZ € Us, f*Qs= ptpe* Qa for some constant pe >0. In addition, if f*Qs=Q. for each element e €
A, then f is said to be a locally Kahlerian transformation, its group denoted by Aut x(M).
Since s is constant, each element f of Aut ..x(M) is also locally homothetric. By the
property that feeJ=J°fs, Aut rcx(M) is a subgroup of holomorphic transformations of the
complex manifold (M, 7). On the other hand, it is known that the group of conformal transfor-
mations of a Riemannian manifold (M, g), Conf(M), is a Lie group provided that dim M =3 (cf.
[13]). We shall prove that Aut ..x(M) is a Lie group. In order to do so, first recall the
following (cf. [29]).

Lemma 10. A conformal transformation preserving complex structurves between Kdihler mani-
folds (M?", g,Q,]),(N?", ¢, ¥V, J') is necessarily homothetic, provided that n>1. Namely, if
h*g=2A-g and heoJ =] ohs (equivalently, h*Q'=2-Q, haoJ=]"ohy), then A is a constant,

Proposition 11. Let Conf(M) be the group of conformal transformations of an lc. Kdhler
manifold M with the associated Hermitian melric g as before. If dim M=2n>2, then
Aut .cx(M) is a closed subgroup of Conf(M) whose elements preserve the complex structure J.

Proof. Let 2¢€ Aut rex(M). For x € U, if H(x) € Us, then (A*gs)s= ttga*(ga)x and hxoJ=J s
by the definition. Suppose that #(x)€ U, for some y. The property gs=As-g, implies that
Hpa* Ga™ I‘ﬁr *Hra* Ga. Thus
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Hea=Asr* thra o0 UpgN U,
For h(x)e UsN U, and x € Uy,
FAIZ))* tra o @) = Apr Fo () ttra ful) ™
=fo(W(x))* e ful 2)".
Hence the function f(A(x))- pea f2(x)~" does not depend on the domain of 4(x). Put
o) =fo(W(x))* g fu(x)™" oM U
If x€ U.N Us, then h*gse=pps+gs as above. Since gs=Ass*ge and ~*ge= p4s2° ga, We have that
Hpa=ptgs* Asa N UaN Us.
As fa=2sfo,
() =fo H(x))* ptpa* fel )™

= fo(I(x))* ttps* Asa* fal2) !
=fa(h(x)) * ﬂﬂa’fa(x)'l = Z'n(x).

So, there is a positive function 7 : ¥ — R such that 7| U.=7. Since

(h*g):=(h*(fo* 9e))=
= fo( () (h* o)
=fo(h(x))* ttsa*(9a)=
= fo(W(x))* poa* fulx) ™" - g
=1(x)* gr,
& is a conformal map with respect to g, i.e., € Conf(M).

Conversely, let k€ Conf(#M). Then (h*g).=p(x)*g- for some positive function # The prop-
erty g| Us=/5"gs shows that for x € Us, #(x) € Us,

(B*ga)e=fo W(x)) - ()" 9=
=fo(h(z)) ' p(x)* fulz) ' (ga)z.

By Lemma 10 and if % preserves J, fo(h(x)) - p(x)- fo(x)™" is a constant us: on U.. In other
words, the above formula becomes

(B*Q)x= ttpa*(Qa).
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Therefore, %€ Aut r.c.x(M).

a
Theorem 12. Let Aut 1.cx(M) be the group of locally conformal Kihler transformations of an
l.c. Kdhler manifold M of dimension 2n. If M is compact and n>1, then Aut rc.x(M) is a
compact Lie group.

Proof. If Aut ..x(M) is noncompact, then so is Conf(M) by Proposition 11. Applying the
Obata and Lelong-Ferrand’s result to (M, g) (cf. [21], [15], [10]) yields that (M, g) is conformal-
ly equivalent to the standard sphere S*". In particular, (M, g) is conformally flat. Since M is
a compact conformally flat l.c. Kahler manifold of dimension 2% (#>2), this contradicts the
conclusion of Corollary 6, Theorem 8.

5. Structure of l.c. Kihler transformation groups

Let (M, J) be a locally conformal Kahler manifold equipped with a locally conformal Kahler
structure {Us, Qa}aea. There is a 2-form Q such that Q| U.=A.-Q. for each @€ A. Recall that
Q is not necessarily a Kahler form on M. Let P: M- M be the covering map where J is the
universal covering space of M. There exists a 2-form ©Q on (M, J) such that P*Q=Q and let
Jbealiftof J. As fa=As"fz on UsN Us, letting 8| U.=d log fa, there is a global 1-form & on
M such that d§=0. Then we have dQ=0AQ. If §isa lift of & to M, then df=0 implies that
there exists a function f on M such that df=4. Moreover, as dQ=8AQ,dQ —df A Q=0.
Put

6=e"-Q.
Then,
d®=—e"dfANQ +e’dQ=e"(—df ANQ+dQ)=0.

Since Q*| U= f2-Q2+0, and J preserves ®, ® becomes a Kahler form on #. Put

Aut »x(M, ®, J)={f : M- M is a holomorphic transformation with respect to J|

f*@=c,-® for some constant cy}.

Then Aut ».x(M, ®, J) is the group of homothetic Kahler transformations. Note that ¢,+0 is
uniquely determined by /. Let o be the map which assigns to f a number ¢,. Then the
correspondence :

o Aut x(W,8) — R*
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is a continuous homomorphism. Put m(M)=r.
Lemma 13. If a€ 7, then a*®=c-® for some constant c. In particular, xCAut »x(M, 8, J).

Proof. Calculate

*®=a*(e’- Q)
=e . q*Q
=e /. Q
=e "/ -¢'®

=&/

As @ is the lift to M, note that each « leaves 4 invariant, so da*f=df. Thus f—a*f=¢ for
some constant ¢ on M. If we put c=¢°, then we have a*@=c-8.
[m]

Note that the Kahler form ® does not come from a lift of a 2-form of M. However, if o(7)=
1, then ® induces a Kahler form @ on M.

Proposition 14. A locally conformal Kahler structure on a complex manifold M becomes a
Kahler structure if and only if p: x— R is trivial.

According to [3], [14], there is the exact sequence: 1- 7— Nours(r) — Diff(M)—~1 where
Nouesn(7) is the normalizer of # in the diffemorphism group Diff(#). We have a refinement
about the group Aut .cx(M). First we prove the following.

Proposition 15. There is an exact sequence :
1- 7= Nauw Ax(M, é)(”) L’Aut ‘-C'K(M)_) 1
Proof. If %€ Nawaesi.&(x), then A*®=c-®. Assume that %:U.~»Us; By the com-
mutativity, Peh=v(k)eP. Put v(k)=he Diff(W). Define a 2-form ®. on U. to be
P *®a=®| Ua-

Since each @, is invariant under J, we have a family of Kahler forms {Us, ®a}aca on M. As
QI Ua=f a‘Qa,

®| 0a=e-f' ﬁ | 0¢=e_!'P*fa‘ ﬁa.
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Since both ® and Q. are Kahler forms, e/ - P*/, is a constant number #.. We have that 8,=
ta*Qq on Ue for each . Then calculate

20| U.,=c-8| U,
=c*P*@q
=C- fta* P*Qa
=kr*(8| Us)| Ua
=h*(P*8s)| Ua
=P*1*®s| Us=P*h* 12 Q.
Hence ¢ po* pta"* Qo=h*Q, s0 that € Aut re.x(M).
Conversely, let 2€ Aut r.c.x(M). Suppose that #: Uz~ Us. Then 2*Qp=AsQa for some con-
stant Ags. AS o= a*Qa, we have h*@s= 1520, for a constant ys.. Consider a lift £: W W.
Let & € y- Uz and suppose that #: y- Us— 7"+ Us for some 7, 7' € x.
Note that P(£)=z¢€ Us hx€ Us. Suppose that X, Y e Ty -Us). As ye(Ty-:Ua)=
Ty Ua), put 7+ X'=X, 7+ Y'=Y. Similarly, as 74(Ty-izUs)= Ty’ - Up), put vxA=heX,
vsB=hsY.
(@)X, Y)=h*8|r- UAX, Y)
=@iz| v U X, ha Y)
=8iz| 7'+ Uy'+A, 7'+B)
=y*@,-uiz| U(A, B)
=cp*8,-1i:| Ul(A, B)
=cp P*@4(A, B)=cs0s(P:A, PiB)
= @s(haPuX, hs P Y)
=co *@(Pu X, PxY)
=cs* ttpa* @ P X, P Y)
=Cp* 122 Qu( Px X', P Y")
=cCp* ttga* P*0u( X", V)
=cp 5@ | U X", Y)
=cp* ttpa*®| Ul 76’ X, 7' Y)
=cp pta*Ca'*®| 7 U X, Y)
=cp* ppa*ca' 0 X, Y).

Hence, #*@=cs paa+ca'*® at a neighborhood of #. Now, cspe-ca' is a constant A in the
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neighborhood of £.  Moreover this is true for every neighborhood, thus #*®=A2-8. Since h«°J
=Joha, it is easy to see that fxoJ=jchs Hence %€ Naut axoi, (7).

There is also an exact sequence :
1- C ()~ Caue axist, 8(7) —— Aut Lex{M)’-1

where Caut »xuii, 8(7) is the centralizer of 7 in Aut »x(M, 8).

Finally we can show the structure on the identity component of the group of locally conformal
Kahler transformations Aut ,cx(M)". An element % of Aut rcx(M) is essential if the lift of &
to M acts as a nontrivial homothetic Kahler transformation of M with respect to 8. Recall
that Aut .x(M) is the group of locally Kahlerian transformations.

Theorem 16. Let M be a compact locally conformal Kihler 2n-manifold (n>1). Suppose that
a circle S* acts as essential locally conformal Kdihler transformations. Then, Aut cx(M)° is
isomorphic to Aut .xk(M)P°X S

Proof. Let p: Aut »x(M, ®) — R* be the homomorphism as above. Its kernel Aut (M, ®)
is the usual group of Kahler transformations of M with respect to ®. Then there is the
commutative diagram from Proposition 15:

1 i 1
1 —— C(2)N Caue ssir(®) — clor) —= o(c(m)
1 — Cau xot, 8)(7) > Caut axisi, 8(7T) —£ R*

[ 4

1 — Aut (M) —  Aut cx(M)
1 — 1 _— 1

Note that Aut ,.c.x{(M)°+Aut .«(M)°. By the structure theorem of compact Lie group theory,
Aut rex(MP°=T >F< H where T is a toroid, H is a semisimple Lie group, and F is a finite central
subgroup. (See [7] for example.)

Associated to the covering: 7—M — M, there is a covering map of groups as in the above
remark :

C (7))~ Caut nxst, 8{x) 5 Aut ex(M)°.
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The group Cau sxei, 8(7) has the form T >}§ H for which T, H, F are corresponding covering
groupsof 7', H, F. Since H is semisimple, A is still compact. S0 if Caut sxai, 8(7) is compact,
then it lies in Caut i, 8(7) by the above diagram, which contradicts the hypothesis. Thus, 7
=R*X T*(k=1). Moreover, there exists a one-parameter group R C R* such that p(R)=R".
R is the essential subgroup. Hence Cau . 8(7) is the semidirect product of Caue xat, 8)(7)
with R. Since R* belongs to the center of Cau .xwi. 8(7), we obtain that Cau sxui, &(7)=
Caut xt#, 8(7) X R. Passing to the above diagram, Aut rc.x(M)°=Aut .«(M)°X S

We give examples of compact l.c. Kihler manifolds with large group Aut r.c.x(M)".
Suppose that (M***!, w) is a regular pseudo-Hermitian manifold. Then there is a principal
circle bundle: S'»M —— W satisfying that

(1) S' induces the characteristic vector field Z, i.e., (Z)=1, dw(Z, v)=0 for all ve TM.

2) (W, Q) is a Kahler manifold with 7*Q=dw. The CR structure Ker @ maps isomor-
phically onto TW at each point of M. As there exists a complex structure J for which
J(X, Y)=0(X, JY) is a Kahler metric, Ker w supports a complex structure / which
commutes with f.

(3) There is a Riemannian metric g on M defined by g(X, Y)=w(X) - o(Y)+dw(X, JY).
Moreover, (M, g) = (W, §) is a Riemannian submersion.

(4) Let C(S", M) be the centralizer of S! in the group of pseudo-Hermitian transformations
Psh(M)={f : M- M is a diffeomorphism; f*w=w, fioJ=J°fi}. Obviously C(S', M)
preserves w and g.

Suppose that we have two compact regular pseudo-Hermitian manifolds (M, w;, g:) (i=1, 2)
with dim Mi=2m+1, dim M.=2n+1. Consider the commutative diagram of principal bun-
dles:

AS! —— a8

| I
S'XS' —— MixM, —— WixW
| gl ||

Sl - M —— W/lx VVb’p

where A S'={(¢, t~')} which acts on the product M, X M.. Then A S? induces the vector field
Z\— Z» which is annihilated by the form @+ .. Obviously the form w;+ w. is invariant under
the group C(S! Mi)x C(S", Mz). Therefore it induces a l-form @ on the (2m+2n+1)-
dimensional orbit space M such that v*w=wi+w.. There is the Kahler form Q=0:+Q- on
Wi X W, equipped with the complex structure J=/,+ /.. Then do=x*Q from the above
diagram. It is easy to check that

1. w is a contact form on M. There is a complex structure J on Ker w so that (, /) is
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a pseudo-Hermitian structure and g(X, Y)=w(X): o(Y)+dw(X, JY) defines a Rieman-
nian metric on M. Moreover, the quotient group G=v(C(S', M) X C(S", M2)) pre-
serves w and g.

2. Put vi(Z1+2Z:)=v«(Z;)=Z. Then Z is the characteristic vector field of the pseudo-
Hermitian manifold (M, w), where it generates a free action of S* which induces the
above principal bundle: S'- M L WiX Wo. The circle S!' lies in
w(C (S, M) X C (S, M;)) acting as pseudo-Hermitian transformations of M.

By this remark, (M, w, g) is a compact regular pseudo-Hermitian manifold invariant under the
group of pseudo-Hermitian transformations G. It is noted that G is isomorphic to
C (S, M)/S'X C(S', Ma).

The idea of this construction has been already seen in [2].

We denote by M(M,, M,) the resulting manifold obtained in the above method. Let M, be a
compact regular pseudo-Hermitian manifold of dimension 2m+1. For example, Choose M=
S2+1 with the standard contact form, that iés , the contact form induces the Kihler form
(equivalently, Fubini-Study metric) on CP" for the Hopf bundle: S'- S$***'— CP". In this
case, the centralizer C(S!, S?**') is the centralizer of diagonal S" in U(#n+1), which is isomor-
phic to T7*'. Thus G=C(S!, M)/S'X T™!'. The resulting regular pseudo-Hermitian mani-
fold M(M,, S?**!) is S**'.bundle over the Kihler manifold Wi. M(M, S***') admits a sub-
group of pseudo-Hermitian diffeomorphisms 7"*! at least. Among them, the regular pseudo-
Hermitian manifold M(S®"*!, $?"*!) supports the maximal group G= T™*!/S!X T"*l= T'm+n+
acting as pseudo-Hermitian transformations.

Choose such M(My, M;). Let W=M(M, M) X S: be a closed l.c. Kahler manifold obtained in
[9]. (See also [12].) It is easy to check that Psh(M (M, Mz))=Aut .x(W). Then

Aut e WP=Aut 1 x(W)°xS"
=PSh°(M(M1, Mz)) x S!
=C(S", M)/S' X C(S", Ma)X S*

In particular, if W=M(S*"*, §***')x §', then Aut r.c.x( W)°= T™+"+2,

6. Concluding Remark

It is far from valid to classify 4-dimensional compact l.c. Kahler manifolds which are not
conformal Kahler. There is a class of (1) generalized Hopf manifolds. (See [26] for the
definition of generalized Hopf manifolds.) It is also shown by Tricerri that the Inoue surface
is .c. Kahler but not conformal Kahler. The class (2) of Inoue surfaces are characterized as
a compact complex solvmanifold with =1 (equivalently a 7°-bundle over S%).
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If we consider another class of compact l.c. Kahler manifolds which are not conformal Kahler,
we first notice from [24] that a generalized Hopf manifold admits a 4-dimensional torus action
T*, at least £=2. We note that if a circle acts as essential l.c. Kahler transformations of a
compact lc. Kahler manifold M, then M will be a generalized Hopf manifold. (See [9].)
Suppose that M is a closed aspherical manifold (that is, its universal covering space is contract-
ible). 1f a torus T* acts nontrivially on M, then it is known that the orbit map induces an
injective homomorphism: Z* — m(M) such that its image of Z* belongs to the center
C(m(M)) of m(M). (See [14].) So if a closed aspherical l.c. Kahler manifold M is a generalized
Hopf manifold, then the above remark shows that C(m(M)) contains at least Z% In view of
this, in order to obtain l.c. Kahler manifold but not generalized Hopf, it is sufficient to construct
closed aspherical l.c. Kahler manifolds with the rank of center C(m(M)) at most 1. In fact we
can show that

Proposition 17. There exists a class (3) of closed aspherical l.c. Kéhler manifolds with center
C(m(M)=2.

One of such a manifold is a compact complex infranilmanifold. More precisely, let N/A be a
three dimensional Heisenberg nilmanifold. Then our manifold M is obtained from N/AX I by
gluing their boundaries by a periodic diffeomorphism of order 4. So the 4-fold covering of M
is an S'-bundle over T2 As M admits a locally Kahler S'-action Aut ,.cx(M)°=Aut .x(M)°=
S!, we have that C(m(M))=Z or bi=1. We shall discuss the details of this section in the
future paper.
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