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1 Introduction

The configuration space X (%) of # points on the projective line is studied by many authors in
different ways. The space X(6) carries naturally the stucture of an algebraic variety over the
rational number field.

In this paper, we study the real locus Xi(6) first combinatorially, then algebro-
geometrically and finally show that this space carries the structure of a hyperbolic manifold ;
the two structures — algebraic and hyperbolic — relates through hypergeometric functions and
theta functions.

Our method to find the hyperbolic structure in based on the study of the hypergeometric
differential equations defined algebraically on the complex locus Xc(6) and the monodromy
behavior of the solutions. A direct way can be found in [7].

Since I believe that this paper will serve a bridge between hyperbolic geometry and
hypergeometric functions (modular interpretations of configuration spaces), I made this paper
somewhat expository; known facts are stated under the title of Facts. A complementary
arguments can be found in [7].

Acknowledgement : The authors would like to thank Professor S. Kojima for valuable
discussions.

2 The configuration space X(n) of n points on the projective line

Let M(2, ) be the space of real 2 X n-matrices and M*(2, x) its subspaces consisting of matrices
x=(xy) such that any 2X2-minor

T ik

D.(Gk) .= i 1<j*#k<n

does not vanish. Regarding the » columns of x as homogeneous coordinates of # points on the
projective line P!, we define the configuration space X(#) of » distinct points on the projective
line by the quotient space

X(n)=GLC\M*(2,n)/H(n),

where the group GL(2) acts from the left and H(#%) is the subgroup of GL(#) consisting of
diagonal matrices acting from the right. Note that X(») admits a natural action of the
symmetric group S, permuting the » points.

When the base field is R, since P' is homeomorphic to a circle, each component can be
coded (according to the order of the # points on the circle) by a juzu, which is by definition an
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equivalence class on the sequences of nemerals 1,..., # up to cyclic permutations and orientation
reversion. In particular, this space is the union of the (#z—1)!/2 connected components, —
sometimes called the chambers — on which the group S» acts transitively.

The space X(n)}(1<#n<3)isa point. The space X(4) is isomorphic to A — {0,1}, which can
be embedded linearly into the projective plane by

X(4) 2xr— DI(IZ)DI(34) . Dz(13)D1(24) . Dz(14)Dx(23) € Pz;

so its compactification is just P'. The space X(5) is isomorphic to {(x,y) € A%|xy(1—x)(1
—y)(x— y)+0}; when the base field is R, its Ss-equivariant minimal smooth compactification X
(5) is the union of twelve pentagons ([1]). The space X(6) — often denoted simply by X in this
paper — is isomorphic to

{(z, ¥, 2) € A®|2p2(1—2)(1— )1 —2)(x — y)(y —2)(z—x) +0};

when the base field is R, its Se-equivariant minimal smooth compactification is the union of
sixty polyhedrons called Terada3’s ([14]), which are described in the next section in detail. In
this paper, to simplify notation, we omit to put suffices R, C or K when it is clear on which base

field we are discussing and when the statement holds for any base field.

3 X(6) as the union of 60 Terada3’s

The configuration space X =X(6) of six points on the projective line is the disjoint union of
sixty chambers, and its Se-equivariant minimal smooth compactification X =X(6) is the union
of sixty chambers, each of which is isomorphic to the Terada3, coded by 6-juzus, for example,
123456. We will see how these sixty cells are glued together.

3.1 Coding the faces of the chamber 123456
The Terada3 coded by 123456 has six pentagonal faces coded by

(12)3456, .., 1234(56), (61)2345,
and three square faces coded by
123x456, 234x561, 345x612.
There are six edges
(12)(34)56, 12(34)(56), (12)34(56); (23)(45)61, 23(45)(61), (23)45(61),

three edges
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(12)3(45)6, 1(23)4(56), 2(34)5(61),
and twelve edges

((12)3)456, (1(23))456, 123((45)6), 123(4(56)),
((23)4)561, (2(34))561, 234((56)1), 234(5(61)),
((34)5)612, (3(45))612, 345((61)2), 345(6(12)).

There are two vertices
(12)(34)(56), (23)(45)(61),
and twelve verices

(12)3x(45)6, 1(23)x(45)6, 1(23)x4(56), (12)3x4(56),
(23)4x (56)1, 2(34)x(56)1, 2(34)X5(61), (23)4 X5(61),
(34)5x(61)2, 3(45)x(61)2, 3(45)x6(12), (34)5%6(12).

The boundary of the pentagon (12)3456 consists of the five edges
((12)3)456, (12)3(45)6, (6(12))345, (12)(34)56, (12)34(56)
in this order. The boundary of the square 123X456 consists of the four edges
((12)3)456, 123(4(56)), (1(23))456, 123((45)6)

in this order. The edge (12)(34)56 has the two vertices (12)(34)(56) and (34)5x 6(12). The edge
((12)3)456 has two vertices (12)3X(45)6 and (12)3x4(56). The six pentagons and the three
squares are glued according to the following intersection relations (see Figure 1)

(12)3456N12(34)56=(12)(34)56, (12)3456MN123x456=((12)3)456
and

(12)3456 N 12(34)56 N 1234(56)=(12)(34)(56),
(12)3456 N 123 X 456 N 1234(56)=(12)3 X 4(56).

3.2 Chambers sharing a common face

The sixty Terada3’s are glued to form the compactification X of X. I describe the patchwork
of the chambers. For example, the pentagonal face (12)3456 of the chamber 123456 and the
pentagonal face (21)3456 of the chamber 213456 are glued ; I will abbreviate this explanation of
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(1(23))

Figure 1: The boundary of the chamber 123456, a Terada3, in X

identification by saying that a pentagonal face is shared by two chambers, e.g.
(12)3456 =(21)3456.

Applying this convention, I glue the boundary of the chambers as follows. A square face is
ahared by two chambers, e.g.

123 X 456(=321 X 654)=321 X456(=123 X 654).
Each edge is shared by four chambers, e.g.

(12)(34)56 =(21)(34)56 =(12)(43)56 =(21)(43)56,
123(4(56))=123((65)4)=123((56)4)=123(4(65)).

Each vertex is shared by 8 chambers, e.g.

(12)(34)(56) =(21)(34)(56)=""-=(21)(43)(65),
(12)3x4(56) =(12)3x(65)4=(12)3 X (56)4 =(12)3 x 4(65)
=(21)3x4(56) =(21)3x(65)4=(21)3 X (56)4=(21)3 X 4(65).

3.3 Divisors

There are fifteen divisors, corresponding to the degenerate arrangement x:=x;, formed by
twelve pentagons. Each divisor is isomorphic to X(5). There are 10 divisors formed by nine
squares. Each divisor is isomorphic to X(4) X X(4). Ishow below such a divisor by arranging

nine rectangles in 3 X3 matrix ; horizontal bonding edges are also shown.
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(2(13))456 | (2(13))456 | (2(13)546
213x465 | 213%456 | 213Xx546

((21)3)465 | ((21)3)456 | ((21)3)546
((12)3)465 | ((12)3)456 | ((12)3)546

123465 | 123X456 | 123X546

(1(23))465 | (1(23))456 | (1(23))546
(1(32))465 | (1(32))456 | (1(32))546

132x465 | 132X456 | 132Xx546

((13)2)465 | ((13)2)456 | ((13)2)546
((31)2)465 | ((31)2)456 | ((31)2)546

4 Projective embeddings

This section describes two known Ss-equivariant projective embeddings of X. Each has
singularities in a different manner. The situation will be described in terms of the shapes of
the chambers.

4.1 The first embedding
Let us consider the projective space P coordinatized by (labeled) triangles

ikl mn=m, {3, 7,k 1, m n}={1, ..., 6},
where we make the following identification :
gkl mun=i,mn;ki=Kl;i, mn=—ji; kl; mn.
For each labeled triangle 7 =1j; kI ; mn, we consider the polynomial function ¢r as follows:
vr s M(2,6) 3 x> D:(i7) D (k) D:(mn).
Note that {¢r}r do not vanish simultaneously on M*(2, 6), and that, for every T, we have
¥r(gzh)=(detg)*(deth)’¢=(x), g€ GL(2), he H(6).

Thus {¢r}r induces a map
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¥v: X—P.

The closure Y of the image of ¢ is a subvariety of P defined by the linear and cubic
equations

(L) : G;kl;mn—ij; bkm; In+ij; kn; im=0,
(O) : G kl,mnXik jn;,mXim;jl;kn=1i;kn;mXik;jl;mnXim;jn;kl.

The variety Y admits the following stratifiaction. Let Y’ be an open subdomain of Y defined
by the inequalities

ikl mn+0.
For {i,j, k, I, m, n}={1, ..., 6}, define subvarieties of Y :

Yy ={(T)e Y| every T with edge # is 0, any other T =0},
Yyuk  ={(T)e Y| every T with edge #f or &/ is 0, any other T =0},
yukimn ={(TYe Y| every T with edge ij, kI or mn is 0, any other T =0},

ykimn ={(T)Ve Y| every T with edge pg(p € {i, 7, k},q € {{, m, n}) is +0, all other T=0}.

Fact 1 ([2]) The domain Y’ of Y is a 3-dimensional affine variety isomorphic to X(6) ; each
Y9 is isomorphic to X(5); each YVi* is isomorphic to X(4); each Y¥*™ is isomorphic to
X(3), which is a point ; each Y™ is isomorphic to X(2), which is a point ; the variety Y
is irreducible and admits the following stratification

Y=Y'UUYYUUY¥HYUYsrmmy ) yosm,

The variety Y has singularities only at the points U Y95""  Let an overline denote the closure
in Y ; then

Yy =YYy U?ij:kt ™ Pz,
7:’1;1:1 = th;klU Y:‘J;kl;mnu Yijm;kln Yijn;klm = Pl.
By adding to X the degenerate configurations corresponding to the partitions
241414141, 2424141, 2+2+2, 3+3,
we can extend the map ¥ onto Y. As above we use indices {7, j, &, {, m, n}={1, ..., 6}.

XH=GL(2\{x € M(2, 6)| D:(ij)=0, any other D+0}/H(6);
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(the set of arrangements that two points labeled 7 and j coincide and nothing further special

occurs.) It is isomorphic to X(5). There are (g)=15 of these.

XiF*=GL(2\{x € M(2, 6)| D#)=0, D2(k)=0, any other D=+0}/H(6);

(the set of arrangements that two points labeled ¢ and 7 coincide, two points labeled % and /
coincide and nothing further special occurs.) It is isomorphic to X(4). There are (g)(;)/ 2=

45 of these.
X =GL(2)\{x € M(2, 6)| D«(i7)=0, Dz(£1)=0, D(mn)=0, any other D+0}/H(6);

(the set of arrangements that two points labeled 7 and j coincide, two points labeled £ and /
coincide, two points labeled m and # coincide and nothing further special occurs.) It is

4

isomorphic to X(3), a point. There are (g)(z

)/3!=15 of these.

Xdatmn=GL(2)\{x € M(2, 6)| D(pg)+0, p€ {3, j, k}, g € {{, m, n}, any other D=0}/H(6);

(the set of arrangements that three points labeled 7, / and £ coincide, three points labeled /, m
and # coincide and nothing further special occurs.) It is isomorphic to X(2), a point. There

are (g)/ 2=10 of these. Finally we put

X=X UUXEUUXEUUXEH U X,

which is considered as a topological subspace of the quotient space GL(2)\M (2, 6)/H(6).

Fact 2 ([2]) The map ¥ gives a homeomorphism between X and Y ; it preserves the stratifica-
tions, i.e. ¥ gives isomorphisms between affine varieties

X—Y, X§— VY X{HH— Y9

Xoi;:kl‘.mn _— Yi.i;kl;mn, Xoilgk;lmn —— Yukitmn

The chamber 123456 in X is a double tetrahedron as in shown in Figure 2 (in the figure, the
symbol Xy is omitted).

Remark 1 Though the subvariety Y¥ of Y is isomorphic to X(5), its closure Y9 in Y is not
isomorphic to the Ss-equivariant compactification X(5) appeared in [1]. There is a birational
morphism X(5)~ Y9, which blows down four disjoint non-singular rational curves to the four
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123;456

23;45;61

234;561

Figure 2 : The chamber 123456 in the first compactification X

points

Yﬁk;lmn Yiil;nmk Yiim;nkl Y!jn:km
I ’ ’ .

In Figure 3, we illustrate Y*? with its intersections with the remaining fourteen (in the figure,
the symbol Y is omitted, only the indices are shown). One can see that

Y!2 = X(S), Y‘l2:34 = X(4), ?12 pa— Yl?UU?lZ;kl,
—}712:34 = Y12;34U Y12;34;55U Y!25;346U Y126;345.

4.2 The isotropy subgroup of Ss for the chamber 123456

Since the number of the chambers is sixty, the order of the isotropy subgroup of Ss for a(ny)
chamber must be twelve. More precisely, the isotropy subgroup Isot for the chamber 123456 is
generated by the cyclic permutation a=<123456> and the reversion 5=<16><25><34>; this
group consists of twelve permutations: id,

a=<123456), a*=<135)<246), a*=<14X<25)<36>, a‘=a”? a’=a”’,
b=<16><25>(34>, <21><36><45>, <32><41><56>, <(13><46>, <15><24>, <26><35).

Thanks to this explicit description of Isof, we can readily see that each element keeps the
triangle A with edges X5, X%, X7§% and with vertices X%, X§*', X5i°%", and that only
id and @ keep this triangle pointwise. Note that there is a unique point — call this point the
center (of the chamber and of A) — which is fixed by every element of Isot. On A, e acts as
a rotation of order three, and 4 as the reflection with respect to the line joyning Xd7***® and the
center. Now it is easy to see that Isot is generated by the reflections
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34
46 13,23 "
16,26
7 15,25 § 56
35 36

Figure 3: The plane Y%

&, 5=K16><25)<34), c:=aba™'=<21>¢36><45),

(note that a®bc=a) which fix pointwise A, the plane supported by the center, Xo#**® and X354,
and the plane supported by the center, X&' and Xd3*, respectively.

Thus the quotient X/Ss has the orbifold structure illustrated in Figure 4. In the figure, a
thick (respectively, dotted thick and thin) edge indicates that the product of the two reflections
fixing the edge is of order 4, 3 and 2, respectively.

4.3 the Segre cubic
Let us name the fifteen labeled triangles as follows:

a=12;34;56, b=12;35;46, c=12;36;45,
d=13;24:56, e=13;25;46, f=13;26;45,
g=14;23;56, h=14;25;36, ¢=14;26;35,
u=15;23;46, v=15;24;36, w=15;26;34,
x=16;23;45, y=16;24;35 z=16;25;34.

Choose six coordinates :

t=14;26;35 v=15;24;36, 2=16;25;34,
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123;456 |

23;45;61

234,561

.....
...,
..

" 345612
Figure 4 : The orbifold structure of X/Ss

h=14;25,;36, w=15;26;34, y=16;24;35.

Note that, by the linear relations (L), the remaining nine coordinates g, b, c, ... are differences
of the chosen six coordinates:

a=w—z, b=t—y, c=h—v,
d=v—y, e=h—2z f=t—w,
g=h—t, u=v—w, xI=y-—=z

Then the linear relations (L) and the cubic relations (C) boil down to

ttv+z=h+w+y, tvz=hwy.

Thus our variety Y can be thought of as a cubic hypersurface in the 4-dimensional projective
space P'. By the coordinate change

Xo+x21=2¢, o1+ x2=2v, o+ x0=22,

Xstxa=—2h Titzs=—2w, Ist+x3=-—2y,
these equalities change into
Zot+-+25=0, (20)*+---+(25)°=0,

which defines a 3-fold known as the Segre cubic S. The following is known and is easy to
check.

® There are ten ordinary double points on S : the Se-orbit of (1,1,1,—1,—1,—1). These are the
Xo'lgk:lmn.

® There are fifteen planes on S:
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Piitmn : Ti+ ;=T + X1=2Tm+ 22=0.

These are the XJ¥. Each plane carries four of the singular points (see Figure 5).
For example, we have

% &= a=b=c &= w=2z2, t=y, h=v

— Pz Dot xs=m1+ 25=22+ 14=0.

Remark 2 Such correspondence (12)—~(05)(13)(24) defines an outer automorphism of the sym-
melric group Se.

4.4 The second embedding

The configuration space X(3, 6) of six points in the projective plane — this space is defined just
as X(6) in § 2 using M*(3, 6) and GL(3) in place of M*(2, 6) and GL(2) — and its compactifica-
tions are 4-dimensional and are studied in [15] and [12]. There is an involution * on X(3,6);
a point x € X (3, 6) is fixed under * if and only if x is represented by six points on a conic. Let
@ be the totality of fixed points of %. Since any nonsingular conic is isomorphic to P! and
since such conics are equivalent under projective transformations on P?, @ is naturally isomor-
phic to X(6). There is an Se-equivariant (open) embedding

X0+X =0

7-1:1:1

Figure 5: X35 coordinatized by xo: x1: 2
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pr:X(3,6)/{k>-P4

(Note: If the base field is C then its image is dense, while in case of R its image is not dense.)
Since Q is, by definition, the ramification locus of pr, @ can be thought of a subset of P. The
closure @ in P* is a quartic, known as the Igusa guartic. Through the natural isomorphism
% X(6), the configuration space X(6) can be compactified accordingly, say to X. The variety
X, which is isomorphic to the Igusa quartic, admits the following stratification. As above we
use indices {7, j, £, I, m, n}={1, ..., 6}.

X=Q: The set of arrangements of six distinct points on a nonsingular conic.

X#Fm" . The set of arrangements where three distinct points labeled 7, j and £ lie on a line,
and three distinct points labeled /,7 and # lie on another line. This is isomorphic to X(4) X
X(4).

X : The set of arrangements where two points labeled 7 and 7 coincide, and four other
points are distinct and lie on a line which does not path the point labeled 7. This is isomorphic
to X(4).

Xd*tmn . The set of arrangements where two points labeled 7 and j coincide, two points
labeled £ and / coincide, two points labeled m and / coincide, and these three points are not

collinear. This is a point.

Fact 3 ([10]) Put
XZ=XU UXzi&'k;lmn U UXl‘«’x U UX'g;kl;mn,

which is considered as a topological subspace of the quotient space GL(3\M(3,6)/H(3). The
map pr induces a homeomorphism of X and Q.

Thanks to this proposition, we regard X a projective variety. Then each stratum is an
algebraic set, and X has singularities exactly along

UXE U U XGeemn,
Moreover we have

X5 ™ =Us.aictiim X 18 UUparcitmm X t4,
aXlig =){°i£;kl;mn U Xoi‘il;km:ln U Xoi.‘i‘:kn;lm’
where @ and the bar (over X) represent respectively the boundary and closure in X.

Let us study the shape of the chamber C of X, with the code 123456, in X. The degenera-
tion diagram of arrangements in C can be given as follows.
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1,2,3,4,5,6 in this order on a non-singular conic

' l
le§3;456 Xzzgl;ﬁﬁl 23:5;612
Ve NS N/ N\
X3, Xi@ Xz, Xia Xia, Xia Xié, Xia

This implies that C is bounded by three rectangles (see Figure 6 ; in the figure, the symbol Xy«
is omitted) ; we call such a body a 3-rectangular-face-body. Thus X is the union of sixty such
3-bodies.

Remark 3 This compactification X is different from X and X. The relation between these
three compactifications will be clarified in § 4.6 and § 4.7.

4.5 The Igusa quartic
The Igusa quartic # is the hypersurface in P* defined (for example) by

R :=(uowr + stz + w2tto— usrea)* — duortr o sto+ -+ + wa).

The following is well known (cf. [5]) and is easy to check
® Singularities of # lie on the fifteen lines (parameterized by s: #)

00s0¢), (00st0), (—s-—-st ss),
0s00¢), (Os0t0), (—st —sss)

12;34;56

23;56;14 345:612

234,561 ¢ 16:34:25

23

123;456 23,4561

Figure 6 : The chamber 123456 in X a 3-rectangular-face-body, and a stereographic projection
of its boundary
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(s000¢), (0020, (¢ —-s-—-sss)
0 —-s—-tst), (O -s-—-tts),
(=s 0—-¢tst), (=s 0-—tts),
(—s —¢t 0st), (—s—t 0¢s)

® These fifteen lines meet three by three at fifteen points of the following types:
(0,0,0,0,1), (0,0,1,0,0,), (0,0,-1,0,1), (0, -1, -1,1,1), (-1, -1, -1,1,1).

Figure 7 shows part of these (in the figure, s, f and 1 stand for —s, —¢ and —1).

Remark 4 Around a segment, there are (eight squares and) eight chambers. Around a veriex,
there are 24 squares. Around a verlex, theve are twenly chambers.

Remark 5 The quartic QCP* is defined in (15, p.154) in terms of the coordinates z:{=p:— n;)
by

R’ :=(— 21321 — 2n1202+ 23225 + 283201 — 22123)* — 4 221 212213201 =0,
where zi2+ 20+ 2m=2zn+ 2+ 213.  If we change the coordinates, for example, as
Za=uo, 2=, =—Uz, 2=zt s, 3=t us,

then R’ is tranformed into the quartic R.

Otsst - - -

01001 00110 01111
s00t0

0s0t0 .
01000 00010 01010
s000t

00s0t :
00001 00100 00101

0s00t 00st0 Ostst

Figure 7 : Fifteen lines on the Igusa quartic
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4.6 A birational map between the Igusa quartic and the Segre cubic

The Igusa quartic and the Segre cubic are known to be dual each other (cf. [15]). Since we
need an explicit expression of the dualizing map later, we rediscover this fact in this subsection.
The dual variety of the Segre cubic is, by definition, a hypersurface of the 4-dimensional
projective space with coordinates ¥ parametrized by x in the Segre Cubic as follows:

yj=ag/a‘rir j=1) T 5v
where g=(z:)*+-- +(xs)*— (21 + - +5)°. That is,
yj=.z‘}—x§, j=1) Y 5;

where x satisfies zo+ -+ +25=0, (20)*+---+(25)*=0. In order to see that the image of this
birational map is projectively equivalent to the Igusa quartic, we proceed as follows.
The fifteen planes

rt =zt ri=znt+z.=0 (i, J, k I, m}={0,..,5)
are mapped to fifteen lines: the Ss-orbit of
(y1, 0 45)=(0, 8,5, ¢, 8).
These lines meet three by three at the fifteen points: the Ss-orbits of
(0,1,1,1,1) and (0,0,0,1, 1).

Figure 8 shows part of these.
The arrangement of the five points in y-space (left-bottom of Figure 8) and that in u-space
(left-bottom of Figure 7)

(0,1,0,0,1) (1,1,0,1,1) (0,1,0,0,0) (0,0,0,1,0)
(0,1,0,1,0) and (1,0,0,0,0)
(0,1,1,1,1) (0,0,0,1,1) (0,0,0,0,1) (0,0,1,0,0)

y-space u-space

suggests the projective transformation

0 00010 k751
Y2 11011 Uz
ya |=| 00001 || s }
Ys 10111 U
Ys, 01111 us
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sOits

ttssO
00110 11000 11110
tst0s stots

stost
01001 11011 10010
Ostst sOstt

Osstt
01111 00011 01100

Ostts ssOtt stts0

Figure 8 : Fifteen lines on the dual of the Segre cubic

Solving this system, we have

(23] -1 1-1 1-I\ /»n
u2 -1 1-1-1 1\|@%
ws |=| -1 -1-1 1 1| o )
Ua 2 0 0 0 O0f\wn
us 0 0 2 0 0/ \ys

Putting this expression into R(z), the defining equation of the Igusa quadric, and pulling back
under the dualizing birational map x~ y, we get the expression R(u«(y(z))) of degree eight in
z. One can checked that R(u(y(x))) has a factor

(xl)s'*' seet (1,‘5)3—(.2,‘1 +--- +1‘5)3.
This proves that the dual of the Segre cubic can be transformed by the projective transforma-
tion above into the Igusa quartic R(«)=0.
4.7 Relations between X, X and X in terms of transformations of chambers
Under the (birational) dualizing map
vi=xi—x5, j=1,..5,

where xo+ - +x5=0, (x0)>+--- +(25)*=0, each chamber — a double tetrahedron — in the Segre
cubic is transformed into a chamber — a 3-rectangular-face-body — in the Igusa quartic. Since
we know now the coordinates and the equations for all the vertices, lines and planes in question,
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this fact can be readily checked. For example, the double tetrahedron coded by 6-juzu 123456
is bounded by the six walls (planes)

X = xtaxs=xm+r=x+x:=0,
X# = xitas=x2tz0=21+23=0,
X5 = o+ =zt =T2+ 25=0,

23 e d 1‘2+$5=10+I3=x1+x4=0,
X &= xotas=nt+r=x1+2=0,
X5 = mot+re=xs+T3=21+24=0,

and has five vertices
XE® — (0,1,0,-1,0,0,  XF e (0,1,0,0, -1,0),

01‘23:456 — (1’ 1,1, -1, -1, _1), X°234;561 — (1, 1,-1,-1,-1, l)y
X5 = (-1,1,1,-1,-1,1),

The edges Xi#** and X|#* are mapped to the points
(l| 0’ 1’ 0, 0) and (1’ 1’ 1’ 1’ 0)’

respectively, and the triangle X3} is mapped to the edge joining these two points. In this way,
we can describe the birational map in terms of the transformation of the shape of chambers.
The birational map X - X can be best understood by the birational morphisms X - X and X
- X, where the latter is studied in [12]. These morphisms can be expressed by the correspon-
dence of the faces of the chambers.

X — X — X
double tetrahedron «— Terade3 —  3.rec-face-body
triangle X3} —— pentagon (12)3456 — edge X2
point O X{#“s¢ —— square 123%X456 ——  square XgF®

edge X33 —— edge (12)(34)56 —— point O X{§234%
point D Xg5%4% «——  edge ((12)3)456 — edge XiZ

edge X33 ——  edge (12)3(45)6 —— point @ XJZ4
point O X3f**  «— point (12)(34)(56) —— point O Xa7**

point 0 X3f**  —— point (12)3X(45)6 — point ® X5F
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infinitely big

Figure 9: From a double tetrahedron to a 3-rectangle-face-body

We visualize, in Figure 9, the rational map X - X - X by the deformation of the chambers
from a double tetrahedron via Terada3 to a 3-rectangular-face body. I hope the symbols 0, ®
and O will help the reader.

5 Modular interpretations of the configuration spaces

For a point x € X represented by a point set

0,1, o0, 11, 22, T3 € P!,
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we consider a curve
C:: B=x(z—1)(s—x)(s— x2)(s— x3)

and its periods
Fyx):= fn {s(s—D(s—x)(s —22)(s —2)} "2,
where 7;(j=1, ..4) are cycles on C; such that the intersection matrix is given as

(75, ye)ie=H :=diag(1, 1,1, —1).

Note that the F; are linearly independent solutions of the so-called Appell-Lauricella hyper-
geometric differential equation defined on Xc. The correspondence

r— F(z):: F(x)e P®
defines a multi-valued map
¢: X —Bs:={ve C'—{0}| v*Hv< 0}/C*CP?

its monodromy group is a reflection group (see the next subsection), which happens to be equal
to the congruence subgroup

T(1—w):={g€'| g=1L mod(l— w)}
of the modular group
I':={g¢ GL{(Z[w])| ¢* Hg=H),

where w=exp(27y/—1/3). The map ¢ induces an open inclusion X—B3/T(1—w) and the
isomorphism

p: X SoBy/T(1-w),
where the right-hand side denotes the Satake compactification.
Remark 6 The inverse map of @ can be expressed in terms of theta functions (see [3]).

Remark 7 By considering the double cover

*=s(s—1)(s—x)(s— x2)(s — x3)
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instead of the triple one, one gets the isomorphism
X SoR/Ty2),

where H, is the Siegel upper-half space of genus 2, He is its rational closure, and Tx(2) is the
Siegel modular group of genus 2 of level 2 (cf. [6], [10]).

5.1 Discrete groups acting on the complex 3-ball

Let <u, v>=wu*Hv be a Hermitian form on C'. The group of automorphisms of Bs is given by
U(3,1)={ge GL{C)|g*Hg=H)}. Our group T can be expressed as I'=GL4(Z[w])N U3, 1).
For v e C*, v, v>#0 and a primitive m-th root of unity &, we define the reflection with respect
to a root v and an exponent & as

_; _(-¢
rv)=1, 0. 0> w*H,

which is of order m and belongs to U(3,1). For 15 vectors

v(12)="(1,0,0,0), o(13)=%-1,1,0,1), 2(14)=*%—1,-1,0,1),
0(15)=:(1,0, —1,1), 2(16)=%(1,0,1,1), v(23)=(1,1,0,1),
v(24)="(1, —1,0,1), »(25)=%(—1,0,~1,1), (26)=*(—1,0,1,1),
v(34)="0,1,0,0), (35)=*0,—1,1,1), 2(36)="*(0, —1,—1,1),
v(45)=%(0,1,1,1),  »(46)=%(0,1, —1,1),  w(56)="%(0, 0,1, 0),

we have thirty reflections
ro§)=ro(v(if)), 7:(if)=7v(if)),
where 1<i<;<6 and p=exp(27v/—1/6). Since <v(7), v(i)>=1, we have

ro(f)eT(1-w), 7.(ij)eT.

Fact 4 ([4],[8]) (a) The monodromy group for ¢ is the congruence subgroup I'(1—w).
(b) The group T(1—w) is a reflection group generated by reflections r.(ij) with roots v(i7)(1
<i<j<6).
() The group T is generated by 7.(i,i+1)s, 1<i<5.
(c) The quotient group T'|T'(1— w) is isomorphic lo the symmetric group Se.
(d) The group T(1—w) has ten cusps, while the group T has only one cusp.
Thus we have the commutative diagram
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X = By/T(1-w)
l I
Xc/Ss = Ba/P

5.2 Discrete groups acting on the real 3-ball and the hyperbolic structure on X(6)
Let us restrict the action of the groups I’ and I'(1 — ) to the totally real locus
B: :={v € R'"—{0}| ‘vHv < 0}/R*CP}

of Bs, which is the Klein model of the 3-dimensional real hyperbolic space; its group of
automorphisms is given by O(3,1)={g€ GL«(R)|'¢Hg=H)}. So we consider the groups

G:=I'N03, 1)={ge GL(Z)|'9Hg=H},
G3):=Il—w)N0(3,1)={g€ G|g=I,mod 3}.

Proposition 1
(@) The group G is a Coxeter group generated by the four reflections with root

%=(1,0,0,0), ©»=(0,1,-1,0), »=(1,0—1,0), 2=(1,1,11).

Its graph is given as

141 U2 Vo

vs.

The Weyl chamber W is a tetrahedron (see Figure 10) with the vertex (0,1,0,1) on the bundary
and the three vertives (0,0,0,1), (1/3,1/3,1/3,1),(0,1/2,1/2,1) in the ball. In particular, G
has only one cusp.

(b) The quotient group G/G(3) is isomorphic to the symmetric group Se.

(c) Let Stab be the subgroup of G which fixes the cusp (0,1,0,1). Then

Stab{Stab N G(3) = (SsX Ss)-Z/2Z.

Since the order of this group is 72 and | Ss|=720, the group G(3) has ten cusps.

Proof.
1) Let 7o, ..., 73 be the reflections with root w, ..., v. Note the inclusion

oy vy 732 /<70, ooy ¥2 N GB)CGIG3)=G/IGNT(1—)TT/T(1—w) = S,

where <7, ...> denotes the group generated by 7, ... Put Ty :=7:*7;, Then their orders are
given as
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cusp
Figure 10: The Weyl chamber W of G

(Tor)*=(Too)* =(Ts)* = (Th2)*=( Ths)*=(Ts)*=1.
Put Tyx:=7:i7;°7.. Then T has infinite order, but
(Tos)’=1mod 3, (Tors)'=(Tor2)’=(Thzs)°=1.
The correspondence
70— <12>€34>¢56>, n~——<56>, r——<K45), r— <02
gives an isomorphism G/G(3)— Ss. In fact,
RO:=n, Rl:=Twm R0-Twi, .. R5:=T& RO-Tei
form a complete Dynkin diagram (of type As)
R0—R1—-R2—R3—R4—R5—R0.
2) The stabilizer Stab at the cusp is given by <7, 72, r3>. We have
1 —<K14>,445))> X <<23>,£36>> —— Stabmod 3 —Z/2Z — 1.

Now the proof of the proposition is immediate.

The Weyl chamber W (see Figure 10) viewed as an orbifold uniformized by (B§/G, Se)
coincides with the orbifold Xz/Ss studied in §4.2. (The apace X(6)/Ss is often called the
configuration space of non-colored six points.) Therefore we get
Proposition 2 We have the isomorphism

Xa = BE/G(3);

in particular, X has a hyperbolic structure with cusps at the ten points X&F*5™.
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We can summerize a story in this paper by the following diagram.

configuration hypergeometric hyperbolic

spaces functions geometry

X(6) = BS/T(1-w)

- /
Xx(6) = B8/G(3)
! ] real [} !
X0)/Ss = BY/G

. 4 .

Xc(6)/Ss = B§/T
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