A note on the localization of $|\overline{N}, p_n|_k$ summability of fourier series¹

S. M. Mazhar

(Received July 6, 1998 Revised December 18, 1998)

Abstract

Localization problem for absolute summability of Fourier series has been examined.

1. Let $\sum a_n$ be a given infinite series with $\{s_n\}$ as the sequence of its n-th partial sums. Let $\{p_n\}$ be a sequence of positive numbers such that $P_n = p_0 + p_1 + \cdots + p_n \longrightarrow \infty$ as $n \longrightarrow \infty$. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$ if

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |T_n - T_{n-1}|^k < \infty, \tag{1.1}$$

where

$$T_n = \frac{1}{P_v} \sum_{v=0}^n p_v s_v.$$

For k=1, the summability $|\overline{N}, p_n|_k$ reduces to the summability $|\overline{N}, p_n|$ which is the same as summability |C, 1| for $p_n=1$ and is equivalent to the summability $|R, \log n, 1|$ for $p_n=\frac{1}{n+1}$.

Let f(t) be a periodic function with period 2π and integrable (L) in $(-\pi, \pi)$ and let $f(t) \sim \frac{a_0}{2} + \sum (a_n \cos nt + b_n \sin nt) = \sum A_n(t)$. It is well known (ref. [15]) that convergence of a Fourier series at a point is a local property, that is to say however small $\delta > 0$ may be, the behaviour of $\{s_n(x)\}$, the n-th partial sum of the series $\sum A_n(x)$, depends upon the nature of the generating function in the interval $(x-\delta,x+\delta)$ only and is not affected by the values it takes outside the interval. On the other hand it is known that absolute convergence of a Fourier series is not a local property. In 1939 Bosanquet and Kestalman [9] showed that even summability |C,1| is not a local property. Subsequently Mohanty [14] observed that summability |C,1| of the series $\sum \frac{A_n(x)}{\log (n+1)}$ is not a local property. Since summability |C,1| implies summability $|R,\log n,1|$, Mohanty [14] and Izumi [10] investigated this problem for this summability and concluded that summability $|R,\log n,1|$ of a Fourier series at a point is

¹1991 Mathematical Subject Classification: 42A28, 42A45, 42A63.

This research has supported by Kuwait University Research Administration Grant No. SM-170.

not a local property. Mohanty [14] proved that the summability |R|, $\log n$, 1 of the series $\sum \frac{A_n(x)}{\log (n+1)}$ is a local property. Matsumoto [12] improved the result of Mohanty by replacing the series $\sum \frac{A_n(x)}{\log (n+1)}$ by the series $\sum \frac{A_n(x)}{(\log \log (n+1))^{1+\epsilon}}$ ($\epsilon > 0$). Bhatt [1] further generalized the above results by proving the following:

Theorem A. If $\{\lambda_n\}$ is a convex sequence (that is if $\Delta^2 \lambda_n \ge 0$, where $\Delta^2 \lambda_n = \Delta(\Delta \lambda_n)$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$) such that $\sum \frac{\lambda_n}{n} < \infty$, then the summability |R|, $\log n$, 1 of the series $\sum A_n(t)\lambda_n \log n$ at a point can be ensured by a local property.

Mishra [12] with a view to obtain a general result proved the following theorem:

Theorem B. Let $\{p_n\}$ be a sequence such that

$$P_n = O(np_n) \tag{1.2}$$

$$P_n \Delta p_n = O(p_n p_{n+1}). \tag{1.3}$$

Then the summability $|\overline{N}, p_n|$ of the series $\sum A_n(t)\lambda_n \frac{P_n}{np_n}$, where $\{\lambda_n\}$ is a convex sequence such that $\sum \frac{\lambda_n}{n} < \infty$, can be ensured by a local property.

Theorem B was extended by Bor [2] who proved that under the conditions of Theorem B the result also holds for the summability $|\overline{N}, p_n|_k \ge 1$. Recently he [7] further generalized his result in the following way:

Theorem C. Let $\{p_n\}$ and $\{\lambda_n\}$ be sequences such that

$$\Delta X_n = O\left(\frac{1}{n}\right), \quad X_n = \frac{P_n}{np_n},\tag{1.4}$$

$$\sum_{n=1}^{\infty} \frac{X_n^{k-1}(|\lambda_n|^k + |\lambda_{n+1}|^k)}{n} < \infty, \tag{1.5}$$

$$\sum_{n=1}^{\infty} (X_n^k + 1) |\Delta \lambda_n| < \infty, \tag{1.6}$$

then the summability $|\bar{N}, p_n|_k$ of the $\sum A_n(t) X_n \lambda_n$ at a point can be ensured by a local property.

It is known that if $\{\lambda_n\}$ is a convex sequence such that $\sum \frac{\lambda_n}{n} < \infty$, then $\{\lambda_n\}$ is decreasing and $\sum \log n\Delta\lambda_n < \infty$. Thus Theorem C for k=1 generalizes Theorem A and other earlier result. However for $k \ge 2$ the corresponding extension to the summability $\left| \overline{N}, \frac{1}{n+1} \right|_k$ dose not hold for the series $\sum \frac{A_n(t)}{\log (n+1)}$. The series in (1.6) becomes divergent. Thus the condition (1.6) does

not seem to be an appropriate condition. Also the condition (1.5) involves restriction on $\{|\lambda_n|\}$ and $\{|\lambda_{n+1}|\}$.

2. In what follows we prove the following theorem which generalizes Theorem C and also has a shorter proof besides being in a more compact form.

Theorem. Let $\{p_n\}$ and $\{\lambda_n\}$ be sequences such that

$$\Delta(P_{n-1}X_n) = O\left(\frac{P_n}{n}\right), \quad X_n = \frac{P_n}{np_n} \tag{2.1}$$

$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{|\lambda_n|^k}{n} < \infty, \quad k \ge 1$$
 (2.2)

$$\sum_{n=1}^{\infty} X_{n+1} |\Delta \lambda_n| < \infty, \tag{2.3}$$

then the summability $|\overline{N}, p_n|_k$ of the series $\sum A_n(t)X_n\lambda_n$ at a point can be ensured by a local property.

In view of

$$\Delta(P_{n-1}X_n) = -p_nX_n + P_n\Delta X_n$$

$$= -\frac{P_n}{n} + P_n\Delta(X_n)$$

$$= P_n\Big(\Delta X_n - \frac{1}{n}\Big),$$

it is clear that (1.4) holds if and only if (2.1) holds. Also if (1.6) holds, then $\sum |\Delta \lambda_n| < \infty$, and hence

$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| \leq \left(\sum_{n=1}^{\infty} X_n^k |\Delta \lambda_n|\right)^{\frac{1}{k}} \left(\sum_{n=1}^{\infty} |\Delta \lambda_n|\right)^{\frac{1}{k'}} < \infty$$

and in view of (1.4)

$$X_{n+1} = (X_{n+1} - X_n) + X_n$$

$$\leq |\Delta X_n| + X_n$$

$$\sum_{n=1}^{\infty} X_{n+1} |\Delta \lambda_n| = O(1) \sum_{n=1}^{\infty} \frac{|\Delta \lambda_n|}{n} + \sum_{n=1}^{\infty} X_n |\Delta \lambda_n|$$

$$= O(1).$$

Thus (1.4) and (1.6) imply (2.3).

3. Proof of The Theorem:

As mentioned in the beginig, the convergence of Fourier series at a point is a local property. Therefore in order to prove the theorem it is sufficient to prove that if $\{s_n\}$ is bounded, then under the conditions of our theorem $\sum a_n X_n \lambda_n$ is summable $|\overline{N}, p_n|_k$, $k \ge 1$.

Now using Abel's transformation

$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v} X_{v}$$

$$= \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} s_{v} \Delta(P_{v-1} \lambda_{v} X_{v}) + p_{n} \frac{s_{n}P_{n-1} \lambda_{n} X_{n}}{P_{n}P_{n-1}}$$

$$= \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} s_{v} \lambda_{v} \Delta(P_{v-1} X_{v}) + \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} s_{v} P_{v} X_{v+1} \Delta \lambda_{v} + \frac{p_{n} s_{n} \lambda_{n} X_{n}}{P_{n}}$$

$$= L_{1} + L_{2} + L_{3}, \quad \text{say}.$$

In view of Minkowski's unequality it is enough to prove that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |L_r|^k < \infty, \quad r = 1, 2, 3.$$

Now since $s_n = O(1)$, in view of (2.1),

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |L_r|^k = O(1) \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}^k} \left(\sum_{v=1}^{n-1} |\lambda_v| |\Delta(P_{v-1} X_v)| \right)^k$$

$$= O(1) \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}^k} \left(\sum_{v=1}^{n-1} |\lambda_v| |P_v \right)^k$$

$$= O(1) \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}^k} \left(\sum_{v=1}^{n-1} |\lambda_v| |X_v p_v \right)^k$$

$$= O(1) \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}^k} \left(\sum_{v=1}^{n-1} p_v |\lambda_v|^k X_v^k \right) \left(\sum_{v=1}^{n-1} p_v \right)^{k-1}$$

$$= O(1) \sum_{v=1}^{\infty} p_v |\lambda_v|^k X_v^k \sum_{n=v+1}^{\infty} \frac{p_n}{P_n P_{n-1}}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|\lambda_v|^k X_v^k}{P_v} p_v$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|X_v^{k-1}| |\lambda_v|^k}{v}$$

$$= O(1)$$

in view of (2.2). Also

$$\begin{split} &\sum_{1}^{\infty} \left(\frac{P_{n}}{p_{n}} \right)^{k-1} |L_{2}|^{k} = O(1) \sum_{\nu=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}^{k}} \left(\sum_{\nu=1}^{n-1} p_{\nu} X_{\nu+1} |\Delta \lambda_{\nu}| \right)^{k} \\ &= O(1) \sum_{\nu=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}^{k}} \left(\sum_{\nu=1}^{n-1} p_{\nu}^{k} X_{\nu+1} |\Delta \lambda_{\nu}| \right) \left(\sum_{1}^{n-1} X_{\nu+1} |\Delta \lambda_{\nu}| \right)^{k-1} \\ &= O(1) \sum_{\nu=1}^{\infty} P_{\nu}^{k} X_{\nu+1} |\Delta \lambda_{\nu}| \sum_{n=\nu+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}^{k}} \\ &= O(1) \sum_{\nu=1}^{\infty} X_{\nu+1} |\Delta \lambda_{\nu}| = O(1) \end{split}$$

in view of (2.3). Finally

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |L_3|^k = O(1) \sum_{n=1}^{\infty} \frac{p_n}{P_n} |\lambda_n|^k X_n^k$$

$$= O(1) \sum_{n=1}^{\infty} \frac{X_n^k |\lambda_n|^k}{n X_n} = O\left(\sum_{n=1}^{\infty} X_n^{k-1} \frac{|\lambda_n|^k}{n} \right)$$

$$= O(1).$$

This proves our theorem.

4. Lal [11] in 1971 and Borwein [8] in 1992 proved the following result on the summability of $|\overline{N}, p_n|$ to study localization problem for Fourier series.

Theorem D. Let the sequences $\{\lambda_n\}$ and $\{p_n\}$ satisfy the conditions

$$\sum_{n=1}^{\infty} \frac{p_n}{P_n} |\lambda_n| < \infty \tag{4.1}$$

$$\sum_{n=0}^{\infty} |\Delta \lambda_n| < \infty. \tag{4.2}$$

If $\{s_n\}$ is bounded, then the series $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n|$.

This generalizes a result of Bor [4]. Later Bor [6] extended Theorem D to the summability $|\overline{N}, p_n|_k$, $k \ge 1$ in the following way.

Theorem E. Let $\{\lambda_n\}$ and $\{p_n\}$ satisfy the condition (4.2) and

$$\sum_{n=1}^{\infty} \frac{p_n}{P_n} |\lambda_n|^k < \infty. \tag{4.3}$$

If $\{s_n\}$ is bounded, then $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n|_k$.

In view of (4.2), $\lambda_n \in B$ so $\sum \frac{|\lambda_n|^k}{P_n} p_n \le C \sum \frac{|\lambda_n| p_n}{P_n} < \infty$. Thus (4.1) and (4.2) imply (4.3).

This theorem also generalizes two previous results of Bor [3, 5]. As a cosequence of Theorem E, he deduced the following result on the local property of the summability $|\overline{N}, p_n|_k$ of the series $\sum A_n(t)\lambda_n$.

Theorem F. Under the conditions (4.2) and (4.3), the summability $|\overline{N}, p_n|_k$ of the series $\sum A_n(t)\lambda_n$, at a point, can be ensured by a local property.

It is therefore desirable to compare our theorem with Theorem F which can be restated as:

Theorem F*. If $\{\lambda_n\}$ and $\{p_n\}$ satisfy the conditions

$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{|\lambda_n|^k}{n} < \infty, \quad X_n = \frac{P_n}{np_n}, \quad k \ge 1$$

$$\tag{4.4}$$

$$\sum_{n=1}^{\infty} |\Delta(X_n \lambda_n)| < \infty, \tag{4.5}$$

then the summability $|\bar{N}, p_n|_k$ of the series $\sum A_n(t)X_n\lambda_n$ at a point can be ensured by a local property.

Choosing $X_n = \log n \log \log n$, $\lambda_n = \frac{1}{\log n (\log \log n)^{1+\varepsilon}} (0 < \varepsilon < 1)$, we observe that the conditions (4.4) and (4.5) are satisfied for $k \ge 1$ but $\Delta X_n \ne O\left(\frac{1}{n}\right)$ and $\sum X_{n+1} |\Delta \lambda_n| = \infty$. Hence (2.1) and (2.3) are not satisfied. Thus the hypotheses of Theorem F^* do not imply those of our theorem.

Again choosing $\lambda_n=1$ and $X_n=\frac{e^{(-1)^n}}{n}$ we find that

$$\Delta X_n = O\left(\frac{1}{n}\right)$$

and

$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{|\lambda_n|^k}{n} = O(1) \sum_{n=1}^{\infty} \frac{1}{n^k} < \infty \text{ if } k > 1.$$

Also $\sum X_{n+1} |\Delta \lambda_n| < \infty$. However

$$\sum_{n=1}^{\infty} |\Delta(X_n \lambda_n)| = \sum_{n=1}^{\infty} |\Delta \frac{e^{(-1)^n}}{n}| > C \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

This shows for k>1, the hypotheses of our theorem do not imply that of Theorem F^* . Hence Theorem F and our theorem are independent of each other for k>1.

References

- [1] S. N. Bhatt, An espect of local property of | R, log n, 1 | summability of the Fourier series, Proc. Nat. Inst. Sci. India, 26 (1960), 67-73.
- [2] H. Bor, Local property of $|\overline{N}, p_n|$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica, 17 (1989), 165-170.
- [3] H. Bor, A note on absolute summability factors of infinite series. SEA Bull. Math. 13 (1989), 123-126.
- [4] H. Bor, On $|\overline{N}, p_n|$ summability of some numerical series, Ann. Soc. Math. Polonae, 28 (1989), 171-174.
- [5] H. Bor, On absolute summability factors, Ann. Soc. Math. Polonae 32 (1192), 1-4.
- [6] H. Bor, A note on $|\overline{N}, p_n|_k$ summability factors, Rend. Mat. 12 Roma (1992), 937-942.
- [7] H. Bor, On the local property of $|\bar{N}, p_n|_k$ summability of the factored Fourier series, Jour. Math. Anal. Appl. 163 (1992), 220-226.
- [8] D. Borwein, The non-local nature of the summability of Fourier series by certain absolute Riesz summability methods, Proc. Amer. Math. Soc. 114 (1992), 89-94.
- [9] L. S. Bosanquet and H. Kestalman, The absolute convergence of series of integrals, Proc. London Math. Soc. 45 (1939), 88-97.
- [10] S. Izumi, Notes on Fourier analysis (viii), Local properties of Fourier series, Tohoku Math J. 1 (1949-50), 136-143.
- [11] S. N. Lal, On the absolute summability factors of infinite series, Math. Vesnik 23 (1971), 101-112.
- [12] K. Matsumoto, Local property of the summability $|R, \lambda_n|$, Tohoku Math J. 8 (1956), 114-124.
- [13] K. N. Mishra, Multipliers for $|\overline{N}, p_n|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14 (1986) 431-438.
- [14] R. Mohanty, On the summability |R|, $\log n$, 1 of a Fourier series, Jour. London Math. Soc. 25 (1950), 67-72.
- [15] E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1961.

S. M. Mazhar

Department of Mathematics & Computer Science

Kuwait University

P. O. Box 5969

13060-Safat-KUWAIT

e-mail: mazhar@math-1. sci. kuniv. edu. kw