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Abstract

Algebraic topology of local systems on the configuration space of #-points is developed
systematically, with emphasis on its simplicial aspects. Comparisons between simplicial
theory and singular theory are given. As an application, an exterior power structure of
the hypergeometric functions is derived over a rather general base ring.
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1. Hypergeometric Functions — A Motivation

1. Introduction

A hypergeometric function in the sense of K. Aomoto [3] and LM. Gel'fand [8] is defined
to be the pairing between twisted homology and twisted cohomology of the complements of
hyperplanes in a complex projective space, where arrangements of hyperplanes are regarded as
the independent variables of the hypergeometric function. So it is important to investigate the
structure of twisted homology and cohomology groups of the complements of hyperplanes in a
projective space.

In the previous paper [16], we investigated twisted de Rham cohomology groups of those
spaces and established an exterior power structure on them. In this paper we investigate
twisted simplicial (singular) homology groups of those spaces. We also discuss a reduction of
the base ring of local systems. Previously, local systems, homology and cohomology groups,
etc. were defined over the complex number field C. In this paper the base ring will be a more
general ring R. We establish an exterior power structure on the twisted homology groups over
R associated with hypergeometric functions. This result is obtained as a simple consequence
of a more general theory, i.e., algebraic topology of the configuration spaces of #-points.
Accordingly this paper aims at developing a twisted simplicial (singular) theory for the configu-
ration spaces of »-points.

In Chapter I we discuss hypergeometric functions, giving a motivation to Chapters II and III.
The exterior power structure of the twisted homology groups associated with hypergeometric
functions, which is the main result of Chapter I, is stated in Theorem 3.3.3, though its proof is
postponed until Chapter Ill, §22. Chapters II and Ill are devoted to simplicial theory and
singular theory for the configuration space of n-points, respectively. The main theorems of
Chapters II and IIl are Theorem 15.3.3 and Theorem 21.3.3, respectively.

2. Hypergeometric functions

Following [3] (8], we formulate the hypergeometric functions of several variables in a manner

suitable for our purpose.
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(2.1) A fibration 7: E - /M.

Definition 2.1.1. For a pair (m, n) of positive integers with m>#, let M=M(m+1, n+1)
denote the set of all (m+1)X(n+1) complex matrices of full rank. A matrix zE M is said to
be in general position if none of the (n+1)-minors of z vanishes. Let M=M(m+1, n+1) be
the set of all matrices in general position.

We consider C™*' and C"*' as column vector spaces with the coordinates x="‘(xo, x1, ***, Zm)
and u#="(uo, w1, *--, un), respectively. These coordinates are also regarded as the homogeneous
coordinates of the complex projective spaces P™ and P”, respectively.

Definition 2.1.2. We define a fibration z: £ - M by
E=E(m+1, n+1):={(z, u)€M xXP",; il'[:,x.-(zu)*O}

where 7: E - M is the projection onto the first component. Let E:=Em+1, n+1) be the
fiber of £ over z€M, and E=E(m+1, n+1) :=E|u be the restriction to M of the base space
of E.

Lemma 2.1.3. ([13] Proposition 2.1) #: E - M is a C* fiber bundle. In particular it is
topologically locally trivial.

(2.2) Local systems on E.
Definition 2.2.1. Let A=A(m+1, n+1) be an affine space defined by
A :={a=m, a, -, an)EC™"*; gm=—(n+1)}-
For any a€ A, let f be a multi-valued section of Z5(—n—1) defined by
f=f(z, w)=f(z, u;m+1, n+l, a) :=ilix;(zu)“‘.
We shall consider the following local systems:

Definition 2.2.2. Let = %(m+1, n+1, @) be the local system on £ such that each branch
of f determines a horizontal local section of %, and #V=%"(m+1, n+1, ) be the dual local
system of & on E. Let
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—(/z= 3;(”1‘*‘1, 7’[+1, a) = < | Ezy
K= (m+1, ntl, @): =2z

be the restriction of #, #V to the fiber E., respectively.

Remark 2.2.3. For the time being, local systems are assumed to be defined over the complex
number field C. Reduction of the base ring will be discussed in (3.2).

(2.3) Twisted homology and twisted cohomology.

Definition 2.3.1. Let &%= #%(m+1, nt+l,a)=#R(E, L):=P°1rZ be the twisted de
Rham cohomology group of (E, &) along the fibers of 7: E - M, and

H = F%R(m+1, n+1, a)= X WE, <) :=zyMH.(Ez, %)
be the twisted singular homology group of (E, <) along the fibers of 7: E - M.

There are natural projections 7: # 3 - M and w: #¢ - M.

Definition 2.3.2. The fiber Hox(E:, %) of m: # % —» M over z is the de Rham chomology
group

Ker[d: &%(E:, %) > &*YE:; %)
Im(d: &*XE,, %)~ &(E;, £)]°

H'DR( E., -%) =

where &*(E;, %) is the set of all C* differential forms on E; with values in the flat line bundle
L.. The twisted C* de Rham cohomology group formulated in the previous paper [16] is
slightly different and given by

Ker[V,: #*(E.) » &*(E))]
HAE)=T0 Ty, #(E) - #EJ]

where V,=d+df/f and &°*(E;) is the set of all C* differential forms on E.. But the canonical
isomorphism &*(E;) » &*(E., L:), u ~ fu induces an isomorphism HY(E:) - H(E: %4).
So we can identify those two de Rham groups. In this paper we consider H3:(E:, %) rather
than HYE.).

By Lemma 2.1.3., we have the following:
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Lemma 2.3.3. 7: #% > M and n: %Y - M admit natural structures of local system on M.

(2.4) Hypergeometric functions.
We denote by

HI® F W~ Cu, (c, €P)"‘fc¢

the fiberwise pairing of the twisted homology group and the twisted cohomology group, where
Cw is the constant system on M with fiber C. Let du := duoAdui A+~ Adun be the standard

volume form on C**'. The interior product of du by the Euler vector field e=3"-ou:0/du:
defines an Zen+1)-valued n-form w:=,du on P". The pull-back of w by the canonical

projection £ —» P" is an & i(n+1)-valued n-form along the fibers of 7 : E — M, which is also
denoted by w. Put ¢(2)=¢(2; m+1, n+1, @):=f(z, u; m+1, n+1, a)w. Foreach 2E&M, ¢(z)
determines an element of H(E,, ).

Definition 2.1.1. A hypergeometric function of the type (m+1, n+1, a) is a (germ of) function
of the form

F(z)=F(z; m+1, n+1, a) :=fcm<p(z),

where ¢(z2) is a horizontal local section of 7: %Y —» M. If a is not specified, then F(z) is said
to be of the type (m+1, n+1).

The following lemma is well known.

Lemma 2.4.2. The hypergeometric function F(z) is (continued to) a multi-valued holomorphic
Junction on M with regular singularities along M\M.

Remark 2.4.3. The hypergeometric functions of the type (m+1, 2) are essentially the same as
the Lauricella hypergeometric functions Fp in (m—2)-variables ([24]). The Lauricella func-
tions Fp has been investigated extensively, since they were defined in 1893, (see e.g., [41[7]).

3. Exterior power structure

(3.1) The Veronese embedding.
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Definition 3.1.1. The Veronese embedding M(m+1, 2) > M(m+1, n+1) is defined by

w=| wi wa ]~ 2= wh wFwa wiiwh - wh).

Remark 3.1.2. This is indeed an embedding, because we have
2(4, 71, ***, s)=nonzero const. }'(Iqw(z'p, ia),

where 2(%, 71, -+, ) is the (#+1)-minor of z determined by the 7th, éth, -, ixth columns of z,

w(ip, iq) being defined in a similar manner.

The pulls-back of the local systems #3(m+1, n+1; a) and #(m+1, n+1; @) on M(m+1,
n+1) by the Veronese embedding are local systems on M(m+1,2). This observation, together
with Remark 2.4.3, leads us to the following:

Problem 3.1.3. Are there any relations between the hypergeometric funtions of the type (m
+1, n+1) restricted to the Veronese image and the Lauricella hypergeometric functions F»?

(3.2) Reduction of the base ring.
So far = (@€ A) has been regarded as a local system over the complex number field C.
Now let us discuss reduction of the base ring. We put

er=exp@ry/—la)ec*, (i=0,1, -, m)
and e:=(ey, e, -, em). Since Za;=—(n+1), we have
(*) e -en=1.

If R is a subring of C such that Q[e!, et!, -+, e5']S RESC, then the local system &= % can
be defined over R. Hereafter we assume that % is defined over R. This reduction of the base
ring would allow us to study hypergeometric functions more closely.

(3.3) The exterior power structure.
Let I. be the ideal of R generated by 1—eo, 1—e), -+, 1—en, i€,

L:=3R(1—e).
=0
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Remark 3.3.1. In fact, I is generated by 1—e, 1—e,, -, 1— en, because (*) implies

To state the main theorem of Chapter I (Theorem 3.3.3), we establish some notations.
Notation 3.3.2. (1) Let
F0= 7 (m+1, n+1; a’):=zy"H.(Ez, %)

be the twisted singular cohomology group of (E, ) along the fibers 7: E = M. Note that
there is an isomorphism of C-vector spaces: #°*®@C= #%.

(2) Let H'(m+1, n+1; @) and Hy(m+1, n+1; @) be arbitrary fibers of the projections

7: #(m+1, n+l;a) > M(m+1, n+1)
n: ym+1, n+l;a) > M(m+1, n+1).

(3) Let V. be the R-module defined by

Ve:={r==4n, r, -, rm)ER'"?g:."(l'e"):O}'
Theorem 3.3.3. Assume that I,=R.

(i) There exist canonical isomorphisms of ®2-modules:

no " . _

Vero* #(m+1, nt+1; e) = {/\% (m+1,2; @) (g=mn)
(g=#n),

Vero* #Y(m+1, n+1; &) = {/\%1 (m+1,2; a) (g=n)
(g#n),

where G=(d, @, **, @n) is any element of A(m+1, 2) such that a;—&EZ for any i=0, 1, -
m.
(ii) We have

’

H(m+1, 2, @=0=HY(m+1, 2; @ (g#D),
H'(m+1, 2; @)= V.~H{(m+1, 2,8 (¢=1),



16 Katsunori Iwasaki and Michitake Kita
where the above R-isomorphisms are not canonical.
A proof of this theorem will be given in Chapter III, § 22 (cf. Theorem 22.2.3).

Remark 3.3.4. (1) The R-module structure of arbitrary fibers of

7 % m+1, nt+l;a) > M(m+1, n+1),
7: % (m+1, n+l; @) » M(im+1, n+1)

is determined by Theorem 3.3.3, since they are local systems of R-modules on M(m+1, n+1).
(2) If & is trivial, i.e., e;=1 for all i, then L,={0}*R. In this case Theorem 3.3.3 does not

hold.
Next we give two examples for which l.=R holds.

Example 3.3.5. If % is not trivial, i.e., there exists an i (1 < ¢ < m) such that e;*1, then the

ring

— F3 S B 3 1 ]
R: O[en,ez, s ens T g,

satisfies I,=R. In this case, V. is a free R-module of rank m—1, and therefore #"(m+1, =
+1; @) and #"(m+1, n+1; a) are local systems of free R-modules of rank

m—1
n
Examples 3.3.6. If there exists a polynomial p(z, x2, **, Zw) over Q such that p(ei, ez, -, en)
=0 and p(1, 1, :-+, 1)#0, then the ring

R:=Qlet!, &, -, ei']

satisfies I,=R. Indeed, for i=1, 2, ---, m, let gix1, X2, ***, Zm) be the polynomial over Q defined
by

i o, ) —p(L, 0, 1, Tenr, o0, X
i, 2o, -, Zm): o, -1 x zm)—p(1 Tivt, ', Tnm)

l'x’_]-
Since p(1, 1, ---, 1) is a nonzero rational number, we have
wii= q.-(en, e, ", em) cR.

o, 1, -, 1)
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By the definition of the g.(x1, xz, **, xn)’s, we have
(x1, 22, -, xm)=i=2m!l(x-—l)qe(xx, X2, >+, Zm)+p(1, 1, -+, 1)

Substituting x:=e; (i=1, 2, -, m) into the above equality, we obtain 3%, u(l—e))=1, ie., I
=R.

(3.4) Concluding remarks.

Roughly speaking, Theorem 3.3.3 states that the hypergeometric functions of type (m+1, =
+1) restricted to the Veronese image is the nth “exterior product” of the Lauricella hyper-
geometric functions Fp. See [11] for the exterior products of differential equations.

HGF(m+1, n+ 1)|Veronese= ;\FD

To know the global behaviour of a hypergeometric function, we have to find their mono-
dromy groups. For this it is convenient to take a point on the Veronese image as the base point
of the fundamental group. Finding the monodromy has been done by K. Matsumoto, T. Sasaki,
N. Takayama, M. Yoshida [26] and others.

II. Simplicial Local Systems

4. Categories of simplicial complexes

(4.1) The category S of simplicial complexes.
Throughout the paper, a simplicial complex is an abstract simplicial complex ([28] Chapter
3,§1). We briefly recall the category S of simplicial complexes.

Definition 4.1.1. An object of S, called a simplicial complex, is a set K, together with a set V,
such that the following conditions hold:

(1) each element of K is a nonempty finite subset of V,

(2) for any a€ V, {a})€K, and

(3) if 6€ K, then any nonempty subset of ¢ belongs to X.
An element of K is called a simplex of K. Since V is uniquely determined by X, we put V=
Vk. Anelement of Vx is called a verfex of K. A morphism f: K — L of S, called a simplicial
map, is a set-theoretical map f: Vk » Vi such that f(¢) :=(f(a); aSs}E L for any simplex o
€K.

Unless otherwise stated explicitly, the terminology concerning the simplicial complexes is
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always cited from [28].
(4.2) The locally injective category S of simplicial complexes.
A simplicial map f: K — L is said to be locally injective if, for any simplex ¢€K, the

set-theoretical map f: Vk — V. is injective on 0.

Definition 4.2.1. The locally injective category S¥ of simplicial complexes is the subcategory

of S whose morphism is a locally injective simplicial map.

(4.3) The category Sors of ordered simplicial complexes.

Definition 4.3.1. An object of Sor, called an ordered simplicial complex is a pair (K, <) such
that K is a simplicial complex and < is a partial order on Vi which induces a total order on
every simplices of X. A morphism f: (X, <) = (L, <) of Sorz is merely a simplical map f:
K - L, ie, f may not be order-preserving.

Remark 4.3.2. There is a natural forgetful functor Sors = S.

For every ordered simplicial complexes, the partial order on the vertices is always denoted
by <. Hence we use X etc. instead of (K, <) etc. to denote an ordered simplicial complex.

(4.4) The category S&..

Definition 4.4.1. Let S4. be the subcategory of S&. whose morphism is a locally injective
simplicial map.

Remark 4.4.2. There is a natural forgetful functor S{= — S* with a commutative diagram of

functors:
i subcategor
Sgrd —Supcategony Sora
forgetfull liorgetfu]
i
S subcategory

5. Categories of local systems

(5.1) The category L(K) of local systems on a simplicial complex K.
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Let R be a commutative ring with unity, K a simplicial complex. Let K be the ith
skeleton of K, i.e., K''={0€K; #0<i+1} (i=0,1,2,---). We define the category L(K) of local
systems of R-modules on X.

Definition 5.1.1. An object % ={%, &} of L{K), called a local system of R-modules on K,
is an assignment:

(1) Vk2a~ % :module,

(2) KV>{a, b} » Eoa: % - % : R-isomorphism,
such that

(i) for any a&< Vk, £aa is the identity homomorphism on %, and

(i) for any {a, b, c}EK?, & © Epa=Eca.
Let #=(%, £va} and # ={4, 754} be local systems on K. A morphism ¢={pJ}: & — .# of
L(K) is a collection of R-homomorphisms @.: % - .4, (a< Vi) such that, for any {a, b} K™,
the following diagram is commutative:

2, 4

anl l’?ba

Sy ———> My
Po

Remark 5.1.2. From conditions (i) and (ii), we can easily deduce £.s=(&ss)! for any {a, b}E
KO,

Hereafter, unless otherwise stated explicitly, any local system is a local system of R-modules,
R being fixed throughout the paper.

(5.2) The pull-back functor.
A simplicial map f: K = L induces a covariant functor /*:L(L) = L(K), called the puil-
back functor.

Definition 5.2.1. Given a local system & ={%, &} on L, put

(f*&)a= Zm, (a€ Vi),
(f*Eoa=&rrran  a, BYEK™).

Then f*& ={(f*%)a, (f*£)sa} becomes a local system on K, called the pull-back of & by f.
Given a morphism g¢={@.}: & - .# of L(L), put
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(F*@)a=0rar: (f*L)a > (f*A)a, (aE Vi)
Then f*o={(f*@)a}: f*< - f*.# becomes a morphism of L{K), called the puil-back of ¢ by
f.

(5.3) The category L of local systems.
We introduce the category L of local systems.

Definition 5.3.1. An object of L is a pair (K, %) of a simplicial complex K and a local system
% on K. A morphism of L is a pair (f, 9): (K, &) = (L, #), where f : K - L is a simplicial
map and ¢={ga} is a collection of R-homomorphisms @a: % = #a, (¢€ Vk) such that for

each {a, b} K", the following diagram is commutative:

%2

5bal lﬂf(b)f(a)

Lo —— M)
Py
This diagram is called the compatibility condition.

Remark 5.3.2. A morphism of L is nothing but a pair (f, ¢): (K, &) - (L, #), where f: K
- L is a simplicial map and ¢: % — f*.# is a morphism of L(K).

The group of all isomorphisms of (K, ) is denote by Aut(X, .¥).

Remark 5.3.3. There is a natural covariant functor L. - 8, i.e., the functor sending (X, %) to
Z.

(5.4) The locally injective category L* of local systems.
A morphism (f, @) : (K, &) = (L, -#) of L is said to be locally injective if f is locally injective,

(see (4.2)).

Definition 5.4.1. The locally injective category L¥ of simplicial complexes is the subcategory
of L whose morphisms are locally injective morphisms of L.

Remark 5.4.2. There is a natural forgetful functor L% - 8% (see Remark 5.3.2).

(5.5) The local section functor.
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Let K be a simplicial complex, & ={%, &.} a local system on K.

Definition 5.5.1. For any simplex ¢ of K, a section of & on ¢ is a map
u:03a~ ula)e %

such that, for any {a, b}€ 0, u(d)=Ewu(a). A section of & on some simplex is called a local
section of <. The set of all sections of % on ¢ is denoted by .

% admits a structure of R-modules in an obvious manner.

Definition 5.5.2. Let (f, ¢): (K, &) - (L, .#) be a morphism of L¥, i.e., a locally injective
morphism of L. For any simplex ¢ of K, let f|s: ¢ = f(0) be the restriction of f to ; |« is
bijective. An R-homomorphism @s: % = ), 1t = @s(u) is defined by (@s(2)) (@) =(@(10-1(a

> u o (flo)"Na) (aE£(0)).

This is well-defined, i.e., 9s(2)E 4. Indeed, for a, bEf(0), we have

(pa(2))(B)=(pirir-rr © u ° (f|0)')b)
=(@uin1er ° Evtarner, v © u ° (f [6)"Na)
=(%sa ° P © u © (f|e)™)a)
=(nea(@o(u)))a).

This shows that @s(%)E 4 0.

Lemma 5.5.3. Let (f, ¢): (K, &) > (L, -#) and (g, ¢): (L, #) > (M, ¥) be morbhisms of L
and put (h, x)=(g, ¥) ° (f, ¢). Then for any simplex ¢ of K,

Xo=¥r ° Po.

Proof. First note that f|s, g, and k| are bijective. For simplicity of notation, we put x
=(flo)™", y=(glse)™" and 2=(k|s)™". Since k|e=(g|s@) ° (f|s), we have 2=z °y. More-
over, for any a< k(0), we have xxa)=¥ua ° Pzwan. Hence, for any #€ % and a€#{0), we
obtain
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(xo(w)) @)=tz © u ° 2)(a)
= Yy Pzwian © # ° 2)(y(a)))
=(Yua ° oo(u) ° y)a)
=((¢r ° 9 )u)Xa).

This implies ¥o=¥s@ ° @s. Hence the lemma is established.

Definition 5.5.4. Let SL¥ be the category defined as follows: An object of SL¥ is a triple (o,
K, &), where (K, &) is an object of L* and ¢ is a simplex of K, and a morphism (0, K, &)
- (z, L, #) of SL¥ is a morphism (f, ¢): (K, &) - (L, #) of L such that f(o)=r.

Definition 5.5.5. Lemma 5.5.3 implies that the correspondence (o, K, &) = % defines a
covariant functor from SL¥ into the category of R-modules. This functor is called the local
section funclor.

Let o and t be two simplices such that rS¢. Since uE€ % is a map defined on o, one can
speak of the restriction »#(u) of u into r. By the definition of local system, it is easily seen
that 7 u)E % and »&: % — % is an R-isomorphism. Definition 5.5.2 immediately implies
the following:

Lemma 5.5.6. For any face t of o, there is a commutative diagram of R-modules:

% 4y
9| |48

G —— M.
Pr

(5.6) The categories Lo and L.
Definition 5.6.1. The categories Lors and Lér are defined obviously; an object of Lo is a pair
(K, &), where K is an ordered simplicial complex and . is a local system on K, and Léw is

the subcategory of Lo whose morphism is locally injective morphism of Lora.

Remark 5.6.2. There is a natural commutative diagram of functors:
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subcategory
L ————""> Lom

forget{ulj Jforgetful

L“ L

—_—
subcategory

6. Subdivision functor

(6.1) The subdivision functor Sd: S — Sore.
The subdivision Sd is a covariant functor from S into S.s. By composing it with the
forgetful functor Sors = S (see (4.3)), Sd is also considered as a functor from § into itself.

Definition 6.1.1. Let K be a simplicial complex. A vertex of SdX is a simplex of K, i.e., Vaax
=K. The partial order on Viax is defined by putting r<¢ if 7Co. A simplex of SdK is a
finite set {go, 01, ***, 0a} of simplices of K such that o<1 <--<g,. If f:K — L is a simplicial
map, then the simplicial map Sdf : SAK — SdL is defined by Sdf : Vsak(=K) = Vear(=L), 0~
f(o).

(6.2) The subdivision functor Sd : L* - L.
The functor Sd: S = S, extends to a covariant functor from L¥ into L.

Definition 6.2.1. Let ¥ ={%, &4} be a local system on K. Then the local system Sd < ={(Sd
P)s, (Sd&):s} on SAK is defined by

(1) for any ¢< Vaax=K, (Sd L )s= %, and

(2) for any {0, r}(SAK)?Y, (Sd€)w : % ~ % is given by

r? if o227,

&' if oSt

(SdE)rﬂ={

Definition 6.2.2. If (f, ¢): (K, &) - (L, .#) is a morphism of L*, then we put Sd(f, ¢)=(Sdf,
Sdg), where Sde={(Sd@)s} is defined by

(Sd@)e=9s: %% = Ape, (0€ VkEK).

where @5 is defined in Definition 5.5.2.

Lemma 5.5.6 and Definition 6.2.1 imply that (Sdf, Sde) is a morphism of L&%..
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7. External product functor

(7.1) The direct product functor SoraX**XSora = Sora.

Let Ky, K, -+, K» be ordered simplicial complexes. Then there exists an ordered simplicial
complex K=K X KX+ X Ky, called the direct product of Ki, Kz, -, Kx. Let us describe it
explicitly, with the following:

Notation 7.1.1. The following notations are used in Definition 7.1.3.
K, K, -+, Kn: ordered simplicial complexes,
K=K X K;X-+X Ky : to be defined in Definition 7.1.3,
a=(q, gz, ***, q»): an zn-tuple of nonnegative integers,
r=q@+g+-+an
ri=q+ @+t (1=1,2, -, n),

ji=(a, ju, -, ja): a g-tuple of integers such that
1<jn<jun<-<jg<r,
7=, ja **, jn): the map from {1, 2, ---, #} into itself defined by

) ( 1 n ntl r - rygatl =7 )
7= . , . . )
un o i Ja 7t J2er 0t Jmb " aan

&, : the symmetric group on {1, 2, -«, 7},

J(g): the set of all j’s such that /€&,

o={aw, an, -, aw}: a g-simplex of K;: such that g.o<an<-<a,
Z(g)={o=(a, 02, -, 6u) ; 0: is a gi-simplex of Ki}

Remark 7.1.2. Elementary combinatrics shows that the cardinality #/(q) of J(g) is given by

OS

AR

Definition 7.1.3. A vertex of K is an n-tuple a=(a, a, **, an), where a; is a vertex of K, (i
=1,2, -, n), i.e.,, V= Vi, X Vg, X+ X Vi, The partial order on Vi is the lexicographic order,
ie., for a=(a, az, -, as) and b={by, b2, -*-, ba), we put a< b if and only if a;=b; (j<i) and a:
< b; for some i€{1, 2, ---, n}. Sometimes (a1, az, -, ax) is denoted by a1 X a2 X+** X an.

The simplices of K : For any 6€3(q) and j&J(q) in Notation 7.1.1, we shall define a simplex
o;j> of K. For i=1,2, ---, n, we put
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(bio, bx‘l, i bir)

2 i i fo z
=(di, -+, @iy Gnr, >, Qay, Qizy **y @iz, =, Bigy ***, Bigy)-
a ¢ 2 { .

For k=0, 1, 2, ---, », we define a vertex cx of K by cx==01xX bax X - X b. Since j€J(q), we
have co<1<+-<cr in the lexicographic order. Now we define <g; />=<a, ***, Gu; 71, =+, jnd by
o; >={co, &1, **+, ¢+}. A simplex of K is, by definition, a nonempty subset of <g; 7> for some
0€3(q) and j€J(q). Clearly, the partial order on Vi induces a total order on every simplices
of K.

If fi: Ki » Ls, (i=1, 2, -+, n) are morphisms of Sor, then a morphism f=£X X fa K: » L
=L, XX Ly is defined by

flarX az X+~ X an)=fi@) X fel @z) X -+ X fu@n), (a:€ Vx).

We have obtained a covariant functor Sora X *** XS8ors = Sor, called the direct product functor.
(7.2) The external product functor Lo X+ X Liors = Lora.

Definition 7.2.1. Let (K;, %), (i=1, 2, -, n) be objects of Lo with “={(%)a;, (£:)vsas)-
Then we have a new object (K, &) with ¥ ={%, £u.} defined by
(1) K=K\ X KX+ X Ky,
(2) %=(A)as®(5)a,®  ®(Z%)a, for each a=a1 X+ X an<E Vi,
(3) for each {a, 5} K™, with a=a1X @2 X" X a» and b= b, X by X --- X b,, we define &pq: & -
% by Eva=(E)brear ®(&)vra: ® -+ ®(&n)om, an-

Definition 7.1.3 implies that if {a, b} K™, then {a:, b}E KV for each i=1, 2, -, #. S0 &ua is
well-defined. We write

(K, 2)=(K\, A)R(Kz, %)R-R(Kq, Z2)
= B(K, %)
=(KiX K XX Kp, AR BE-8 %),

(K, &) is called the external product of (K, %), (Ks, %), -+, (Kn, %).

Definition 7.2.2. Let (f;, ¢.): (K:, %) - (L., 4), (i=1, 2, --*, n) be morphisms of Lo with @;
={(pda). Put (K, #)=R%L(K; %) and (L, #)=R7%\(L:, #4). Then we have a new
morphism (f, ¢): (K, &) - (L, .#) with p={ga.} defined by

(1) f=AXLfoX X fn,
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(2) for each vertex a=ai X @ X - X an€ Vi, @a: % — 45 is defined by
¢a=(¢l)a|®(9’2)a=®"'®(¢)au-

Definitions 7.2.1 and 7.2.2 give the external product functor LioraX - X Liora = Liora.

8. Group actions on a local system

(8.1) Group actions on a simplicial complex and quotients.
Let K be a simplicial complex, and G be a group. Let AutX be the group of all simplicial
automorphisms of K.

Definition 8.1.1. A group action of G on K is a group homomorphism po: G » AutX.

If no confusion might occur, we write o(g)a=ga for g=G and a€ Vx. If G acts on K, then
we can define the guotient simplicial complex K/G.

Definition 8.1.2. A verfex of K/G is a G-orbit through a vertex of K. We have a natural
projection 7 : Vk = Vkic, a ~ [a]=Ga, where [e]=Ga is the G-orbit through a. For a set s=
{ao, @1, -+, aq} of vertices of K, we put x(s)={[ao), [@1], ***, [2¢]}. A nonempty finite subset o
of Vkc is a simplex of K/G if there exists a simplex 6 of K such that #(§)=0. Such a simplex
6 is called a simplex over .

The definition immediately implies that X/G is a simplicial complex and the projection x :
K - K/G is a simplicial map.

(8.2) Regular and quasi-regular actions.

Definition 8.2.1. An action of G on K is said to be quasi-regular if the following condition
holds: For any a€ Vi and ¢=G, if {a, ga} is a simplex of K, then ga=a.

Lemma 8.2.2. If G acts on K quasi-regularly, then the canonical projection n: K- K/G is
locally injective.

Proof. For any simplex ¢ of K, we shall show that z is injective on 6. Assume that ¢, €0
and n(a@)=n(b). Then there exists a g€G such that b=ga. Since {a, b} is a subset of ¢, {a,
b} is also a simplex of K. By quasi-regularity, we have b=ga=a. This shows that r is
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injective on ¢.

If G acts on K then G acts on the set of all simplices of K: g€ G sends a simplex o={ao, a1,
>, aq} of K into another simplex go={gao, ga, -, gas). Given a simplex ¢ of X/G, let O(o)
be the set of all simplices of K over 6. Then G acts on O(0).

Definition 8.2.3. An action of G on K is said to be regular if for any simplex o of K/G, G
acts on O(o) transtively.

Remark 8.2.4. It is easy to see that a regular action is a quasi-regular action.
(8.3) Induced action on the subdivision of a simplicial complex.

Definition 8.3.1. An action of G on K induces an action of G on the subdivision SdX in a
natural manner: GX Vax — Vi, (g, 0) = go.

Theorem 8.3.2. ([5], Chap.IIl, Proposition 1.1)
(1) If G acts on K, then G acts on SAK quasi-regularly,
) If G acts on K quasi-regularly, then G acts on SAK regularly,
(3) If G acts on K, then G acts on SA®K regularly.

(8.4) Group action on a local system.
Let (K, &) be an object of L with & ={%, &)}, and let Aut(K, &) be the group of all
automorphisms of (K, &), (see (5.3)). -

Definition 8.4.1. A group action of G on (X, &) is a group homomorphism p: G - Aut(X,
).

For each g€ G, p(g9)=(f(g), ¢(g)) with ¢(g)={pa(g))ac v is an automorphism of (K, ). For
simplicity of notation, we write f(g)=g and @.(g)=g. Then for each {a, b}E K", there is the
following commutative diagram, (see Definition 5.3.1):

Ga—T %,
Ebal lsab,aa

%—g" ob.
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(8.5) Induced action on the local sections.
Let (K, %) be an object of L, ¢ a simplex of K. An action of G on (X, &) induces an
R-isomorphism g: % - % for each ¢EG.

Definition 8.5.1. For each g€G, the R-isomorphism g: % - %, u — gu is defined by
(gu)a)=g-u(g'a), (aEgo).

It is easy to see that guE %, (cf. Definition 5.5.1).

Remark 8.5.2. For each pair (o, 7) of simplices such that r is a face of g, there is the following
commutative diagram of R-modules:

_g;,_g, .

r‘r’l 17'3‘:’

Z _g’ Zor.

(8.6) Induced action on the subdivision of a local system.

By (8.3) and (8.5), an action of G on (K, %) induces an action of G on (SdK, Sd ) naturally.
The commutative diagram in Remark 8.5.2 leads to the compatibility condition i.e., the com-
mutative diagram in Definition 5.3.1.

(8.7) A lift of a group action.

Assume that a group G acts on a simplicial complex K and let x : K = K/G be the canonical
projection. Moreover, let & be a local system on K/G. Then the pull-back functor (see (5.
2)) gives us the local system 7* % on K.

Definition8.7.1. An action of G on K lifts to an action of G on (K, n*¥). The R-
isomorphism g : (7* #)a = (7* % )sa associated with g& G is defined so as to make the diagram

(”*y)ai’ (”*y)aa

(a€ Vk, 9€G)

gy =

Lrigay,

commutative. Moreover, there is a morphism 7 :(K, #*%) - (K/G, &) of L, called the
canonical projection. This consists of a simplicial map z: K - K/G and a collection of
R-homomorphisms 7 : (7* #)a = Fua, (@€ Vi) defined by
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7=1d: (7* )2 := S%a) = S
Remark 8.7.2. (i) For any g€ G, there is a commutative diagram of morphisms of L:

(K, n* ) —L— (K, n* )

i |

(K/G, ¥)=—=(K/G, &).

(ii) If G acts on K quasi-regularly, then Lemma 8.2.2 implies that this diagram is a commutative
diagram of morphisms of L*.

Applying the local section functor (see Definition 5.5.5) to the above commutative diagram,
we obtain the following:

Remark 8.7.3. Assume that G acts on K quasi-regularly. Then for any simplex ¢ of X and
g€ G, there is a commutative diagram of R-modules:

(7* P)o—T— (1* s

71’0'1 . l Tgo

o) Zrio).

(8.8) The symmetric group acts on the exterior product.
Let (K;, ), (i=1, 2, -+, n) be objects of L, and &, be the symmetric group on {1, 2, -, n}.

Notation 8.8.1. Let r€6,. We use the following notations.

K=K\ XKy XX Kp,
=48 %HBR---R “a,
K=Ky X Key X+ X Ke(my,

tL=L:yRL R 8 Len.
Let us define an isomorphism 7:(X, %) - (K, <) of L.
Definition 8.8.2. The simplicial map r: K - K is defined by the set-theoretical map z: Vx

= Vi, X @z X" Xan = @GeyX ar@ X X arm. For each vertex a=a) X az X -+ X @, < Vi, tak-

ing into account that
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%=(A)ar®(%)ar® - O (L)am

(ry)f(a)=(‘%(l))arm ®(Z(2))am> ®® ( Z(ﬂ))ﬂrmu
we define an R-isomorphism 7: % = (t% )z by

‘[(u1® U2 B ®u,.)=uz(n® ur(2)® "‘@ur(n)-

The following special case is of particular importance:
(K, ) :=(K, K)=(Kz, B)="-=(Kn, Z).

Here we used the notation (K, &) in a different sense as before. Applying Definition 8.8.1 to
this case, we obtain the following:

Lemma 8.8.3. Let (K, &) be an object of L, and n be a positive integer. Then there is a
n-factors

. n n e e,
natural action of ©n on (K", R %), where R ¥ =LR-R L,

9. Chain complex functors

(9.1) Ordered and oriented simplices.

Definition 9.1.1. Let K be a simplicial complex, and ¢ be a ¢-simplex of K. An ordered
simplex over o is a bijective map ¢:{0, 1, 2, -, ¢} » 0. An ordered simplex of K is, by
definition, an ordered simplex over a simplex of K. If ¢ is an ordered simplex of g, then ¢ is
said to be the simplex under ¢. We put 6=<¢>.

The set of all ordered simplices of K is denoted by Kors. There is a natural forgetful map:
Kora = K, ¢ (¢>. Let Sgs1 be the symmetric group on {0, 1, 2, -+, g}. If ¢ is an ordered
simplex over a g-simplex ¢, then for any s€®&,.1, ¢+s is also an ordered simplex over 6. All
ordered simplices over ¢ are obtained in this manner.

Definition 9.1.3. Let ¢ and ¢ be ordered simplex over a g-simplex o. They are said to be
equivalent if there exists an sE%g41 such that =g o s, where g1 is the alternating subgroup
of ©¢+1. The equivalence class [¢] determined by ¢ is called the oriented simplex under ¢. An
oriented simplex over ¢ is, by definition, an oriented simplex under an ordered simplex over ¢.
An oriented simplex of K is an oriented simplex over a simplex of K.
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Over any g-simplex with g=1 there are exactly two oriented simplices. The set of all
oriented simplices of X is denoted by Kor. We have a sequence of forgetful maps: Kora = Kori
- K, ¢~ [8]~ <.

Remark 9.1.4. A group action on K lifts to Kor« and Kom, So that the forgetful maps are
equivariant with respect to these actions.

(9.2) Principal faces.
For /=0, 1, ***, ¢, let 47 be an element of &, defined by
J (0<j<9)
di(7)=1j+1 (i<j<q)
i G=q).

Note that sgn 47=(—1)"%,

Definition 9.2.1. Let ¢ be an ordered g-simplex. For i=0, 1, -+, ¢ the ith principal face 9:¢
of ¢ is the ordered (¢—1)-simplex defined by

dip=¢ o A7 restricted to {0, 1, ---, g—1}.

An ordered simplex ¢ is said to be a principal face of an ordered simplex ¢ if ¥ =0:¢ for some
i. An oriented simplex r is said to be a principal face of an oriented simplex o if there exist
ordered simplices ¢, ¢ such that r=[¥], 6=[¢] and ¢ is a principal face of ¢.

Notation 9.2.2. We write <o, if r is a principal face of o.
(9.3) The ordered chain complex.

Definition 9.3.1. Let (K, .¥) be an object of L. An ordered chain ¢ of (K, <) is a formal
sum:

c= 3 us 9,

¢€Kora

such that
(1) for each ¢E Kora, usE Zy),
(2) supp(c) is a finite set, where supp(¢)={¢E Kora; us+0}.
Let Ce(K, %)ora be the R-module of all ordered chains of (K, ).
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We call supp(c) the support of c. If supp(c) contains ordered g-simplices only, then c is
called an ordered g-chain. Let Cq(X, &)ora be the R-module of all ordered g-chains of (X, ).

Definition 9.3.2. Let ¢ be an ordered g-chain (see Definition 9.3.1). The boundary dc of ¢ is
the ordered (g—1)-chain defined by

dc= 3 g(—l)‘(mkam)‘a@,

P€Kora i=

where 24| (a0 is the restriction of u, to <d:p).

We have an R-homomorphim 3 : Ce(K, £ )ora = Ce(K, £)ora of degree —1. It is not hard
to show that 3*=0. Thus we have obtained a chain complex Ce(X, )0, called the ordered
chain complex of (K, &).

(9.4) The ordered chain complex functor Ce(*)ors: L¥ = C.

Let C be the category of chain complexes. Throughout the paper, a chain complex is a chain
complex of R-modules. The correspondence (K, &)~ Ce(K, #)ora is set up as a covariant
functor from L¥ into C. To see this we have to describe the correspondence of morphisms.
Let (f, ¢): (K, &) - (L, #) be a morphism of L¥. By Definition 5.5.2, for any simplex o of
K there is a natural R-homomorphism ¢¢: &% — .#s. We shall define the chain homomor-
phism:

CO(f: ¢)m‘d: C.(Ky y)ard d CO(L: “//)ord-

Definition 9.4.1. For any oriented chain ¢=2¢cxor ts* ¢ of (K, &), we put
CO(f. ¢)ordc=”%m¢'<v>(uv)'(f ° ¢')~
Note that if ¢:{0, 1, ---, g} = <#> is an ordered g-simplex of X, then f - ¢:{0, 1, -+, g} = {f

o ¢>=f({¢$>) is an ordered simplex of L. Moreover note that gy (2s)E Moy Hence, Co(f,
@orac is well-defined.

Remark 9.4.2. () Let (f, ¢): (K, &) > (L, -#)and (g, ¥):(L, .#) = (M, .#) be morphisms of
L¥ and put (&, x)=(g, ¥)° (f, ). Then Lemma 5.5.3 yields

Co(h, x)ard=Co(g, ¥ora © Co(f, ¢’)ard-

This shows that Ce(-)ora is indeed a functor.
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(ii) The functor Ce(*)ora is not necessarily well-defined on L.
(9.5) The subcomplex To(K, &).

Definition 9.5.1. Let Jo(X, ) be the R-submodule of Ce(K, 5 )ons generated by all elements
of the form: c=u-{¢—(sgn s)(¢ ° 5)}, where ¢ is an ordered g-simplex of K (for some g), s€
Gq+1 and u < Ly,

Lemma 9.5.2. For any generater ¢ in Definition 9.5.1, we have
q .
ac:fgo(— (et | corps) - {9:p—(sgns:)((8:) © 1)},

where s:€8,, (i=0, 1, -+, q) is defined by
si=(4N e 50 ALvsy restricted to {0, 1, -+, g—1).
This lemma implies that the boundary operator & preserves the submodule 7o(X, ). Hence
I«(K, &) is a subcomplex of Ce(K, & )ora.

(9.6) The (oriented) chain complex functor Ce:L* - C.

Definition 9.6.1. The oriented chain complex of (K, .¥) is defined by

C.(K, -g)ard

Co(K, #)= (K, 2)

Unless otherwise stated explicitly, a chain of (K, ¥) is an oriented chain of (X, ). If (¥,
@) : (K, &) - (L, -#) is a morphism of L¥, then it is easy to see that Ce(f, @)ora: Ce(K, % )ora
= Co(L, #)ora sends Ie(K, &) into Ie(L, .#). This observation gives the following:

Lemma 9.6.2. The covariant functor Ce(+)ora: L¥ = C induces a covariant functor Ce: L% - C

in a natural manner.

The functor Ce:L“ - C is called the (oriented) chain complex functor. The adjective

“oriented” will be often omitted.

Definition 9.6.3. Let K be a simplicial complex. An ordering of K is a right-inverse K -
Kora, 6 = ¢4 of the forgetful map Kore » K. Similarly an orientation of K is a right-inverse K
= Kori, 0 = & of the forgetful map Kor: = K.
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An ordering ¢~ ¢s induces an orientation K - Kor, 0~ G=[ds), called the associated

orientation.

Lemma 9.6.4. Given an ovientation K - Kon, 6 = &, then any oviented chain cE Co(K, &) is
uniquely expressed in the form

c= 2} us6 with us< %.
oeK

Definition 9.6.5. An ordered simplicial complex (X, <) admits a unique ordering K = Kors,
¢ — ¢ such that for any simplex ¢€K,

$(0)< $o(1)< $o(2) <+--.

The associated orientation ¢ = §=[ds] is called the nafural orientation of (X, <).

Remark 9.6.6. Hereafter, choosing an orientation ¢ — §, we express any oriented chain of (X,
%) as in Lemma 9.6.4, though there is no canonical choice of it. If K is an ordered simplicial
complex, then the natural orientation associated with the ordering is chosen without comment.

Moreover, for simplicity of notation, we often express an oriented chain ¢ as
c= 2 Us* O
oeX
instead of c=scx #s*d. This convention should cause no confusion.

(9.7) The incidence number.
Let ¢ and r be oriented simplices. We define the incidence number [o: r).

Definition 9.7.1. If r< o then there exist ordered simplices ¢ and ¢ such that o=[¢], r=[¥]
and ¢ is the ith principal face of ¢ for some ¢ (see Definition 9.2.1). We can show that (—1)*
is independent of the choice of ¢ and . We put [o: z]=(—1)". If r is not a principal face of
o, then we put [¢: ]=0.

Remark 9.7.2. Fix an orientation ¢ = 6. The boundary of an oriented simplex & is given by
36= 2 [d: tudl:)- 7.
TEK

(9.8) A chain homotompy equivalence.

Lemma 9.8.1. The canonical projection Ce(K, L Vora = Co(K, £) is a chain homotopy equiva-
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lence.

This lemma is proved in a similar manner as in the classical case where the local system .&
is trivial.

{9.9) The subdivision of a chain complex.
Let (K, &) be an object of L, o a g-simplex of X, & an oriented simplex over 0. We denote
by S(o) the set of all simplices r={ao, a1, -, g4} of SdK such that

00K 61K 09.1€0,=0.

For i=0(,1, ---, g—1, take an oriented simplex 4: over 6;. By convention we put 6,=&. Noting
that IT-1[6: : 6:-1] depends only on 7 and ¢, we introduce the following:

Notation 9.9.1.

e(5; D=(-1)*F" ;_Ii[&- 2 i),

For any #< % we define a local section Sd%u€(Sd ), by
(Sd%u)o)=7r8(u), (i=0,1, -, q).

Definition 9.9.2. A a natural chain map, called the subdivision

Sd: Ce(K, &)~ Ce(SdK, Sd%), wu-6+~ Sd(u-é),
is defined by

Sd(u-6)=_3 e(4; r (Sdfu)- 7,

T€S8(0)
where f is the natural orientation of r (see Definition 9.6.5).

Composing the subdivision functor Sd: L — L& (see Definitions 6.2.1 and 6.2.2) with the

chain complex functor Ce: L%y - C, we obtain a covariant functor Ce° Sd: L% - C.

Lemma 9.9.3. The subdivision Sd in Definition 9.9.2 is a natural- transformation from the chain
complex functor Ce:L¥ = C fto the functor Ce° Sd: L% - C.
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Lerama 9.9.4. The subdivision Sd: Ce(K, #) » Ce(SdK, SAZ) is a chain homotopy equiva-

lence.

As in the classical case where the local system & is trivial, we can apply the method of
acyclic models to prove this lemma. So the proof is omitted.

10. Homology functor

(10.1) The (oriented) homology functor He:L* - M.
Let M be the category of graded R-modules.

Definition 10.1.1. Composing the homology functor with the oriented chain complex functor,
we have a covariant functor He: LY = M, called the (oriented) homology functor.

The adjective “oriented” will be often omitted in what follows.

Remark 10.1.2. The ordered homology functor He(*)ora:L* = M is defined in a similar
manner by composing the homology functor with the ordered chain complex functor. How-
ever, Lemma 9.8.1 implies that the canonical projection Ce(K, #)ora = Ce(K, &) induces an
isomorphism He(K, %)ora = He(K, &). So it is not necessary to consider the ordered
homology functor.

Remark 10.1.3. Another kind of homology functor — the singular homology functor — will be
considered in (18.3). In order to distinguish these two homology functors, the present one is
called the simplicial homology functor and is denoted by H&™ : L* - M.

(10.2) The subdivision isomorphism.
Lemmas 9.9.3 and 9.9.4 immediately imply the following:

Theorem 10.2.1. For any object (K, &) of LY, there exists an isomorphism of R-modules: Sd:
Ho(K, ) » Ho(SAK, Sd ). For any morphism (f, @) : (K, &) - (L, #) of LY, there exists
a commutative diagram of R-modules:

Ho(K, ) S, Ho(sdk, sa)
He(/, )| |He(sdr, Sde)
He(L, .7) =i He(SdL, Sd.#).
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11. Group actions on a chain complex

(11.1) The induced action on a chain complex.

Let (K, &) be an object of L% and assume that a group G acts on (K, &). Then each
element g of G induces an automorphism of (X, &). Applying the chain complex functor Ce:
L* > C, we obtain an action of G on the chain complex Ce(K, #). This is called the induced
action on Ce(K, ). Explicitly the action of g€ G on Ce(K, %) is given by gDsex ss0=
Sloex(gus)+(go), where gus is defined in Definition 8.5.1.

Notation 11.1.1. Ce(K, ¥)°={c€Ce(K, &); gc=c (VgEG)}.

(11.2) The canonical projection.
Assume that a group G acts on a simplicial complex K. Let & be a local system on K/G.
Then there is the canonical projection 7 : (K, 7* %) = (K/G, <), (see Definition 8.7.1).

Definition 11.2.1. If G acts on K quasi-regularly, then Lemma 8.2.2 implies that 7 : (K, 7* %)
~ (K/G, &) is a locally injective morphism, i.e. a morphism of L¥. Hence, applying the chain
complex functor Ce: L% — C, we have a chain homomorphism 7 : Ce(K, 7* %) » Ce(K/G, &).
This is also called the canonical projection.

Remark 11.2.2. The canonical projection is not necessarily well-defined, unless the action of
G on K is quasi-regular.

(11.3) The pull-back of a local section.
In the situation of (11.2), let ¢ be a simplex of K/G, and let € %;. Consider the pull-back
7*u of u by x, which is defined by

t*u=uon: 1 (0)Dar~ u(n(a))€ Lua=(1*%)a.

Let S(o) be the set of all simplices 6€ K such that 7(6)=¢. Given §€S5(0), let 7*u| ¢ be the
restriction of #*« to 4.

Lemma 11.3.1. For any 6€S(0), n*ul|sS(x* ¥)s.
Proof. For any e, bE 4, we have

(7*&)va(n*u | 6)(a) = Exmrnanu( (@)= u(x(b)) =(x*u| ) b).

This shows that 7*u|sE(x* £ )s.
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Lemma 11.3.2. For any 6€S(0) and hEG, h-(n*u|é)=n*u|ns.
Proof. For any a<€ hd, we have

(h-(r*u| ) @) =(r*u|s)(h ' @) =u(a(h™' a))=u(n(a))=(x*u| xs)a).

This establishes the lemma.

(11.4) The transfer.
Assume that a group G acts on a simplicial complex K. Let & be a local system of
R-modules on X/G, R being a commutative ring with unity. We make the following:

Assumption 11.4.1.
(1) G is a finite group,
(2) G acts on K regularly, and
(3) the order #G of G is a unit element of R.

Composing the canonical projection 7 : Ce(K, 7* %) » Ce(K/G, ) with the inclusion map
Co(K, n*Z)° > Co(K, n*<), we obtain a natural chain map:

T C.(K, ﬂ'*y)c nd C.(K/G, y)

This is an R-isomorphism. To see this we construct its inverse chain map, called the transfer.

Definition 11.4.2. Under Assumption 11.3.1, the transter
tf: Co(K/G, &) - C.(K, 7[*-7)6
is defined by

tf(u- o) =#%gga(n*u | o6)+(gd),

where ¢ is a simplex of K/G, u€ % and § is an element of O(g).

By assumption, G acts on K regularly, i.e., G acts on O(o) transtively (see Definition 8.2.3).
So this definition is well-defined, i.e., independent of the choice of 6& O(s). Moreover we have
to show that tf is a map into Ce(K, 7* ). Indeed we have the following:

Lemma 11.4.3. tf(x-0)E Ce(X, 7* <)°.
Proof. For any € G, Lemma 11.3.2 implies
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hetf(u- a)— Zh(z u| g6)* (hg&)— Z(ir ) 1g)+ (hgd)=tf(u- o).

This establishes the lemma.

Theorem 11.4.4. Under Assumption 11.4.1, the chain map
7: Co(K, n*2)¢ > Co(K/G, ¥)
is an R-isomorphism and its inverse is given by the transfer
tf: Co(K/G, Z) = Ce(K, n* Z)C.

Proof. 1t is easy to show x o tf=id. We shall show tfe #=id. Let c=¢ex ws*0 be any
element of Ce(K, 7* £)°, where us<S(n*<)s. Note that 7*ne(us)|o=us, where 7s : (7* £)s
- Zuo is defined in Lemma 5.5.2 (see also Remark 8.7.3). We have 7(c)=2¢ex 7s{tts) 7(0)
and hence

(tf * m)(c)= 3 3¢ B (7" 7e(u) ) (90)

1
#Gg Gdek

?%?9 Goe K(gud)(go)

2 g(r*7s{us)|s)(g6)  (by Lemma 11.3.2)

#%’ 92 us* 0o
1

€G deK

This shows tf ¢ #=id and establishes the lemma.

Corollary 11.4.5. Under Assumption 11.4.1, the transfer induces an isomorphism of R-modules:
tf: Ho(K/G, &) » He(Co(K, n*£)°).

12. Invariant functor

(12.1) The invariant functor.

Definition 12.1.1. We define the category C% An object of C¢ is an object of C together with
an action of G on it. A morphism of C¢ is a morphism of C which commutes with the actions
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of G. The category MF is defined exactly in the same manner.

Definition 12.1.2. We define the G-invariant functor I¢:C°¢ - C: For an object Ce of C°,
I5(Ce)=C¢ is given by C§={cECe;g9c=c (VgEG)}. For a morphism f: Ce = De of C,
IS(f)=/¢ is the restriction of f into C§, i.e., f6=f|cs. The G-invariant functor I°:M® - M

is defined exactly in the same manner.

(12.2) The first cohomology of a group.

The first cohomology of the group G will be used later. So we shall recall it briefly. For
details of the group cohomology, see [15]. Let R[G] be the group ring of G over R, A an
R[G]-module.

Definition 12.2.1.

CYG, A)={f: G -~ A;maps},
ZNG, A)={FfeCNG, A); of=0},
BY(G, A)={feCG, A); Ja< A such that f=4da},

where 8f : GX G - A is defined by (6f)(a1, &2)=a1f(®)— F(e192) + f(@1), and da is an element of
CY(G, A) defined by (8/(g)=(¢—1)a.

ZNG, A)
BY(G, A)°

HY(G, A)=
The following cohomology vanishing is a key to the main result (Theorem 12.3.2) in this
section.

Lemma 12.2.2. If the ovder #G of G is a unit of R, then H(G, A)=0.

(12.3) Commutativity of the homology functor and the invariant functor.

Let Ce be an object of C°. The inclusion map 7 : C§= Ce induces an R-homomorphism ix=
Heo(7): Ho(CS) » He(Cs). The image of i« is clearly contained in the G-invariant component
He(Co)® of He(Cs). Hence we have an R-homomorphism: ix: He(C§) » He(Ce)®. Note that
ix is thought of as a natural transformation ix : He © I¢ = I° o He, where Hae is the homology
functor.

Lemma 12.3.1. If #G is a unit of R, then ix=(ix)c.: He(C8) = He(Ce)° is injective.
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Proof. We define an R-homomorphism gz : Ce = C§ by

u(c)= #IG 2gc,  (c€Cd).

€G

Clearly we have # ° i=id. Applying the homology functor, we obtain us ° ix=id : He(CE) -
He(Co)®. This implies that 7, is injective and g« is the left-inverse of 7.

Theorem 12.3.2. If #G is a unit of R, then ix=(isx)ce: He(CS) » He(Co)¢ is an R-
isomorphism, i.e., ix: He ° I¢ ~ I® o Heq is a natural equivalence of funciors.

Proof. By Lemma 12.3.1, it is sufficient to prove that iy is surjective. Let Z; and By be the
g-cycles of Ce and the g-boundaries of Ce, respectively. They are R[G]-submodules of C..
For 2E€Z,, the homology class in H(Cs) represented by z is denoted by [z). For z€Z¢, the
homology class in Ho(CS) represented by z is denoted by [[2]]. For any #2E Ho(Ce)*C Ho(Cs),
take a representative zEZ, such that 2=[z]. Since % is G-invariant, we have [(g—1)z]=(g
—1)[zl=(g—1)%=0, i.e., (g9—1)zE B, for any g=G.

The boundary operator 3 : Cq+1 = Bq induces an R-isomorphism 8: A - Bg, where A= Cq41/
Zqes1. Note that A is an R[G)-module. Since (¢g—1)zE B, for any ¢G and 3: A - B, is
isomorphism, there exists a unique f&€ C'(G, A) such that (g—1)z=2af(g) for any g€G. We
shall show f€Z'(G, A). For any g, € G, we have (6 )(g1, g)=0./(g2)— F(q9)+f(@)EA.
Applying the boundary operator @ to this equation, we obtain

o g, g2)=10f(g2)— 0f (gr1g2) + 3 ()
=glg—1)z—(q1g—Dz+(g1—1)z
={(g19:— 91)— (12— 1) +{(g —1)}2=0.

Since 0: A = By is injective, we obtain (8f)(g, g)=0, i.e., fEZYG, A). Since #G is assumed
to be a unit of R, Lemma 12.2.2 implies H(G, A)=0, i.e., Z'(G, A)=B'G, A). Hence there
exists an a€ A such that f=da, i.e.,, f(g)=(8a)(g)=(9—1)a for any ¢ G. If we put w=2z—29a,
then z&€Z§. Indeed, we have (g—1)w=(g—1)(z—da)=38f(g)—d(g—1)a=0. If we put #'=
[[w]l€ H(CS), then iu(W)=[w]=4k. This implies that ix : H,(C§) » H.(Ce)® is surjective.

From Corollary 11.4.5 and Theorem 12.3.2, we immediately obtain the following:

Corollary 12.3.3. Under Assumption 11.4.1, there exists an isomorphism of R-modules: tf:
H.(K/G, —?) nd H.(K, 7(*-?))0.
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This isomorphism is also called the fransfer.

13. The chain complex of external products

Throughout this section, we use Notations 7.1.1 and 8.8.1.

(13.1) The cross product.
Let (K:, %), (i=1, 2, ---, n) be objects of Lor. We put

K:lesz...me
Y=%R%R--BY, (see Notation 8.8.1).

Let g=(q, **, qa) be a multi-index, and let 6=(a, 02, -+, G2)EZ(g), and j=(h, jz, -+, IEJ(q).
Recall that <o; /> is a simplex of K (see Notation 7.1.1 and Definition 7.1.3).

Definition 13.1.1. For u.€ %, (i=1, 2, -+, »), the local section u#a:sE L¢a:s» is defined by

o (@)= (@) ® uxaz) ® - ® un(an)

E(-Z)a|®(-%)az®"’®(—%t)an=-%.

where a=a1X - X 2. E40; /.

Definition 13.1.2. The cross product

C.(Kh z)®"'®C.(Kn, ZI) - C.(Ky '90)

U 01® Q@ Un*On - U1* 1 X X Un* On

is a chain map defined by w1+ 01X+ X tn* 6 =2jc sa)(88N 7)thcs; 5 {T; 1.

"Lemma 13.1.3. The cross product Ce(Ki, £)®®Ce(Kn, %)~ Co(K, &) is a chain
homotopy equivalence.

We apply the method of acyclic models to prove this lemma, just as in the classical case
where the local systems are trivial.

(13.2) Ga-equivariance of the cross product.

Definition 13.2.1. (i) For a weight g=(q, ---, gx), put
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Az, -y Ty @, qn) =L (zi— )",
(ii) For rE&,, the weighted signature of r with weight g is the number sgn,r&{*1} defined by
Axeay, Tr@, ) Teom; Gry, Qe **5 Gron)
=(Sgnqt')d(l'l, x2| Tty x"; qu qu ) q")‘
Definition 13.2.2. For any rE&,, we define a chain isomorphism:
7: Co(Ki, A)® @ Co(Kn, %)

= Co(Krty, %)@+ ® ColKrimr, Loom)

by z'(ux’0|®"'® un'o‘,.)=(sgnqz')(uzu)'0'rm®m@ ur(n)°0'r(n)), where G=(01, ey O'n)GS(q) and u;

E-%iy (1=1, Y n)

Given rE6,, we put

K=K X Key X - X Ke(my,
L =%m8 LR 8 %m, (see Notation 8.8.1).

Recall that there is an isomorphism 7: (X, %) - (tK, t%) of Lo (see Definition 8.8.2). By
Definitions 13.1.2 and 13.2.2, we can easily show the following:
Lemma 13.2.3. For any tE8,, there is a commulative diagram of chain complexes:

duct
Co(Ki, K)®®ColKn, %)  ——2 POTC, (K, #)

f |7

Co(Key, L)) ® - ® Co(Krtmy, Litmy) Ce(zK, 7).

cross product

This shows that the cross product is equivariant with respect to the “action” of &, on the
exterior product of (Ki, &), -+, (Kn, ).

(13.3) An &-equivariant isomorphism for homology groups.
Applying the homology functor to the diagram in Lemma 13.2.3 and using Lemma 13.1.3, we
obtain the following:
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Theorem 13.3.1. There is a commutative diagram of R-isomorphisms:

cross product
Ho(Co(Ky, K)®®ColKn, %) ——P00, Hy(K, &)

i E

Ho(Co(K:qy, L)@+ ® Co(Keimy, Z2m)) He(tK, t¥)
cross product
The special case where (K, &) :=(K,, K)==(K, %), (cf. Lemma 8.8.3) is of particular

importance in what follows. The group &, acts on the chain complexes ® Ce(K, &), Co(K™,
® %), and therefore on the homology groups Ho(® Co(K, £)), He(K™, ®.%). Theorem 13.3.
1 immediately implies the following:

Corollary 13.3.2. Let (X, #) be an object of L. Then for any positive integer %, the cross
product He(® Ce(K, &) » He(K", ® %) is an Gn-equivariant R-isomorphism.

14. Application of the Kiinneth formula

(14.1) The Kiinneth formula.

In standard texts on algebraic topology, the Kiinneth formula is formulated over a principal
ideal domain (PID). In this paper, however, since we are concerned with local systems over a
commutative ring R which is not necessarily a PID, we need a slight modification of the
Kiinneth formula. What we need here is the following:

Theorem 14.1.1. Let Ce and De be chain complexes of R-modules. Assume that the cycles
Zo(Co) and the boundaries Be(Ce) of Ce are flat R-modules. Then there exists a natural short
exact sequence of R-modules:

0~ @ Hy(C)®Hy(De) > HACo® D)

- & TOl'f(Hp(Co), Hq(DO)) -0,
p+q=r-1
wheve ¢ is induced from the natural map Zp(Ce)® Zo(De) = Zpso(Ce® De).

Proof. Essentially this theorem was already established in the proof of Theorem V.2.1 in [15].
Consider the following two conditions:

(A) Ze(Co) and Be(Ce) are flat,

(B) R is a PID and C is flat.
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Hilton and Stammbach [15]proved Theorem 14.1.1 under assumption (B). By a careful reading
of their proof, however, one observes that condition (A) is sufficient to establish the theorem.
Indeed, since any submodule of a flat module over a PID is again flat, conditon (B) implies
condition (A), and they needed only the latter condition in their proof.

The naturality of the isomorphism ¢ plays a crucial role when one considers group actions.
As a corollary of Theorem 14.1.1, we obtain

Corollary 14.1.2. If He(Ce) and Ze(Ce) are flat R-modules, then there exists a natural isomor-
bhism of R-modules:

p+eq)= er( Co)® Ho(De) 5 H(Ce® Do),

where § is induced from the natural map Zp(Ce)® Zo(De) = Zpyo( Co® Da).

Proof. By Lemma 14.1.3 below, the assumption of the corollary implies that Be(Ca) is also flat.
Since He(Co) is flat, we have Torf(Hyx(Ce), Ho(Ds))=0. So Theorem 14.1.1 implies Corollary
14.1.2 immediately.

Lemma 14.1.3. Let A, B and C be R-modules and assume that C is flat. If there exists an
exact sequence 0 > A -> B -~ C - 0 of R-modules, then A is flat if and only if B is flal.

(14.2) An application of the Ktinneth formula.
As an application of the Kiinneth formula, we obtain the following:

Theorem 14.2.1. Let Ce be a chain complex of R-modules such that
(1) Ze(Ce) is a flat R-module,
(2) H(Ce)=0 if q*7, and
(3) H-(Co) is a flat R-module.

Then we have

() Ho® Co)=0 if g+=nr, and
(ii) There exists a canonical isomorphism of R-modules:

éHr(C.) _;’ f]nf‘(é C.)r

where ¢ is induced from the natural map & Z,(Ce) = Zur(® Co).



46 Katsunori Iwasaki and Michitake Kita

(i) This isomorphism is natural, i.e., if Ce is another chain complex satisfying the conditions
(1)—3) and f: Ce— Ci is a chain homomorphism, then there exists a commutative diagram of
R-modules:

& HACo)—2— Hu(Co)
BH5)| | )
& H,(C3) — H,.(® Ca).

Remark 14.2.2. Since the natural map ®Z.(Ce) - Zur(® Ce) is Gn-equivariant, the isomor-
phism ¢ is also ©u-equivariant.

Proof of Theorem 14.2.1. We show this theorem by induction on #. If =1, there is nothing
to show. Assume that the theorem holds for n—1 with »=2. Putting D.="‘§. Ce, we apply
Corollary 14.1.2 to obtain an R-isomorphism

.8 H{C)®H(® Co) 5 Ha(Co).
Since, by assumption, Hx(Ce)=0 (p+7), we have an R-isomorphism

(%)m,n H{(Co)® Hu—r("® Co) 25 Ho(& Co),

where 7m » is induced from the natural map Z,(Ce)® Zn_r('® Ce) » Zn(® Cs). If m+nr, then
by induction hypothesis, Hm—r(nél Ce)=0. S0 (*)m,» implies Hn(® Co)=0. Next consider the
R-homomorphism & H{(Co) =2 Hypy(® Ca), where & is induced from the natural map &Z,(Co)
- Zuy(®Cs). Then there exists a commutative diagram of R-modules:

LI H/(Co)® 1‘1"(n-nr(né’l Co)

l fMnr,n

® HACo) T Hur(® Ca).

& H.(Cs)

By induction hypothesis, &1 is an R-isomorphism. Since Hy(Ces) is assumed to be flat, 1® &
is also an R-isomorphism. Moreover, by (*)ar.n, #nr.» is an R-isomorphism. Hence the
commutative diagram implies that ¢, is also an R-isomorphism. This completes the induction

argument.
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15. Twisted homology of the configuration space

(15.1) The configuration space of z-points.

Let K be an ordered simplicial complex, and & be a local system of R-modules on X. Let n
be a natural number fixed throughout. By Theorem 8.3.2,(3), the natural action of &, on K"
induces a regular action of &, on SA? K" :=Sd*(K™).

Definition 15.1.1. The quotient simplicial complex K, :=Sd?K"/@, is called the configuration
space of n-points in K. Let n:Sd*K™ » K, denote the canonical projection.

Remark 15.1.2. By Lemma 8.2.2, x is a morphism of L%.. The regularity of the Gy-action
will be essential in what follows. So we shall consider Sd*K"/®, instead of K*/&,. The
reason for this will be clear in § 21.

(15.2) Twisted homology groups of the configuration space of #-points.

Let & and .# be local systems (of R-modules) on K and on K, respectively. Applying the
external product functor (7.2) and the subdivision functor (6.2), we obtain a local system Sd?®
L on S#K". We make the following:

Assumption 15.2.1.
(1) ! is a unit element of R, i.e., n! ER*.
@) * 4 =SIr .

Theorem 15.2.2. Under Assumption 15.2.1, there exists a natural isomorphism of R-modules:
Ho(Ky, #) ~ Ho(® Co(K, 2))*".

Proof. If we put G=6, and we replace K by Sd’K”, then Assumption 15.2.1,(1) implies
Assumption 11.4.1. So we can apply Corollary 12.3.3 to obtain an isomorphism:

Ho(Kn, #) b Ho(SEK™, 7[*.//)6"
=Ho(S®K™, S&*® )*". (Assumption 15.2.1,(2))
By Theorem 10.2.1, we have an &,-equivariant isomorphism

Sd?: He(K", ® %) » He(SEK", SR &),
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which induces an isomorphism
(S@)™ : Ho(SAK™, SA?& £)°" - He(K", & &)™

Hence we obtain an isomorphism He(Kn, #) = He(K", ® #)°". Moreover, by Corollary 13.
3.2, we have an isomorphism

cross product
—_—m

He(® Co(K, £))°" Heo(K", & )%,

Combining these isomorphisms, we obtain the desired isomorphism.

(15.3) The case of pure homology.

If the homology group He(K, %) is pure and some additional conditions are satisfied, then
we can get more detailed result for the homology group He(Kn, -#), which we shall state in
what follows. In addition to Assumption 15.2.1, we make the following:

Assumption 15.3.1. (cf. Assumption of Theorem 14.2.1)
(1) Ze(K, &) is a flat R-module,
(2) H (K, #)=0if g=+r, and
(3) H(K, %) is a flat R-module.

Notation 15.3.2. Given an R-module A, let /n\A and C?)A denote the nth exterior and
symmetric power module of A, respectively. They are well-defined, since #! is assumed to be
a unit element of R.

Theorem 15.3.3. Under Assumptions 15.2.1 and 15.3.1, we have
H{K,, #)=0 (q%rn)

and a canonical isomorphism of R-modules:

AHAK, &) (r: odd),
Hnr(Kn, v//) ==

éHr(K, £y (r: even).

Proof. If g#+nr, Theorem 14.2.1,(i) implies that Hy(® Co(K, £))=0, and hence Ho(® Co(XK,
£))*"=0. By using Theorem 15.2.2, we obtain Hy(Kx, #)=0. Next consider the case g=n7.
By Theorem 14.2.1,(ii) and Remark 14.2.2, we have an &,-equivariant isomorphism ® H (K, %)
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~ Hu(& Co(K, £)), which induces an isomorphism {& HK, £)J°" = Ho (& Co(K, £))*".
By Theorem 15.2.2, we obtain an isomorphism Hur(Kn, .#) = {® HAK, £)}°". N oting that

: RHAK, 5 +0dd),
{9 HAK, )= NHAK, &) (r:0dd)

OHAK , %) (r:even),

we have obtained the desired isomorphism.

16. Local systems on a bouquet

We consider local systems on a bouquet. They are simple but quite important examples to
which our twisted simplicial theory applies. These examples will play an important role in
application to hypergeometric functions (cf. § 22).

(16.1) Bouquets.
Definition 16.1.1. The m-bouquet B is a 1-dimensional ordered simplicial complex whose

vertices are ai, ***, @m, b1, ***, bm, ¢, and whose ordered 1-simplices are (¢, a:), (a:, b:), (b:, ¢),
(¢=1, 2, ++, m).
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bz az

as b

bs ap

by as

as bs

Figure 1. Bouquet Bn(m=6)

Remark 16.1.2. The topological realization | Bn| of Bn is homotopic to C— {un, w, ***, wn),
where wi, ws, -+, wn, are distinct m-points in C. This simple fact is essential in application to
hypergeometric functions (cf.(22.2)).

(16.2) Local systems on a bouquet.
Let R be a commutative ring with unity, and let e, ez, **-, enER*. We put e=(e, ez, ***, €n).

Let K=Ba be the m-bouquet.

Definition 16.2.1. The local sytem & =% on K is defined by %,= %,= %=R, and
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Saic: Lo — “a, 8ai,c=idg,
gbl- ar: -(fat - 5,‘3‘, gb:. L‘i=idR;
Ceooi: Sy = £, & or=eiidg.

(16.3) The chain complex of (K, ).
Let us describe the chain complex Ce(K, ). First,

CdK, #)=0 (g#0, 1),
Co K, -(f)= @?’=|(Ra.~EBRb.~)€BRc,
C(K, #)=o%,{R(c, a;)® R(a:, b:)®R(b;, ¢)}.

The boundary operator 3: C\(K, &) - Co(K, &) is given by
ag:{ui((:, a;)+vdai, b:)+wdb:, c)}
=§{(u.~— viai+{vi—wi) b+ igml(e:wi— us)c,

where w:, v;, w;€R. To describe B(K, &) and Zi(K, &), we put

o2} :=(C’ ai)+(ai) bi)+(bir C)) (i=1l 2’ ) m)'
Definition 16.3.1. Let ¢: R™ - R be an R-homomorphism defined by

é:u="Cur, 1z, -, um)*-'gll(l—ei)u.-.

A straightforward computation gives the following:
Lemma 16.3.2. (i) Any element of BK, &) is of the form:
ig‘i(via;+ wib,»)+i_£‘,l{(ei—l)uf—e;(v;+ w)lc  with wui, vi, wiER.
(ii) Any element of Z\(K, ) is of the form:

mn
g}lu:as with u="*(u1, uz, -, un)EKer ¢.

(16.4) The homology groups of (K, ).

51
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Lemma 16.4.1. Hy(K, <)=0 if and only if ¢:R™ - R is surjective.

Proof. HfK, <)=0if and only if Bo(K, #)=Co(K, &). By Lemma 16.3.2,(i) this is the case
if and only if for any v, w:, #€ER (i=1, 2, ---, m), there exist ;=R (=1, 2, ---, m) such that
2 {(es—1)ui— cv:+w:)}=u. This is equivalent to say that ¢ is surjective.

By Lemma 16.3.2,(ii), we have an R-isomorphism Hi\(K, £)=Z\(K, ¥)~Ker ¢.

Proposition 16.4.2. If ¢:R™ — R is surjective, then

(1) Ze(K, &) is a flat R-module,

(2) H(K, Z)=0if q+*1, and

3) Hi(K, &) is a flat R-module.
Proof. Z(K, &)=H(K, £)=0 if ¢+0, 1. By Lemma 16.4.1, H{K, #)=0. Moreover,
Zo(K, £)=CoK, &) is free, and hence flat. So it suffices to show that Fi(K, &¥)=Z(K, &)
~Ker ¢ is flat. Since ¢ is assumed to be surjective, there exists a #°€R™ such that ¢(«%)=
1. There exists a direct sum decomposition of R-modules: R™=Ker ¢® Ru°, where the projec-
tion ¢ : R™ - Ker ¢ is given by ¥{u)=u—¢(u)u’. Hence Ker ¢ is a direct summand of the
free module R™. So Ker ¢ is projective, and hence flat.

(16.5) The configuration space of »-points in a bouquet.

As before, consider K=B» and ¥=% with e=(e, e, ---, en), where the e’s are unit
elements of R. Let K, be the configuration space of »-points in K, x:Sd*K" » K" the
canonical projection, and .# a local system on K,. We shall compute the homology groups of
(K, -#) under certain conditions. To state the result we introduce the following:

Notation 16.5.1. (cf.(3.3)) Let I be the ideal of R generated by 1—ey, 1—e3, -, 1 —en, ie., I.:
=3",R(1—e;). Let V. be the R-module defined by

Vor={u=(s, us, -+, um)ER"; Rus(1-e:)=0).

Theorem 16.5.2. Assume that
(1) n'ER*,
(2) I.=R, and
@) n* 4 =SP8 Z.

Then there exists a canonical isomorphism of R-modules:



Twisted Homology and Hypergeometric Functions 53

0 (g+n),
Hy(K,, //)2{ n
NH(K, .7) (q=n),

where H\(K, &) is R-isomorphic to V..
Proof. The assumption of the theorem and Proposition 16.4.2 imply Assumptions 15.2.1 and 15.
3.1 (with »=1). So we can apply Theorem 15.3.3 to establish the theorem.

IlIl. Singular Local Systems

In Chapter Il we consider a twisted singular homology group and establish a comparison
theorem between it and a twisted simplicial homology group discussed in Chapters I and II.
The singular theory fits into the de Rham theory (see [16]), while the simplicial theory is
convenient in explicit computation.

17. Category of singular local systems

(17.1) The category L(X) of local systems on a topological space X.

As to singular local systems, we follow the exposition of [12] (§6.1). Let IT:T — G be the
fundamental groupoid functor, where T is the category of topological spaces and G is the
category of groupoids (see e.g. [14]). Let M be the category of R-modules. For any
topological space X, we define the category L(X) of singular local systems of R-modules on X.

Definition 17.1.1. An object of L(X), called a singular local system on X, is a covariant
functor from JIX into M. For any objects &, .# of L(X), a morphism from < into .# is-a
natural transformation from % into .#.

Remark 17.1.2. An object & of L(X) is a collection of R-modules % (p< X) together with
R-isomorphisms {(7): % — %, where 7 is a homotopy class of curves in X with initial point
p and terminal point g. In this situation, we often write #=(%, £). For any objects ¥ =(%,
&), # =(4, 7) of L{X), a morphism ¢={gs} : & - .# is a collection of R-homomorphisms @, :
% - 4, (pE X) such that for any curve y in X with initial point p and terminal point g, the

following diagram is commutative:

Pr

Lo My

E(r)l 177(7)

P A——y
Pa
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Hereafter, unless otherwise stated explicitly, a local system is a singular local system.
(17.2) The pull-back functor.

Definition 17.2.1. A continuous map f:X — Y induces a covariant functor f*:L(X) -
L(Y), called the pull-back functor. For any object & of L(Y), we put

fr& =2 -1,

where IIf:TIX - IIY is the groupoid homomorphism associated with . Then f*# is an
object of L(X).

(17.3) The category of singular local systems.

Definition 17.3.1. The category L*™ of singular local systems is defined as follows: An object
of L¥" is a pair (X, &) of a topological space X and a singular lqcal system &£ on X. A
morphism (f, ¢): (X, &) - (Y, .#) of L is a pair of a continuous map f:X - Y and a
morphism ¢: & - f*.# of L(X).

(17.4) The topological realization functor | -|.

The topological realization functor |+ | : § — T from the category of simplicial complexes into
that of topological spaces is formulated in [28](Chapter 3, §1). Let us recall the minimal
ingredient of it.

Definition 17.4.1. For a simplicial complex X, let | K| be the set of all functions a: Vx - [0,
1] such that

(1) supp a@:={a<€ Vk; a(a)*#0} is a simplex of K, and

(2) Zaevca{a)=1.

Definition 17.4.2. For a vertex a€ Vk, let <a>€| K| be defined by

1 (b=a),

b):=
(@) {0 (b=+a).

Definition 17.4.3. For a simplicial map f: K - L, let | f|:| K| - | L] be a map defined by

| f1(a) :=G§Ka(a)<f(a)>.
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We provide | K | with the cokerent topology. Then|f|:|K| - | L| becomes a continuous map
([28], Chapter 3, § 2), and hence |+|:8 = T is a covariant functor.

(17.5) Simplicial local systems induced from singular local systems.

For any simplicial complex K, there exists a covariant functor 8= 68k : L{| K|) » L(X) from
the category of singular local systems on | K| into that of simplicial local systems on K. We
define this functor in what follows.

Definition 17.5.1. Let ¥ =(, &) be an object of L(| K|). For any vertex aE Vk, we put (8«
Z)a:=%a> (aE Vi), where <a) is defined in Definition 17.4.2. For any {a, )€K, we put
(6x€)sa :=E(76a) : (6 £)a = (0x £)s, where 75a:[0, 1] > | K| is the curve in | K| defined by
7oa(2) :=ta>+(1—)<b> (0<¢<1).

For simplicity, 0« will often be denoted by . This abuse of notation should cause no
confusion. The following lemmas are easily proved.

Lemma 17.5.2. The functor 8 is natural in the sense that for any simplicial map f: K — L,
there exists a commutative diagram of functors:

L)L) —2— Lz
71| [
LK) —p— L(K).

Lemma 17.5.3. Assume that a group G acts on K regularly. Let n:K —» K/G be the canoni-
cal simplicial projection. Then there exists a commutative diagram of functors:

L(K/G) -2 1k /6)

R

LK o L(K).

(17.6) Base change functors on local systems.
We have constructed the following base change funciors on local systems:
(1) for simplicial complexes K, L and a simplicial map f: K - L,

¥ L(L) » L(K) : the pull-back functor (5.2),
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(2) for a simplicial complex K,
Sd: L(X) - L(SdK) : the subdivision functor (6.2),
(3) for topological spaces X, Y and a continuous map f: X = Y,
¥ L(Y) - L(X): the pull-back functor (17.2),
(4) for a simplicial complex K,

Ox : L(| K|) » L(K) : defined in (17.5),

18. Comparison theorem

(18.1) The singular chain complex functor Se:L*" - C.

The singular chain complex functor Se:L*" - C is defined in [12](§ 6.2), where C is the
category of chain complexes of R-modules. For later use, we shall recall it briefly. Let 47 be
the standard g-simplex with vertices v, o, -+, vo. For any singular g-simplex ¢: 47 - X, let
ys be the curve in X defined by

ro(t) i=0((1—m+tn) (0<£L1).

Definition 18.1.1. Let (X, &) be an object of L*" with #=(<, £). A g-chain cES,(X, &)
is a formal sum c=26}ua~ o, where the sum is taken over all singular g¢-simplices ¢ in X, #s€
Zwey and us=0 except for a finite number of ¢’s. The boundary operator a: Sq.(X, &) -
Se-i{X, &) is defined by

8c :=ZH&(ra)us)- a0+ (1o d10}.

(18.2) The natural chain map Ce(K, 6x%) - Se(| K|, &).
Let K be a simplicial complex, and % be a singular local system on | K|.

Definition 18.2.1. For any g-simplex 6={ao, a1, ***, aq} of K, we define the singular g-simplex
G:47- | K| by

5‘(2}!-’0.’) :=§ti<ai>,

for ;=0 and 2}4;=1. For any local section #E(0x-Z)q, we define #€E L5 (woy= L<an by @& :=
u(ao). Since uE(6x)s is a map defined on o and %(a0) E(0xF )ao= & caw, this is well-defined.
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Definition 18.2.2. The chain map 0k : Ce(K, 0x%) > Se(| K|, ) is defined by
91((21{0"0') Z=2ﬁo" 5',

where #s and ¢ are defined in Definition 18.2.1.

Lemma 18.2.3. The chain map 6==0x is natural in the following sense: If L is another chain
complex, # is a singular local system on |L| and (f, @) : (K, 0x%) = (L, 0.4 is a morphism
of LY, then therve exists a commutative diagram of chain maps

Co(K, 0xy)i' Se(|K|, &)
o, o) [set171 10D
Co(L, 6u.7) i Se(IL], .#).

(18.3) The singular homology functor.

The singular homology funcltor H§™ :L*" - M is defined by composing the homology
functor with the singular chain complex functor, where M is the category of graded R-modules.
Recall that the simplicial homology functor H§™ : L* - M was defined in § 10 (see Remark 10.
1.3). Let us compare these two functors.

(18.4) The comparison theorem.
Let K be a simplicial complex, -# a singular local system on |K|. Then we have a chain
map Ox : Ce(K, 6x) = Se(| K|, &), which induces an R-homomorphism

Ok : H¥™(K, 6«&) » H¥™( K|, &).

The following theorem is fundamental:

Theorem 18.4.1. 8x is an isomorbhism which is natural in the following sense: If L is another
chain complex, .« is another singular local system on |L| and (f, ¢): (K, <) = (L, Gu.#) is
a morphism of LY, then there exists a commulative diagram of R-homomorphisms

HE(K, 6c) % g ( K|, #)
HE™(f, 9)| |EEm 11, 10D
HE™(L, 0,4) —5— HE"( L], ).
L

Proof. This theorem is proved in an almost similar manner as in the classical case where the
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local system is trivial. The naturality follows from Lemma 18.2.3.

(18.5) Polyhedra.

Definition 18.5.1. A topological space X is said to be an polyhedron if there exists a simplicial
complex K and a continuous map f : | K| = X such that f is a homotopy equivalence between
|K) and X. We call (X, f) an underlying simplicial structure of X.

Remark 18.5.2. In the usual definition of polyhedra, one requires that f:|K| - X is a

homeomorphism.

Let X be a polyhedron with underlying simplicial structure (K, f), & a singular local system
on X. Applying the pull-back functor f*, we obtain a singular local system f*< on | K| and
a morphism £« : (| K|, f*) = (X, &) of L¥". Applying the singular homology functor, we

obtain an R-homomorphism
[t HE¥( K|, f*2) » H¥"™(X, £).

This is an R-isomorphism due to the homotopy invariance of the singular homology functor.
By the comparison theorem (Theorem 18.4.1), we have an R-isomorphism 8k : H§™ (K, xf* <)
- H§"(X, &). Composing these isomorphisms, we obtain the following:

Proposition 18.5.3. There exists an R-isomorphism:

H..sx‘mp(K’ 9Kf* y)zHgina(X’ .7)

This shows that if X is a polyhedron with underlying simplicial structure (K, f), then the
singular homology group of (X, %) is computed as the simplicial homology group of (X, Gxf*
£).

19. Naturality of the topological realization functor

Let K be a simplicial complex. In the simplicial category, the configuration space of
n-points in K is the simplicial complex K,=Sd?K"/©,(15.1), whereas in the topological cate-
gory, the corresponding configuration space is the topological space |K|,:=|K|"/&.. We
have to establish a canonical homeomorphism | K,|=|K|.. To do so, we shall establish the
naturality of the topological realization functor |-| with respect to the subdivision and the
direct product functor. Since this is one of the essential points in this paper and no standard
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text has treated it explicitly, some explanation should be included here. Moreover, we recall
the naturality of |+ | with respect to a group action (see [5]).

(19.1) Naturality of || with respect to Sd.

Lemma 19.1.1. For any simplicial complex K, |K| and |SAdK | are canonically homeomorphic.
If a group G acts on K, then this homeomorphism is G-equivariant.

Proof. We explicitly give a bijection | K| « |SdK |, @ < 8. First, if 8 is given then ¢ is defined
by

ala) =2 b’#g) (a€ Vi),

where the sum is taken over all simplices ¢ such that g=¢. Next, if ¢ is given then g is defined
as follows: Let #> #,>---£, be the positive range of « arranged decreasingly and, by convention,
put £,.1=0. For 0<i<gq, let ¢;:={a< Vk; a(a)=t}. Then the ¢/s are simplices of K such
that go< 1< ---<g,. Hence {ao, 01, -+, 05} is a g-simplex of SdK. For any o= Veax=K, we put

(4= tisto: if 0=0:, 0<i<gq,
Blo):= 0

otherwise.
Note that supp 8={c, a1, -, 04} and 34B(6)=1, and hence S<|SdK |-

The bijection mentioned above gives a homeomorphism between |K| and |SdK| The
equivariance of a group action easily follows from the construction of the bijection.

(19.2) Naturality of |- | with respect to the direct product functor.

Definition 19.2.1. Let X be an ordered simplicial complex. Then &, acts on | K"| by (ze)(a,,
az, -, an)=alar, ar@, ***, arm), Where r€6,, a<|K|" and a,, a., -+, a» are vertices of K.
Moreover &, acts on | K|" by t(ai, az, -+, an)=(a-, @z, -**, @rw), Where €&, and ai, az, *,
a €| K|

Lemma 19.2.2. (i) Let K, K, -+, K. be ordered simplicial complexes. Then there exists a
canonical homeomorphism:
| Ki X Ko X - X K| =| Ki | X | Kg| X -+ X | K-

(ii) Let K be an ordered simplicial complex. Then the canonical homeomorphism | K*|=|K|*
is Sp-equivariant.
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Proof. (i) Put Vi= Vi, (i=1, 2, -+, n). We explicitly give a bijection:

[KiX Ko XX Ka| o | K| X|Ka| X X| Kl

a hd (alr az, *°°, aﬂ)

If o is given then afi=1, 2, ---, n) are defined by

ai(ai):=a12 e N DI a(a;, O FRETIN an)

€eVi  ai-1eVimiami€ Vil aneVn

for a,€ V.. We shall show that o;€| K;|. Indeed, it is easy to show ;20 and X, vai(a)=
1. So it suffices to show that supp a; is a simplex of X;. Since supp « is a simplex of K, X
Ko X -+ X Ky, there exist 6=(0a1, 0z, -, o) E2(q) and j=(j, js, -, 7a)EJ(g) such that supp oS
{0; 7> (see Definition 7.1.3). In particular supp aS a1 XX -X0o.. From this it is easy to
deduce supp @:So:. Hence supp a: is a simplex of K.

Conversely, if a;€|K:|, (=1, 2, -, n) are given, then ¢€| K\ X K;X - X K| is defined as
follows: Put

o:={aw, an, ", awu}:=supp a;, 0:=(0, 0z, ***, On),
where gio<an<++<aiq. Moreover, put
air =aiar), @i =+ ant -+ an,

for K=0, 1, -+, g.. Note that @,=1. We introduce a total order in the set A:={(7, £);1<
i<n, 1<k<gq:} by putting (¢, £)<(#, &) if one of the following conditions holds:

() @&, k< @i

(2) @, k1=@aw, -1 and <7,

(3) @ix1=@ar -1, i=1¢ and k<K'
For each (i, k)€ A, let ji be the natural number such that (7, &) is the j,-th smallest element
in A. Thenthemap J: A - (1,2, -, 7}, (i, k) » ju« is a bijection, where » :=3%.,4:. Since
Ju<ljuw © (G, )<, k) © k<K, wehave 1</, <jup< <jio<r foreach ;. Putji=(ja, ju, -,
jia) @and j=(j, 72, -+, jn). Then one can speak of an 7-simplex <g; /> of Ky X K;X -+ X K, (see
Definition 7.1.3). Put <g; />={cs, c1, ***, cr}, where ¢y< 1< *+¢r is arranged in the lexicographic
order. Now we define | Ky X K3 X+ X K,| as follows: supp 8 S{co, ¢, ***, ¢r} and 8(cy), (7
=0, 1, :--, 7) are defined by

B[ (l=0y ly Tt r_l)y

B(Cl):={ 1-2%88 (i=7).

Here o, B, *-+, B:i-1 are defined inductively by
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Bot Bt + Bior= G, ki1 (i=1,2, -, r),

where (i(J), £())=7"Y())eA.

The maps @~ (a, @, -+, @) and (a, @, -, @) = @ defined above are the inverse of each
other. It is easy to see that this bijection is a homeomorphism.

(ii) The &,-equivariance of the canonical homeomorphism | K”|=| K|* follows from Defini-
tion 16.2.1 and the construction of the homeomorphism in (i).

(19.3) Naturality of |« | with respect to a group action.

Let K be a simplicial complex and assume that a finite group G actson K. Let n: K - K/
G be the canonical simplicial projection, z:|K| - | K|/G the canonical topological projetion,
respectively. Then we have the following:

Lemma 19.3.1. If G acts on K regularly, then there exists a homeomorphism x: |K|/G - | K/
G| such that the following diagram is commulative:

|K| =—— |K|

lrrll Jp

IK/GIT |K|/G.

Proof. See [5] page 117.

20. External product functor for singular local systems

(20.1) The external product functor L% X .-- X Ls"¢ — 1,579
In (7.2) we defined the external product functor in the simplicial category. We can define its
counterpart in the singular category. Here we only define the correspondence of objects.

Definition 20.1.1. Let (X;, %), (=1, 2, -+, n) be objects of L** with %=(%, £). Then a
new object (X, ) of L*™ with ¥ =(%, &) is defined as follows:
(1) X: =X XXX XXy,
(2) for each point p=(py, pz, -, P2)EX, Put % :=1® %0 ® %,
(3) for each curve y:[0, 1] » X with y(0)=p=(p, p2, -, ps) and y(1)=g=(q, g2, **gn), PUt
y()=(n(), r2), - 72(¢)). Then y, is a curve in X; such that y{(0)=p; and y(1)=g¢..
We difine &(7): % - % by

&(7) i =&(n)®Er2) ®+ ® Ex(7n).
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We write

(X, 2)=(X, K)Q(X, H)R-B(Xs )
=(XiX XX X Xn, AR BB R F).

and call it the external product of (Xi, %), (Xz, %), -+, (Xn, ).

(20.2) Naturality of the external products.
Let X;: and Y: be topological spaces, f:: X; = Y; continuous maps (=1, 2, -, n). We define
the map fiXfz X+ X fa by

FiXfaXor X fu: XX XXX Xn = ViX VaX X Y,
(o1, P2, *+, pa) = (D), foD2), ) fulDn)).

The following lemma is easily established.

Lemma 20.2.1. If % is a singular local system on Y{(i=1, 2, ---, n), then
(AXAXXf) AR 4R R L)= I ARfF KR RfE .

Let Ki(i=1, 2, -+, n) be ordered simplicial complexs and put K=K, X Kz XX K,. Recall
that there exist covariant functors

ﬁx, . L(IK.D - L(Ki) and 6k L(IK') g L(K)

(see Definition 17.5.1). Moreover, by Lemma 19.2.2, there exists a canonical homeomorphism
¥ K| - | K| X| K| X+ X|Kn|. Consider the sequence of covariant functors

L( K| X| K| X X | Knl) == L K ) = L(K).
From the above definitions we can easily obtain the following:

Lemma 20.2.2. If “eL(K:), (i=1, 2, ---, n), then

O © Y AR BB B %)= b5, AR O, B8 -+ B brr T,

21. Twisted singular homology groups of the configuration space

(21.1) Local systems on the topological configuration space of #-points.
In this section we are concerned with various projections and local systems. In order to
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avoid notational confusion, we employ the following:

Notation 21.1.1. (i) If a group G acts on a simplicial complex K, then we denote by 7x: K —
K/G the canonical simplicial projection; if a group G acts on a topological space X, then we
denote by zx : X » X/G the canonical topological projection. If there exists a G-equivariant
simplicial map f: K - L, then we denote by f/G: K/G - L/G the simplicial map induced
from f by passing to the quotient; if there exists a G-equivariant continuous map f: X - Y,
then we denote by //G: X/G - Y/G the continuous map induced from f by passing to the
quotient.

(ii) A simplicial local system on a simplicial complex X is denoted by %, and a singular local
system on a topological space X is denoted by %.

Definition 21.1.2. (cf. Definition 15.1.1) Let X be a topological space. The group &, acts on
the product space X" by permutation of »-points. The quotient space X, : =X"/&, is called
the (fopological) configuration space of n-points in X. We denote by zx»: X* - X, the canoni-
cal topological projection (cf. Notation 21.1.1). For any continuous map f: X - Y, we define
fA: X" > Y" by

™y, p2, =, pn) :=(f(1), f(p2), -+, f(pa))-
This map is G,-equivariant and hence induces a continuous map
fo:=f"Gr: Xn = Y
Let X be a polyhedron with underlying simplicial structure (X, f). Moreover, let % and

“n be singular local systems on X and on X,. We make the following:

Assumption 21.1.3. 7*xn %,=R %.

The purpose of this section is to express the singular homology of (X, %,) in terms of the
simplicial homology of (K, “,), where %, is a certain simplicial local system on K, to be
defined in Definition 21.3.1.

(21.2) Commutative diagrams of functors.

Since f:| X| » X is a homotopy equivalence, f":| X |* » X" is an &,-equivariant homotopy
equivalence. Passing to the quotient, we obtain a homotopy equivalence f,:|K|. = Xu.
There exists a sequence of &,-equivariant continuous maps:

Isaxe|=isakn| -2 |k Lo |k 1L xn
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where ¢ and ¢ are homeomorphisms obtained by Lemmas 19.1.1 and 19.2.2, respectively.
Passing to the quotient, we obtain the following commutative diagram of continuous maps:

Diagram 21.2.1.

sdKr | —— (@t —2— K7 —Po kP Lo x0
ll Tsazkn| 17[ | saskn lﬁmnx lﬂlm" lﬂx"
Kn den @n—_’ K" 6:: Kn ‘Xn,
(Kl —— ISR 60— | K71/~ | K

where y is a homeomorphism obtained by Lemma 19.3.1.
Applying the L-functor to Diagram 21.2.1, using the base change functors (17.6) and Lemma
17.5.3, we obtain the following commutative diagram of functors:

Diagram 21.2.2.

L(X,) L Lx)
7| [y
LUKl —25 Lk
v/ [
LK /&) —T . k) —2 Lk
(¢/@n)*l ¢*l lSdz
LUSEK| /&) —F25, 1(|sakn)) — B, 1(sakm)
A |
LK) —2%0 L(SdK"]) ——— L(S®K™)
L |1|f{,,|) - L(K.) e L(Sdl’K”)

Let g:|Ka| = Xa be a continuous map defined by

g:=Fno (¥/Gn)  (9/&) ° 1.

Since £, is a homotopy equivalence and ¢/, ¢/&,. are homeomorphisms, g is a homotopy
equivalence between | K,| and X,. Hence we obtain the following:

Lemma 21.2.3. X, s a polyhedron with underlying simplicial structure (K,, g)-
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From Diagram 21.2.2, we obtain the following commutative diagram.

Diagram 21.2.4.

g * BK,. Fid *Sdz Kn

L(Xx) L(| Kxl) L(K.) L(Sd*K™)
ltiv‘ml ’
LX") e gy LK) —5—— L(K") — 55— L(SE°K™).

(21.3) Twisted singular homology groups of the configuration space.
We keep the notation of (21.1) and (21.2).

Definition 21.3.1. Let % and %, be simplicial local systems on K and on K, defined by % :
=0k o f* % and %, =0k, ° g* %, where g:|K,| = X, is defined in (21.2).

Lemma 21.3.2. Under Assumption 21.1.3, we have
ﬂ*Sd’K"-%(n:Sdzé “k,

where w¥sqxn: SAXK” » K, is the canonical projection.
Proof.

T*sazen Fan= Msazien © Ok © g* Litn (Definition 21.3.1)
=8d% e Gxno (f" o ¥)* o 1*xn%, (Diagram 21.2.4)

=Sd?e fino (f"e ¢)*R %K% (Assumption 21.1.3)

=Sd? o fn o g* o (F1)* 80 %

=Sd? o Gxno P*R(F*%) (Lemma 20.2.1)
=Sd®® (6 ° /* %) (Lemma 20.2.2)
=Sd*® % (Definition 21.3.1).

Now we are in a position to state the main theorem.

Theorem 21.3.3 Let X be a polyhedron having (K, f) as its underlying simplicial structure.
Let % and %, be simplicial local systems of R-modules on X and on X, Assume that
(1) n'eR*, and
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Q) 7*xnGy=R L where mxn: X" = Xn is the canonical projection.
Then,

(i) There exists an R-isomorphism:

HE™ (X, %)=He(8 Co(K, %)),

where % is the simplicial local system on K defined by % : =0k o f* %.
(ii) Assume further that

(3) Ze(K, %) is a flat R-module,

(4) Hy(K, “4)=0if q*7r, and

(5) H (K, %) is a flat R-module.
Then,

H§™(Xn, Sn)=0 (g#nr),

and there exists an R-isomorphism:

AHAK, %) (r: odd),

n

OH(K, ) (7 : even).

Hi(Xn, Sa)>

Proof. Since X, is a polyhedron having (X, g) as its underlying simplicial structure (Lemma
21.2.3), Proposition 18.5.3 implies that

Hgim?(Xn, _%(")ZHgimp(Kn, -%fn))

where %, is defined in Definition 21.3.1. By assumption (2) and Lemma 21.3.2, we have x*sqzxn
%%, =Sd*® %. In view of this and assumption (1), we apply Theorem 15.2.2 to obtain H§""(K,,
)~ He(® Co(K, %))%. Combining the above isomorphisms, we obtain the first assertion
(i). The second assertion (ii) is an immediate consequence of Theorem 15.3.3. This establishes
the theorem.

22. Application to hypergeometric functions

(22.1) The complement of a Veronese arrangement.
We use the notation of Part I. For any zEM(m+1, n+1), we put

Hz = iL=JOHi(2),
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where H(z) is the hyperplane in P” defined by {# EP"; z:(zu)=0}; H; is an arrangement of (m
+1)-hyperplanes in P”. Note that E.=P”\H,, i.e., E: is the complement of the arrangement
E; in P".

Definition 22.1.1. An arrangement H. is called a Veronese arrangement if z belongs to the
Veronese image (see Definition 3.1.1).

Assume that z=Vero(w) is the Veronese image of
w=(w,-o w.u)EM(m+l, 2).
We use the following:

Notation 22.1.2. (cf. Definitions 2.1.1, 2.1.2, 2.2.1 and 2.2.2.)

a=(a, a, -, am)EA(m+1, n+1),
a=(a, a, -, Gn)EA(m+1,2)

with Bi:=a;— @&<7Z. Note that 2}efi=1—n.

Y =EAm+1, n+1), %H:=%"(m+1, n+1;a),
X :=Euy(m+1,2), S =% (m+1,2; ),

We consider % and % as singular local systems of R-modules, where R is the ring mentioned
in (3.2).

Remark 22.1.3. Note that Y is the complement of the Veronese arrangement H in P” and X
=P \{we, wt, -+, wi), where w¥*=[wi: —wa]EP".

We shall show that Y is the configuration space of #-points in X. Let t=(#, &, -, t») be
any point in (P')", where #;=[#0: #u] is the homogeneous coordinate of the i/th component P' of
(P")". For j=0,1,-, n, we put

U= uj(t) = ”Ziju;.
Here the sum is taken over all subset J of {1, 2, +-*, #} such that #/=; and u, is defined by

wr=uy(2) :=,I;I,t‘°,gct"'
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where J¢=(1, 2, -, n}\J. Moreover, we put u=u(t)=*(uo, w1, ***, un)EC"*'. Since z is the
Veronese image of w, we have zy=w ’w# (cf. Definition 3.1.1). Using this relation, we can
easily show the following:

Lemma 22.1.4.
n n
D ziu;= I (wiotia + wirteo).
=) k=1

Corollary 22.1.5. For any tE(PY)", u=u(t)EC™" is a nonzero vector.
Proof. We can take a we&M(m+1, 2) so that

n
wSP\{4, &, -, ta}, i kl;[l(w:)otu'F Wortro) 0.

By Lemma 22.1.4, we have 2}=o 20,2,;%0 and hence 0.

In view of Corollary 22.1.5, the map z:(P")"— P", ¢+~ u(¢) is well-defined, where the
nonzero vector x(¢) is regarded as the homogeneous coordinate of P”. By using Lemma 22.1.
4, we can show that 7 maps X" onto Y. Moreover we have the following :

Lemma 22.1.6. Y is the configuration space of n-points in X and n: X" — Y is the canonical
projection (¢f. Definition 21.1.2).

(22.2) Twisted singular homology groups of (Y, %).
We consider the twisted singular homology groups of (Y, %4).

Lemma 22.2.1. Let n: X" — Y be the canonical projection (¢f. Lemma 22.1.6). Then we have
™ B=R %,

Proof. For any kEZ, we put Fe(k) :=elk)| vy and (k) := Pri(k)|x. Recall that f(z,+; m+1,
n+1, @) is a multi-valued section of Z(—n—1) and determines the local system % C % (—n
—1) (cf. Definitions 2.2.1, 2.2.2 and Notation 22.1.2). Similarly, f(w,+;m+1, 2, &) is a multi-
valued section of Z(—2) and determines the local system % C Z(—2). We put

g(w, t;m+1, B) :=lli(w;‘oto+ wirke)”,

where ¢="*(f, #). Since the 8/s are integers and 2}8:;=1—# (cf. Notation 22.1.2), g(w,*;m+1,
B) is a single-valued nowhere vanishing section of Zx(1—#). Hence g: % (—2)— H(—n—1),
s+~ glw,;m+1, B)s gives an isomorphism between Z(—2) and Z(—#»n—1). By using this
isomorphism g, we may consider that the local system % is realized in &x(—#—1). Then %
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is determined by the multi-valued section g(w,+;m+1, 8) f (w,;m+1, 2, @ of c(—n—1). By
Definition 2.2.1 and Lemma 22.1.4 we obtain

fz, u(t); m+1, n+l, a)=iI:io(§zi,~uj)m

3

Il
=

(wioter + wirtro)™

~
I
o'

&

0
-

3

lil;];)(wmtkl + wir teo)™

k

,I:I,g(w, te;m+1, B) f(w, te; m+1, 2, d).

This implies 7* % =& %.

By Remark 22.1.3, X=P"\{w§, wt, -, w%}). Without loss of generality we may assume w&
=0 and hence X=C\{wf, wf, -, w}}. Take (2m+1)-points a:, b(i=1,2, -, m) and ¢ in X
so that w? is in the interior of A; and w}(j+7) is outside A;, where A;=A(c, a;, b:) is the
triangle in C with vertices ¢, a: and 4. The orientation of A, is given by ca:b;.. We may
assume that this orientation coincides with the anti-clockwise orientation of C. Now we
consider the bouquet K=B, with vertices a:, b{(i=1, 2, ---, m) and c(see Definition 16.1.1).
The topological realization| K |of K is the union of m-triangles A

|KI=0a.

The inclusion map f: |K|— X is a homotopy equivalence between|X| and X. So X is a
polyhedron with underlying simplicial structure (K, f) (cf. Definition 18.5.1). Let % =%V,
where % is the simplicial local system defined in Definition 16.2.1, with e;=exp(27v—1a:)(i=
1,2, -+, m). Clearly we have the following:

Lemma 22.2.2. %% =6k f* %.
The simplicial homology groups of (K, %) were discussed in § 16. Combining Theorems 16.
5.2 and 21.3.3, Lemmas 22.2.1 and 22.2.2, we obtain the following :

Lemma 22.2.3. For any a=(m, a1, -+, an)EA(m+1, n+1), put e;=exp(2n/—1a;). Let R be
a ring such that
1) e;, nl €R*(i=1, 2, -, m),
(2) I.=R, where I. is the ideal of R generated by 1—ey, 1— ez, ***, 1 —em. Then there exists
a canonical isomorphism of R-modules:
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. { AHE™K, %)  (q=n)
H§m(Y, %)=

0 (g#*n),

where H¥™ (K, %) is (non-canonically) isomorphic to the R-module
Ve:={r=(n, r, -, rn)ER™; gr.-(l—e;)=0}.
Theorem 3.3.3 in Part I is a special case of this theorem.

Remark 22.2.4. In the above situation all the R-modules involved e.g., chain complexes,
cycles, boundaries and homologies are projective, and the Hom-functor is exact on the projec-
tive modules. Applying the Hom-functor to chain complexes and passing to cochain complex-
es, we can make a parallel argument for the twisted simplicial (and singular) cohomology.
This leads to the result on the twisted cohomology in Theorem 3.3.3.

Acknowledgement

The authors would like to thank K. Matsumoto for giving them the opportunity of this joint
work. Thanks are also due to Y. Haraoka, T. Sasaki, N. Takayama and M. Yoshida for their

stimulating discussions.

REFERENCES

[1] K. Aomoto, Les équations aux différences linéaires et les intégrales des fonctions multifor-
mes, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 22 (1975), 271-297.

[2] K. Aomoto, On vanishing of cohomology attached to certain many valued meromorphic
Sfunctions, J. Math. Soc. Japan 27 (1975), 248-255.

(3] K. Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers
Coll. Gen. Edu. Univ. Tokyo 27 (1977), 49-61.

(4] P. Appell and J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Gauth-
ier Villars, Paris, 1926.

[5] G.E. Bredon, Introduction to compact transformation groups, Academic Press New York
and London, 1972.

[6] H. Esnault, V. Schechtman and E. Viehweg, Cohomology of local systems of the comple-
ments of hyperplanes, Invent. Math. 109 (1992), 557-561.

[7] H. Exton, Multiple hypergeometric functions and applications, Halsted Press, New York



Twisted Homology and Hypergeometric Functions P!

and London, 1976.

[8] LM. Gel'fand, General theory of hypergeometric functions, Soviet Math. Dokl. 33 (1986),
573-5717.

[9] LM. Gel'fand and S.I. Gel'fand, Generalized hypergeometric equations, Soviet Math. Dokl.
33 (1986), 643-646.

[10] R. Godement Topologie algébrique et théorie des Jaisceaux, Hermann, Paris, 1964.

[11] M. Hara, T. Sasaki and M. Yoshida, Tensor products of linear differential equations — a
study of exterior products of hypergeometric equations, Funkcial. Ekvac. 32 (1989), 453-477.

[12] A. Hattori, Algebraic topology II, (in Japanese), Iwanami-Shoten, Tokyo, 1978.

(13] A. Hattori, Topology of C” minus a finite number of affine hyperplanes in general position,
J. Fac. Sci. Univ. Tokyo, Sect. 1A 22 (1975), 205-219.

(14] P.J. Higgins, Notes on categories and groupoids, Van Nostrand Reinhold, London, 1971.

[15] P.J. Hilton and U. Stammbach, A course in homological algebra, GTM 4, Springer-Verlag,
New York, Heidelberg and Berlin, 1970.

[16] K. Iwasaki and M. Kita, Exterior power structure on the twisted de Rham cohomology of
the complements of real Veromese arrangements, J. Math. Pures Appl. 75 (1995), 69-84.

[17] M. Kita, On hypergeometric functions in several variables I, new integral representations of
Euler type, Japan. J. Math. 18 (1992), 25-77.

[18] M. Kita, On hypergeometric functions in several variables II, the Wronskian of the hyper-
geometric functions of type (n+1, m+1), J. Math. Soc. Japan 45 (1993), 646-669.

[19] M. Kita, On vanishing of the twisted rational de Rham cohomology associated with
hypergeometric functions Nagoya J. Math. 135 (1994), 55-85.

[20] M. Kita and M. Ito, On rank of the hypergeometric system E(n+1, m+1;a), preprint
(1993).

[21] M. Kita and M. Noumi, On the structure of cohomology groups attached to the integral of
certain many-valued analytic functions, Japan. J. Math. 9 (1983), 113-157.

[22] M. Kita and M. Yoshida, Intersection theory for twisted cycles I, Math. Nachr. 166 (1994),
287-304.

[23] M. Kita and M. Yoshida, Intersection theory for twisted cycles II — degenerate arrange-
ments, Math. Nachr. 168 (1993), 171-190.

(24] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7
(1893), 111-158.

[25] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a
4-parameter family of K3 surfaces and the hypervgeometric function of type (3, 6), Interna-
tional J. Math. 3 (1992), 1-164.

[26] K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida, Monodromy of the hyper-
geometric differential equations of type (k,n) I, Duke Math. J. 71 (1993), 403-426.



72 Katsunori Iwasaki and Michitake Kita

[27] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der Math. Wiss. 300,
Springer-Verlag, New York, Heidelberg and Berlin. 1992.

[28] E.H. Spanier, Algebraic topology, Springer-Verlag, New York, Heidelberg and Berlin 1966.

[29] T. Terasoma, Exponential Kummer Coverings and determinants of hypergeometric func-
tions, Tokyo J. Math. 16 (1993), 497-508.

Katsunori Iwasaki
Graduate School of Mathematics,
Kyushu University, 6-10-1 Hakozaki,
Higashiku, Fukuoka 812-8581 Japan
E-mail address: iwasaki@math. kyushu-u. ac. jp

'Passed Away on April 15, 1995



