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1. Introduction

We defined in (2, 3] real valued functions N& s(¢) with one real variable ¢, and three
parameters 0< ¢, <1 and —o0< #< oo, whose values scatter around the whole plane like in
Figure 3. For two such functions with the same e+ 8, we can prove the following simple
formula for their correlation coefficients in any interval I :

o1(N§, 5, N&, s)=cos n(6— ).

This formula was found by computer experiments, such as Figure 5.

To prove this formula, we use stochastic Riemannian integral formulae for the composi-
tions of continuous functions f and scattered functions, such as f(N§, 5(£)).

Using this formula, we can define functions with the 2-dimensional normal distributions
having any given correlation coefficient.

2. Uniformly scattered functions U,(#)

We defined in [1, 2, 3] real valued functions with one real variable, whose values distribute
in [0, 1) with the uniform density, as in Figure 1.

Definition 1. Let 0<a@<1. Using the binary method, a real number ¢ can be written as
t=0.1...X2* with an integer £. If its mantissa has the finite length / such as 0.1...1 with / bits
between 1, let 7 be the smallest integer which is greater than /Xa. Then the value of the
uniformly scattered function U.(t) is defined as “0.” followed by the lowest m bits of the
mantissa.

If the mantissa cannot have finite length, then U.(¢) is defined to be 0.

For example, if £=1101.001 by binary method, #=0.1101001 X 2¢ and then Ubs(¢#)=0.1001.
For irrational ¢, its mantissa cannot be of finite length, and then U.(¢)=0. Therefore, due
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to the theory of Lebesgue integral [4], these func-
tions are almost everywhere equal to 0, and their
integrals over any interval are 0. But by com-
puter experiments, Riemannian sums of these
functions behave in another way.

As in Figure 1, the values of Us(t) distributes :
uniformly in [0, 1), and their density function is S 0 100
equal to 1 over this interval (1, 5]. Figure 1: The graph of Ul(¢)

If a8, U(t) and Us(¢) do not influence each
other, and are independent.

The product of their differences with their mean 0.5 is
F()=(Udt)— 05} Us(£)—0.5).

For a fixed number of division », we calculate their Riemann sum

SAENte—te), &L, tei)

[
for 10,000 samples, and let their mean be the

center of a vertical segment, and let their stan-
dard deviation be half of the length of the

. . 0 s s
segment. Figure 2 is the graph of these seg-

ments for the number of division from 10 to 10,

000. As the number of division # increases, the

distribution of the Riemann sum approach to 0, ~%!j5 {56 60 oG
which is defined in [2] as the stochastic Number of division

. . Fi 2 : Distributi f Ri
Riemann integral of f(#). Moreover the cen- igure istribution of Riemann sum

tral limit theorem is valid in general. In this sense, we can write in every interval J,
[ (Un-05XUKD-05)dt=0

This means that U.(#)—0.5 and Us(¢)—0.5 are locally orthogonal.

3. Normally scattered functions N9, 5(¢)

From uniformly scattered functions, we can define normally (Gaussian) scattered functions
in the following way [2, 3].
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Defenition 2. Let 0<¢g, §<1, and & be a real number. We define normally scattered
functions in the following way :

NS, )=V —2-log Ut)-sin 7(2U(t)+ 6)

If a=+p, their graph is like as Figure 3, and the 4
density function of N§, s(¢) is the following standard
normal (Gaussian) density function

~100 0 100

If a, B, 7, & are different each other, then in any
Figure 3: The graph of N, os(f)

interval I,
SN AONE, o()dt=0

and these two functions N&, «(¢) and N§, 5(¢) are
locally orthogonal. This fact cannot be understood
from their graphs like Figure 3.

But by plotting

(N2, o(2), N3, o(8), £)

in (x, ¥, ¢)-space as in Figure 4, we can visualize this

orthogonality relation. Its density becomes the Figure 4: (N85, 05(2), Nia.o0s(1), )

2-dimensional normal distribution with the correlation coefficient 0.

4. Correlation coefficients

To define correlation coefficients between two scattered functions, we consider the usual
correlation coefficients for finite samples.

In an interval I=[a, b}, take #+1 points a=#th< H <+ <ts-1< =50 with the equal spac-
ings, and let

S =(Alte), £te)) =k, )
=(N& o(te), N§ o(t), £=1,2,---,n

then, the mean of the values of the first coordinate is
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Tit+X2t -+ In 1l b—ad
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zb}‘d/;sz. #(8)dt=0.

ittt tya

Similarly, m.= 7 =(.
T1—n Z Nn—ms N
) T2—m T2 2= M2 Y2 .
Consider two vectors, X=| ** . |=| | Y= Y . =| Their usual correla-
In— In Yn—mz Un

tion coefficient is given by

2 ﬁ=1xkyk

__ XY _
X D RN PT Vheh/ Sid

As n become large,

X 7) b;aE;c.:lfl(tk)ﬁ(tk)
o ’ = 4
\/ b=a >Ny ACA L \/ b—q Diafe(te)

n n

and each sums approach to fixed values, in the sense of stochastic Riemann integral, hence the

following definition is natural.

Definition 3. The correlation coefficient of two functions £(¢) and £(#) in the interval 7
is defined to be

Jrozar:

= JJrera [ [era

pl(flr.fz

5. Numerical experiments of 0,(N, s, N§, »)

In this paper, we examine the case where a=y and £
=¢. If we fix @ and 8 and the interval I, the correlation
coefficient p is the function of (6, £). We divide the
square [0,1]X%[0,1] in (8, &)-plane into 50X50 equally
spaced meshes, and calculate correlation coefficients for

100,000 samples at each mesh point. Figure 5 is the Figure 5: Graph of (8, £, o)
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perspective view of 51X 51 points (8, £, p) in [0, 1]% [0, 1] X[ -1, 1].

From our careful examination, we conclude that the following formula is valid.

Theorem. If 0<a+8<1, then the correlation coefficients o between N, 4(¢) and N%, 5(¢)
is given by.

01(N&, s, N&, 5)=cos n(6—¢)

6. Proof of the theorem

The numerator is calculated as follows.

JN8 KON, )t =
= [[/=2"Tog Ua0) sin 2(2Us(t)+ 8)/~2-log Ulb)-sin z(2Us(t)+ )dt
= [/ (~2-1og Ut~ Jlcos 4 U(t) + 6+ D) —cos x(g— D)}
= /[ (log U(t))cos 74 U 1)+ 6+ {)dt —cos x(0—¢) [ log Uu(t)al

Since Uk(¢) distributes in (0, 1) uniformly, 7(4 Us(t)+ 8 + &) distributes in (z(8+¢), z(4+ 0
+¢)) uniformly. Therefore log Ua(#)-cos 7(4 Us(t)+ 8+ ¢) distributes in (0, ) and (— 0, 0) in
the same density, and therefore its integral becomes 0. Then the first term is equal to 0.

For continuous functions #(z), the following general formula is valid [5].

[ rvenat=-a) [ Fw)dy

Applying this formula to f(x)=log z, we have

/‘:b]og U.,(t)dt=(b—a)£llog (¥)dy=a—0b.

Then the numerator is
b
j; N {()NE, o()dt =(b—a) cos n(6—=¢).

For continuous functions f(x), the following general formula is valid [5).

Lo rus aenae=(6-a) [ 1oreetan.
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Applying this formula to f{x)=x% we have

[N stydt=o-0) [ e Fdy=b—a.

Then the denominator is

J [ »<f>2dt\/Z”Nz. {tydt=b-a.

From these calculation of the numerator and the denominator of the correlation coeffi-

cients, the formula of the theorem follows.

7. An application of the theorem

Using the above formula, we can create 2 dimen-
sional normally scattered functions with any given
correlation coefficient.

Let 0=0.8 and =0, then from

0.8=cos 7(— ),

we obtain

g=Lcos™ 0.8~0.2048.

Figure 6 is the graph of (N34, 0s(), N63*%s(2), t)

. . (NS 2048
with 5,000 points in 0< <1, Figure 6 : (N{4, 06(2), N3386(2), £)
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