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1. Introduction

Let {X;; i=1} be independent and identically distributed (i.i.d.) random variables with the
probability density function a"(x—;,&) with respect to Lebesgue measure, where f is known
and §=(g, 0) (6>0) is unknown. We consider estimating x under the loss function

L(8, d)=p(d—p),
where p(#) is nonincreasing for # <0, nondecreasing for 2 >0 and 0(0)=0. Let
Muin=min(m-, m.), Munez=max(m-, m.),

where m-=limy--~0(%) and . =limy-0(2), which may be infinity. Let §(X) be an estimator
based on X=(X,, :*-, Xx). Then the purpose of this paper is to find if there exists an estimator
8(X) such that

Eo{L(8, (XN} W, (1.1)

for all 8, where W(>0) is an given constant.

Under a symmetric loss function Lehmann [3] showed that if the sample size # is predeter-
mined, then no estimators meet (1.1) for W< Mumin(=Mmaz). In Section 2 we shall show that the
nonexistence is also true for an asymmetric loss function if W < Mu:n, but there does exist such
an estimator if Muni< W< Mnax<o0. However, we can not show if the result also holds when
Mmaz=00. In Section 3 employing two-stage procedures by Stein [6], we shall show that it is
possible to construct an estimator meeting the requirement (1.1) for some distributions.
Section 4 is devoted to the normal distribution and discuss the property of the proposed

two-stage procedure.
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2. Fixed sample size estimators
In this section we assume that the sample size » is predetermined. Then we get the

following results.

Theorem 1. If 0< W< Mun, then theve do not exist any estimators whose risk is bounded by
W for all 6.

Proof. Suppose that an estimator ¢ satisfies (1.1) for 0< W< Mpnir. Then for any d >0

W= Eof0(8(X)— 1))
2 o(d)P(0(X)— p2d)+ o(— d)PS(X)— < —d)
2>min(o(d), o(—d))PA| 6(X)— u| = d).

Since limg-~min(op(d), o( — d))=Mmnin, there exists d such that 0< a= W/min(o(d), o(—d))<1.
Hence

P|8(X)—pu|<d)>1—q,
which contradicts the fact that there do not exist fixed-width confidence intervals of 1 when the

sample size is fixed (e.g. Lehmann [3] and Takada [7]). Hence the proof is completed.

Theorem 2. If Muin< W< Munax< 0, then there exists an estimator whose risk is bounded by W
Jor all 6.

Proof. Without loss of generality, let us assume m-<m.. Let 4(X) and 6(X)(>0) be any

statistics satisfying

HaX+b)=ai(X)+b,
6(aX+b)=adé(X)

for all a(>0) and b, where aX +b=(aXi+b, -, aX,+b). For example, 4 is the sample mean
and 6 the sample standard deviation. Let &(X)=4(X)+#3(X). Then
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EoL(8, 5(X)N=Eo{ o(X)+ t5(X) — 1)}
=Eq, n{o(@(u+oX)+ t6(p+oX)— 1))
= Eo, n{o(o(@(X)+ 16(X))}
< Po, (3 X) + 16(X) 20)
+m_Po, (A X) +t6(X) < 0)
=m-+(m.—m-) Po, n(#(X)+ t6(X) 20).

Let a=(W—m_)/(m+—m.-). Then 0<a<1. So there exists ¢ such that
Po, (A(X)+ t6(X)20)=a.
Hence we get

EfL(8, s(X)<m_+(ms—m-)a
=W,

which completes the proof.
In the proof we used the condition that Mme: <. We do not know if Theorem 2 holds
without the condition. But the next example suggests that such an estimator may exist for

some problems.

Example 1. Let X, ---, X be i.i.d. according to the exponential distribution (E(g, a)) with
density ¢ 'exp(—(x—pu)/o), x>p. We want to estimate ¢ under the loss function

1, for u>0

p(u)={
—u, for u<0.

Hence Muin=1 and Muaz=00. Let 6(X)=min(X,, -, Xx). Then the risk function of & is one
since 6(X) >y, so that for any W(1< W< )

EofL(8, s(X))}<W.

3. Two-stage estimation procedures

In this section we shall show that utilizing a two-stage procedure by Stein [6] may enable
us to construct an estimator with bounded risk in some cases when there do not exist fixed
sample size estimators.

For each 7, let X,=(X,, --*, X»). We suppose that there exist two sequences of statistics
{2:(X0); n=m0} and {s.(Xn); %= 70} (52(X.)>0) which satisfy the following assumptions.
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Assumption 1. For any a(>0), b and n=n,

t(aXn+ b)=at(Xa)+ b,
Sn(aXn + b) = aSn(Xn).

Assumption 2. There exists a positive constant £ such that
Po. (#°t( Xn) < 2)=G(x)

is independent of 7.

Assumption 3. There exists a positive integer n(= no) such that £,(X.) is independent of
sm(Xn) for n=m.

The similar assumptions are used in Ghurye [2] who considered an application of Stein’s
two-stage procedure of testing for a location parameter of the location-scale family. See also
Mukhopadhyay [5].

Let Sm=sa(Xn) and we assume that for each z2>0

- 2T
(&)= [[o(Z2)Ga) Haldlg) < o, (3.1)
where Hu(y)=Po, 1{Sn<y). Then kn(z) is a nondecreasing function of z>0 and %.(0)=0,

limha(2)=m. [ Gldz)+m- [ _Gldz)
=am,+(1—a)m-

with @=/f;20G(dx). Hence if W< am,+(1—a)m-, then there exists a positive constant z» such
that n(zn)=W.
Now we shall give a two-stage estimator whose risk is bounded by W. Let X»=(Xj, ---,
Xm) be the first sample and calculate S». Define the total sample size N by
118
N=max{m, [(%) ]+ 1}, (3.2)

m
where [«] denotes the largest integer less than %. If N >m, take the second sample Xme1, -+,

Xn. Then g is estimated by Tv=1~(Xw).

Theorem 3. If Assumptions 1 to 3 are satisfied and W<ami++(1—a)m-, then the estimator

T~ meels the requirement.
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Proof. It follows from Assumption 3 that
EodL(8, Tv)}=Eolo( Tn— 1)}

= 'gmea{Imﬂ)P( tn(Xn)— p)}

2 PAN=n)Edp(tx( Xa)— )},

where Iix=n) denotes the indicator function of the set {N=#}. Then from Assumptions 1 and

2 and the definition of N we get
Ed{L(6, th(Xu)}= 3 PN =n)Eo, vlolotul X))}
=n2mPO(N= n)fp(%) G(dl')

- 35 o)

<)o)
=hn(zm)=W.

Hence the proof is completed.

Example 2. Let {X;, i>1} be i.i.d. according to the exponential distribution E(g, ), and

L (Xi—t(X). Then tn(X.) and si(Xn) are

independently distributed as E(g, ¢/n) and Z(n—l—l)_

chi squared distribution with 22—2 degrees of freedom. It is easy to see that Assumptions 1
to 3 are satisfied with =1, and that (3.1) is given by

let £(Xn)=min(Xj, -, X») and si(Xn)=

Ox3a-2, respectively, where x3.—. denotes the

hm(2)=.£”p( "le )fz. 2m-0{2)du,

where f2, 2am—1(2) is the density of F distribution with (2, 2(m—1)) degrees of freedom. So we
can get a two-stage estimator min(Xj, -+, Xv) whose risk is bounded by W(<m.). The total
sample size N by (3.2) is

N=max{m,[32]+1},

Zm

wher An(zn)=W and Sn=smn{Xn).
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4. Normal distribution

Let {X;, =1} be i.i.d. according to the normal distribution with mean g and variance ¢

and let t:(X)=X, (=%§X) su(Xn) =Ty with Up=—2731(X,— X\ Then it is easy to

see that Assumptions 1 to 3 are satisfied with 8=1/2, and that (3.1) is given by
hm(z)=[:p(zu)gm-1(u)du,

where gn_1(z) is the density of ¢ distribution with 7—1 degrees of freedom. So we can get a
two-stage estimator Xy whose risk is bounded by W{(<(m_-+m.)/2). The total sample size N
by (3.2) is

N=max{m, [g—:—]+1}, “.1)

where hn(za)=W.
Now we consider properties of the two-stage procedure (4.1). Let

n2)= /: :p(zu)¢(u)du,

where ¢ is the density function of the standard normal distribution. If ¢ were known, then
Esp(Xn~ 1)< W

if and only if #n=#n*=(0/z*)?, where k(z*)=W. So n* would be the optimal sample size if ¢

were known.

Lemma 1. z*=2z,.

Proof. Suppose that X and Y are random variables with the standard normal distribution and
t distribution with v(=m—1) degrees of freedom, respectively. The it follows from Theorem
4 of Ghosh [1] that

PIX|>c)<P(Y|>c)

for any ¢>0. That is, | Y| is stochastically larger than | X|. Since #(z)=FEp(zX) and %n(z)
=Ep(zY), it can be shown that %.(2z) = k(z) (e.g. Lehmann [4], p. 116), from which the theorem
is proved.

From (4.1) we get
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ﬁst———Jr m. 42

Hence

(zm)%zm‘sﬂs( m) Zf ,,z - 4.3)

From the left inequality of (4.3) and Lemma 1 we get the following result.

Theorem 4. For any fixed W and m

Ba(Z )=

Next we consider the asymptotic properties of the two-stage procedure as W—0. We call
the two-stage procedure asymptotically efficient if

limZe) _
n

W-0

It follows from (4.3) that

(S =E=(E) +25

So in order for the two-stage procedure to be asymptotically efficient it is necessary that m

must be chosen such that

. V4 —

P “9
and

: *2

lul’l:l"‘l‘mz =0. 4.5)

Then the next result is obtained.

Theorem 5. If the initial sample size m is chosen such that (4.4) and (4.5) are satisfied, then
the two-stage procedure is asymptotically efficient.

Example 3. Suppose that
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au®, for u>0

p(u)={

—bu, for u<y,
where >0 and 5>0. Then straightforward calculations show that

Wz)=cz+d?
hm(z) =cn2+ dmzz,

a b v P( u;l )'/;
where =3, d=ﬁ' Cn=Cy g and dn=d , with y=m—1.
r(3)2
Hence
¥ = _d+de+4CW _dm+\/ dr%a+4CmW
2¢ » Em 2Cm :
So
2* _JditdcnW +dn
Zn  Jd*+4cW+d
and’

. 2w

2 iAW +d

Note that limn-wcr=c and limn-«dn=d. If m is chosen such that m=o( W~2) as W~0, then
(4.4) and (4.5) are satisfied and the two-stage procedure becomes asymptotically efficient.
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