Existence of estimators with bounded risks under an asymmetric loss function

Yoshikazu Takada

(Received February 1, 1999)

1. Introduction

Let $\{X_i; i \ge 1\}$ be independent and identically distributed (i.i.d.) random variables with the probability density function $\sigma^{-1}\left(\frac{x-\mu}{\sigma}\right)$ with respect to Lebesgue measure, where f is known and $\theta = (\mu, \sigma)$ ($\sigma > 0$) is unknown. We consider estimating μ under the loss function

$$L(\theta, d) = \rho(d - \mu),$$

where $\rho(u)$ is nonincreasing for u < 0, nondecreasing for u > 0 and $\rho(0) = 0$. Let

$$M_{min} = \min(m_-, m_+), \quad M_{max} = \max(m_-, m_+),$$

where $m_- = \lim_{u \to -\infty} \rho(u)$ and $m_+ = \lim_{u \to \infty} \rho(u)$, which may be infinity. Let $\delta(X)$ be an estimator based on $X = (X_1, \dots, X_n)$. Then the purpose of this paper is to find if there exists an estimator $\delta(X)$ such that

$$E_{\theta}\{L(\theta,\delta(X))\} \le W,\tag{1.1}$$

for all θ , where W(>0) is an given constant.

Under a symmetric loss function Lehmann [3] showed that if the sample size n is predetermined, then no estimators meet (1.1) for $W < M_{min} (= M_{max})$. In Section 2 we shall show that the nonexistence is also true for an asymmetric loss function if $W < M_{min}$, but there does exist such an estimator if $M_{min} < W < M_{max} < \infty$. However, we can not show if the result also holds when $M_{max} = \infty$. In Section 3 employing two-stage procedures by Stein [6], we shall show that it is possible to construct an estimator meeting the requirement (1.1) for some distributions. Section 4 is devoted to the normal distribution and discuss the property of the proposed two-stage procedure.

2. Fixed sample size estimators

In this section we assume that the sample size n is predetermined. Then we get the following results.

Theorem 1. If $0 < W < M_{min}$, then there do not exist any estimators whose risk is bounded by W for all θ .

Proof. Suppose that an estimator δ satisfies (1.1) for $0 < W < M_{min}$. Then for any d > 0

$$W \ge E_{\theta} \{ \rho(\delta(X) - \mu) \}$$

$$\ge \rho(d) P_{\theta}(\delta(X) - \mu \ge d) + \rho(-d) P_{\theta}(\delta(X) - \mu \le -d)$$

$$\ge \min(\rho(d), \rho(-d)) P_{\theta}(|\delta(X) - \mu| \ge d).$$

Since $\lim_{d\to\infty} \min(\rho(d), \rho(-d)) = M_{min}$, there exists d such that $0 < \alpha = W/\min(\rho(d), \rho(-d)) < 1$. Hence

$$P_{\theta}(|\delta(X)-\mu| < d) > 1-\alpha$$

which contradicts the fact that there do not exist fixed-width confidence intervals of μ when the sample size is fixed (e.g. Lehmann [3] and Takada [7]). Hence the proof is completed.

Theorem 2. If $M_{min} < W < M_{max} < \infty$, then there exists an estimator whose risk is bounded by W for all θ .

Proof. Without loss of generality, let us assume $m_- < m_+$. Let $\hat{\mu}(X)$ and $\hat{\sigma}(X)(>0)$ be any statistics satisfying

$$\hat{\mu}(aX+b) = a\hat{\mu}(X)+b,$$

$$\hat{\sigma}(aX+b) = a\hat{\sigma}(X)$$

for all a(>0) and b, where $aX+b=(aX_1+b,\cdots,aX_n+b)$. For example, $\hat{\mu}$ is the sample mean and $\hat{\sigma}$ the sample standard deviation. Let $\delta(X)=\hat{\mu}(X)+t\hat{\sigma}(X)$. Then

$$E_{\delta}(L(\theta, \delta(X))) = E_{\delta}(\rho(\hat{\mu}(X) + t\hat{\sigma}(X) - \mu))$$

$$= E_{(0, 1)}\{\rho(\hat{\mu}(\mu + \sigma X) + t\hat{\sigma}(\mu + \sigma X) - \mu)\}$$

$$= E_{(0, 1)}\{\rho(\sigma(\hat{\mu}(X) + t\hat{\sigma}(X)))\}$$

$$\leq m_{+}P_{(0, 1)}(\hat{\mu}(X) + t\hat{\sigma}(X) \geq 0)$$

$$+ m_{-}P_{(0, 1)}(\hat{\mu}(X) + t\hat{\sigma}(X) < 0)$$

$$= m_{-} + (m_{+} - m_{-})P_{(0, 1)}(\hat{\mu}(X) + t\hat{\sigma}(X) \geq 0).$$

Let $\alpha = (W - m_-)/(m_+ - m_-)$. Then $0 < \alpha < 1$. So there exists t such that

$$P_{(0,1)}(\hat{\mu}(X)+t\hat{\sigma}(X)\geq 0)=\alpha.$$

Hence we get

$$E_{\delta}\{L(\theta, \delta(X))\} \leq m_{-} + (m_{+} - m_{-})\alpha$$
$$= W,$$

which completes the proof.

In the proof we used the condition that $M_{max} < \infty$. We do not know if Theorem 2 holds without the condition. But the next example suggests that such an estimator may exist for some problems.

Example 1. Let X_1, \dots, X_n be i.i.d. according to the exponential distribution $(E(\mu, \alpha))$ with density $\sigma^{-1}\exp(-(x-\mu)/\sigma), x > \mu$. We want to estimate μ under the loss function

$$\rho(u) = \begin{cases} 1, & \text{for } u > 0 \\ -u, & \text{for } u \le 0. \end{cases}$$

Hence $M_{min}=1$ and $M_{max}=\infty$. Let $\delta(X)=\min(X_1,\dots,X_n)$. Then the risk function of δ is one since $\delta(X)>\mu$, so that for any $W(1\leq W\leq\infty)$

$$E_{\theta}\{L(\theta, \delta(X))\} \leq W.$$

3. Two-stage estimation procedures

In this section we shall show that utilizing a two-stage procedure by Stein [6] may enable us to construct an estimator with bounded risk in some cases when there do not exist fixed sample size estimators.

For each n, let $X_n = (X_1, \dots, X_n)$. We suppose that there exist two sequences of statistics $\{t_n(X_n); n \ge n_0\}$ and $\{s_n(X_n); n \ge n_0\}$ $\{s_n(X_n) > 0\}$ which satisfy the following assumptions.

Assumption 1. For any a(>0), b and $n \ge n_0$

$$t_n(aX_n+b) = at_n(X_n) + b,$$

$$s_n(aX_n+b) = as_n(X_n).$$

Assumption 2. There exists a positive constant β such that

$$P_{(0,1)}(n^{\beta}t_n(X_n) \leq x) = G(x)$$

is independent of n.

Assumption 3. There exists a positive integer $m(\geq n_0)$ such that $t_n(X_n)$ is independent of $s_m(X_m)$ for $n \geq m$.

The similar assumptions are used in Ghurye [2] who considered an application of Stein's two-stage procedure of testing for a location parameter of the location-scale family. See also Mukhopadhyay [5].

Let $S_m = s_m(X_m)$ and we assume that for each z > 0

$$h_{m}(z) = \iint \rho\left(\frac{zx}{y}\right) G(dx) H_{m}(dy) < \infty, \tag{3.1}$$

where $H_m(y) = P_{(0,1)}(S_m \le y)$. Then $h_m(z)$ is a nondecreasing function of z > 0 and $h_m(0) = 0$,

$$\lim_{z \to \infty} h_m(z) = m_+ \int_{x \ge 0} G(dx) + m_- \int_{x < 0} G(dx)$$

$$= \alpha m_+ + (1 - \alpha) m_-$$

with $\alpha = \int_{x \ge 0} G(dx)$. Hence if $W < \alpha m_+ + (1 - \alpha) m_-$, then there exists a positive constant z_m such that $h_m(z_m) = W$.

Now we shall give a two-stage estimator whose risk is bounded by W. Let $X_m = (X_1, \dots, X_m)$ be the first sample and calculate S_m . Define the total sample size N by

$$N = \max\left\{m, \left\lceil \left(\frac{S_m}{Z_m}\right)^{1/\rho}\right\rceil + 1\right\},\tag{3.2}$$

where [u] denotes the largest integer less than u. If N > m, take the second sample X_{m+1}, \dots, X_N . Then μ is estimated by $T_N = t_N(X_N)$.

Theorem 3. If Assumptions 1 to 3 are satisfied and $W < \alpha m_+ + (1-\alpha)m_-$, then the estimator T_N meets the requirement.

Proof. It follows from Assumption 3 that

$$E_{\theta}\{L(\theta, T_N)\} = E_{\theta}\{\rho(T_N - \mu)\}$$

$$= \sum_{n=m}^{\infty} E_{\theta}\{I_{(N=n)}\rho(t_n(X_n) - \mu)\}$$

$$= \sum_{n=m}^{\infty} P_{\theta}(N=n)E_{\theta}\{\rho(t_n(X_n) - \mu)\},$$

where $I_{(N=n)}$ denotes the indicator function of the set $\{N=n\}$. Then from Assumptions 1 and 2 and the definition of N we get

$$E_{\theta}\{L(\theta, t_{N}(X_{N}))\} = \sum_{n=m}^{\infty} P_{\theta}(N=n)E_{(0, 1)}\{\rho(\sigma t_{n}(X_{n}))\}$$

$$= \sum_{n=m}^{\infty} P_{\theta}(N=n)\int \rho\left(\frac{\sigma x}{n^{\beta}}\right)G(dx)$$

$$= E_{\theta}\left\{\int \rho\left(\frac{\sigma x}{N^{\beta}}\right)G(dx)\right\}$$

$$\leq E_{\theta}\left\{\int \rho\left(\frac{z_{m}\sigma x}{S_{m}}\right)G(dx)\right\}$$

$$= h_{m}(z_{m}) = W.$$

Hence the proof is completed.

Example 2. Let $\{X_i, i \geq 1\}$ be i.i.d. according to the exponential distribution $E(\mu, \sigma)$, and let $t_n(X_n) = \min(X_1, \dots, X_n)$ and $s_n(X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - t_n(X_n))$. Then $t_n(X_n)$ and $s_n(X_n)$ are independently distributed as $E(\mu, \sigma/n)$ and $\frac{1}{2(n-1)} \sigma \chi_{2n-2}^2$, respectively, where χ_{2n-2}^2 denotes the chi squared distribution with 2n-2 degrees of freedom. It is easy to see that Assumptions 1 to 3 are satisfied with $\beta=1$, and that (3.1) is given by

$$h_m(z) = \int_0^\infty \rho\left(\frac{zu}{m-1}\right) f_{2, 2(m-1)}(u) du,$$

where $f_{2, 2(m-1)}(u)$ is the density of F distribution with (2, 2(m-1)) degrees of freedom. So we can get a two-stage estimator $\min(X_1, \dots, X_N)$ whose risk is bounded by $W(< m_+)$. The total sample size N by (3.2) is

$$N = \max\left\{m, \left\lceil \frac{S_m}{z_m} \right\rceil + 1\right\}$$

wher $h_m(z_m) = W$ and $S_m = s_m(X_m)$.

4. Normal distribution

Let $\{X_i, i \ge 1\}$ be i.i.d. according to the normal distribution with mean μ and variance σ^2 , and let $t_n(X_n) = \overline{X_n} \left(= \frac{1}{n} \sum_{i=1}^n X_i \right)$, $s_n(X_n) = \sqrt{U_n}$ with $U_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$. Then it is easy to see that Assumptions 1 to 3 are satisfied with $\beta = 1/2$, and that (3.1) is given by

$$h_m(z) = \int_{-\infty}^{\infty} \rho(zu) g_{m-1}(u) du,$$

where $g_{m-1}(u)$ is the density of t distribution with m-1 degrees of freedom. So we can get a two-stage estimator \overline{X}_N whose risk is bounded by $W(<(m_-+m_+)/2)$. The total sample size N by (3.2) is

$$N = \max\left\{m, \left\lceil \frac{U_m}{z^2_m} \right\rceil + 1\right\},\tag{4.1}$$

where $h_m(z_m) = W$.

Now we consider properties of the two-stage procedure (4.1). Let

$$h(z) = \int_{-\infty}^{\infty} \rho(zu) \phi(u) du,$$

where ϕ is the density function of the standard normal distribution. If σ were known, then

$$E_{\theta O}(\bar{X}_n - \mu) \leq W$$

if and only if $n \ge n^* = (\sigma/z^*)^2$, where $h(z^*) = W$. So n^* would be the optimal sample size if σ were known.

Lemma 1. $z^* \ge z_m$.

Proof. Suppose that X and Y are random variables with the standard normal distribution and t distribution with $\nu(=m-1)$ degrees of freedom, respectively. The it follows from Theorem 4 of Ghosh [1] that

$$P(|X| > c) \le P(|Y| > c)$$

for any c>0. That is, |Y| is stochastically larger than |X|. Since $h(z)=E\rho(zX)$ and $h_m(z)=E\rho(zY)$, it can be shown that $h_m(z)\geq h(z)$ (e.g. Lehmann [4], p. 116), from which the theorem is proved.

From (4.1) we get

Asymmetric loss function

$$\frac{U_m}{z_m^2} \le N \le \frac{U_m}{z_m^2} + m. \tag{4.2}$$

Hence

$$\left(\frac{z^*}{z_m}\right)^2 \frac{U_m}{\sigma^2} \le \frac{N}{n^*} \le \left(\frac{z^*}{z_m}\right)^2 \frac{U_m}{\sigma^2} + \frac{mz^{*2}}{\sigma^2}.$$
 (4.3)

From the left inequality of (4.3) and Lemma 1 we get the following result.

Theorem 4. For any fixed W and m

$$\frac{E_{\theta}(N)}{n^*} \ge \left(\frac{z^*}{z_m}\right)^2 \ge 1.$$

Next we consider the asymptotic properties of the two-stage procedure as $W \to 0$. We call the two-stage procedure asymptotically efficient if

$$\lim_{W\to 0}\frac{E_{\theta}(N)}{n^*}=1.$$

It follows from (4.3) that

$$\left(\frac{z^*}{z_m}\right)^2 \leq \frac{E_{\theta}(N)}{n^*} \leq \left(\frac{z^*}{z_m}\right)^2 + \frac{mz^{*2}}{\sigma^2}.$$

So in order for the two-stage procedure to be asymptotically efficient it is necessary that m must be chosen such that

$$\lim_{W \to 0} \frac{z^*}{z_m} = 1 \tag{4.4}$$

and

$$\lim_{W \to 0} mz^{*2} = 0. \tag{4.5}$$

Then the next result is obtained.

Theorem 5. If the initial sample size m is chosen such that (4.4) and (4.5) are satisfied, then the two-stage procedure is asymptotically efficient.

Example 3. Suppose that

$$\rho(u) = \begin{cases} au^2, & \text{for } u > 0 \\ -bu, & \text{for } u \le 0, \end{cases}$$

where a>0 and b>0. Then straightforward calculations show that

$$h(z) = cz + dz^{2}$$
$$h_{m}(z) = c_{m}z + d_{m}z^{2}.$$

where
$$c=\frac{a}{2}$$
, $d=\frac{b}{\sqrt{2\pi}}$, $c_m=c\frac{\nu}{\nu-2}$ and $d_m=d\frac{\Gamma\left(\frac{\nu-1}{2}\right)\sqrt{\nu}}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{2}}$ with $\nu=m-1$.

Hence

$$z^* = \frac{-d + \sqrt{d^2 + 4cW}}{2c}, \quad z_m = \frac{-d_m + \sqrt{d_m^2 + 4c_mW}}{2c_m}.$$

So

$$\frac{z^*}{z_m} = \frac{\sqrt{d_m^2 + 4c_m W} + d_m}{\sqrt{d^2 + 4c_m W} + d}$$

and

$$z^* = \frac{2W}{\sqrt{d^2 + 4cW} + d}$$

Note that $\lim_{m\to\infty} c_m = c$ and $\lim_{m\to\infty} d_m = d$. If m is chosen such that $m = o(W^{-2})$ as $W\to 0$, then (4.4) and (4.5) are satisfied and the two-stage procedure becomes asymptotically efficient.

References

- [1] Ghosh, B. K., Some monotonicity theorem for χ^2 , F and t distribution with applications, J. Roy. Statist. Soc., B, **35** (1973), 48-492.
- [2] Ghurye, S. G., Note on sufficient statistics and two-stage procedures, Ann. Math. Statist. 29 (1958), 155-166.
- [3] Lehmann, E. L., Notes on the theory of estimation, University of Californian Press, Berkeley, 1951.
- [4] Lehmann, E. L., Testing Statistical Hypotheses, 2nd ed., Wiley, New York, 1986.
- [5] Mukhopadhyay, N., Stein's two-stage procedure and exact consistency, Scand. Actuarial J. (1982), 110-122.

- [6] Stein, C., A two-sample test for a linear hypothesis whose power is independent of the variance, Ann. Math. Statist., 16 (1945), 245-258.
- [7] Takada, Y., The nonexistence of procedures with bounded performance characteristics in certain parametric inference problems, Ann. Inst. Statist. Math., 50 (1998), 325-335.

Yoshikazu Takada Department of Mathematics Faculty of Science Kumamoto University Kumamoto 860-855, Japan

E-mail: takada@sci. kumamoto-u. ac. jp