(2, p, q)-Generations of the Conway group Co_1 M. R. Darafsheh and A. R. Ashrafi (Received October 16, 1999) Revised February 16, 2000) #### Abstract A group G is (l, m, n)-generated if it is a quotient group of the triangle group $T(l, m, n) = \langle x, y, z | x^t = y^m = z^n = xyz = 1 \rangle$. In some research papers the problem is posed to find all possible (l, m, n)-generations for the non-abelian finite simple groups. In this paper we partially answer this question for the Conway group Co_1 . We find all (2, p, q)-generations, p and q are distinct primes, for Co_1 . 1991 AMS Subject Classification Number: Primary 20D08, 20F05. Keywords: Conway's group, generator, triangle group. #### 1. Introduction A group G is said to be (l, m, n)-generated if it can be generated by two elements x and y such that o(x)=l, o(y)=m and o(xy)=n. In this case G is the quotient of the triangle group T(l, m, n) and for any permutation π of S_3 , the group G is also $((l)\pi, (m)\pi, (n)\pi)$ -generated. Therefore we may assume that $l \le m \le n$. By [1] if the simple group G is (l, m, n)-generated, then $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} < 1$. Hence for a non-abelian finite simple group G and divisors I, m, n of the order of G such that $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} < 1$, it is natural to ask if G is a (l, m, n)-generated group. The motivation for this question came from the calculation of the genus of finite simple groups [17]. It can be shown that the problem of finding the genus of a finite simple group can be reduced to one of generations (for details see [14]). In a series of papers, [5], [6], [8] and [9] Moori and Ganief established all possible (p, q, r)-generations, where p, q, r are distinct primes, of the sporadic groups J_1 , J_2 , J_3 , HS, McL, Co_3 , Co_2 , and F_{22} . The motivation for this study is outlined in these papers and the reader is encouraged to consult these papers for background material as well as basic computational techniques. Throughout this paper we use the same notation as in [7]. In particular, $\Delta(G) = \Delta(lX, mY, nZ)$ denotes the structure constant of G for the conjugacy classes lX, mY, nZ, whose value is the cardinality of the set $\Lambda = \{(x, y) | xy = z\}$, where $x \in lX$, $y \in mY$ and z is a fixed element of the conjugacy class nZ. In Table I, we list the values $\Delta(2X, pY, pZ)$, p and q distinct prime divisors of $|C_{01}|$, using the character table C_{01} . Also, $\Delta^*(G) = \Delta_c^*(lX, mY, nZ)$ and $\Delta(H_1 \cup H_2 \cup \cdots \cup H_r)$ denote the number of pairs $(x, y) \in \Lambda$ such that $G = \langle x, y \rangle$ and $\langle x, y \rangle$ M. R. Darafsheh and A. R. Ashrafi Table I: Structure Constants of Co1 | pX | $\Delta(2A,3A,pX)$ | $\Delta(2A,3B,pX)$ | $\Delta(2A,3C,pX)$ | $\Delta(2A,3D,pX)$ | |-------------|--------------------|---------------------|---------------------|--------------------| | 7 <i>A</i> | 0 | 0 | 0 | 497 | | 7 <i>B</i> | 0 | 147 | 0 | 0 | | 11 <i>A</i> | 0 | 11 | 0 | 88 | | 13 <i>A</i> | 0 | 0 | 0 | 117 | | 23 <i>A</i> | 0 | 0 | 0 | 92 | | 23 <i>B</i> | 0 | 0 | 0 | 92 | | pX | $\Delta(2A,5A,pX)$ | $\Delta(2A,5B,pX)$ | $\Delta(2A,5C,pX)$ | $\Delta(2A,7A,pX)$ | | 7 <i>A</i> | 294 | 7350 | 0 | - | | 7 <i>B</i> | 147 | 38220 | 1764 | - | | 11 <i>A</i> | . 44 | 7810 | 2178 | 6204 | | 13 <i>A</i> | 26 | 754 | 3900 | 5837 | | 23 <i>A</i> | 0 | 1127 | 3082 | 2093 | | 23 <i>B</i> | 0 | 1127 | 3082 | 2093 | | pX | $\Delta(2A,7B,pX)$ | $\Delta(2A,11A,pX)$ | $\Delta(2A,13A,pX)$ | | | 11 <i>A</i> | 137940 | - | - | | | 13 <i>A</i> | 40716 | 795652 | - | | | 23 <i>A</i> | 39399 | 728295 | 299552 | | | 23 <i>B</i> | 39399 | 728295 | 299552 | | | pX | $\Delta(2B,3A,pX)$ | $\Delta(2B,3B,pX)$ | $\Delta(2B,3C,pX)$ | $\Delta(2B,3D,pX)$ | | 7 <i>A</i> | 0 | 0 | 0 | 17640 | | 7 <i>B</i> | 0 | 14 | 0 | 2352 | | 11 <i>A</i> | 0 | 11 | 66 | 4444 | | 13 <i>A</i> | 0 | 156 | 104 | 6396 | | 23 <i>A</i> | 0 | 23 | 138 | 3841 | | 23B | 0 | 23 | 138 | 3841 | Table I (Continued) | pX $\Delta(2B,5A,pX)$ $\Delta(2B,5B,pX)$ $\Delta(2B,5C,pX)$ $\Delta(2B,7A,pX)$ 7A 27048 57624 17640 - 7B 14 18816 189336 - 11A 220 36300 157938 100342 13A 6084 109252 105612 437372 23A 345 54119 136988 107778 pX $\Delta(2B,7B,pX)$ $\Delta(2B,11A,pX)$ $\Delta(2B,13A,pX)$ - 11A 1357092 - - - 23A 1757591 31654003 13257200 - 23B 1757591 31654003 13257200 - 23B 1757591 31654003 13257200 0 0 pX $\Delta(2C,3A,pX)$ $\Delta(2C,3B,pX)$ $\Delta(2C,3C,pX)$ $\Delta(2C,3D,pX)$ 7A 0 0 0 0 0 7B 0 1274 392 16464 11A 0 462 330 1854 | | | | | | |---|-------------|----------------------|-----------------------|-----------------------|--------------------| | $7B$ 14 18816 189336 - $11A$ 220 36300 157938 100342 $13A$ 6084 109252 105612 437372 $23A$ 345 54119 136988 107778 pX $\Delta(2B,7B,pX)$ $\Delta(2B,11A,pX)$ $\Delta(2B,13A,pX)$ $11A$ 1357092 - - $13A$ 2416284 35187100 - $23A$ 1757591 31654003 13257200 $23B$ 1757591 31654003 13257200 $23B$ 1757591 31654003 13257200 $23B$ 1757591 31654003 13257200 $7A$ 0 0 0 0 $7B$ 0 0 0 0 $7B$ 0 0 0 0 0 $13A$ 0 0 0 0 0 0 $23A$ 0 | pX | $\Delta(2B, 5A, pX)$ | $\Delta(2B,5B,pX)$ | $\Delta(2B,5C,pX)$ | $\Delta(2B,7A,pX)$ | | $11A$ 220 36300 157938 100342 $13A$ 6084 109252 105612 437372 $23A$ 345 54119 136988 107778 pX $\Delta(2B,7B,pX)$ $\Delta(2B,11A,pX)$ $\Delta(2B,13A,pX)$ $11A$ 1357092 - - $13A$ 2416284 35187100 - $23A$ 1757591 31654003 13257200 $23B$ 1757591 31654003 13257200 $23B$ 1757591 31654003 13257200 pX $\Delta(2C,3A,pX)$ $\Delta(2C,3B,pX)$ $\Delta(2C,3C,pX)$ $\Delta(2C,3D,pX)$ $7A$ 0 0 0 0 0 $7B$ 0 1274 392 16464 $11A$ 0 462 330 18546 $13A$ 0 0 156 19344 $23A$ 0 138 828 19182 pX $\Delta(2C,5A,pX)$ $\Delta(2$ | 7 <i>A</i> | 27048 | 57624 | 17640 | _ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 <i>B</i> | 14 | 18816 | 189336 | _ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 11 <i>A</i> | 220 | 36300 | 157938 | 100342 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 13 <i>A</i> | 6084 | 109252 | 105612 | 437372 | | pX $\Delta(2B,7B,pX)$ $\Delta(2B,11A,pX)$ $\Delta(2B,13A,pX)$ $11A$ 1357092 - - $13A$ 2416284 35187100 - $23A$ 1757591 31654003 13257200 pX $\Delta(2C,3A,pX)$ $\Delta(2C,3B,pX)$ $\Delta(2C,3C,pX)$ $\Delta(2C,3D,pX)$ $7A$ 0 0 0 0 0 $7B$ 0 1274 392 16464 11A 0 462 330 18546 $13A$ 0 0 156 19344 23A 1982 1982 $23B$ 0 138 828 19182 1982 </td <td>23A</td> <td>345</td> <td>54119</td> <td>136988</td> <td>107778</td> | 23A | 345 | 54119 | 136988 | 107778 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 23 <i>B</i> | 345 | 54119 | 136988 | 107778 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | pX | $\Delta(2B,7B,pX)$ | $\Delta(2B,11A,pX)$ | $\Delta(2B, 13A, pX)$ | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 11 <i>A</i> | 1357092 | - | - | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 13 <i>A</i> | 2416284 | 35187100 | - | | | pX $\Delta(2C, 3A, pX)$ $\Delta(2C, 3B, pX)$ $\Delta(2C, 3C, pX)$ $\Delta(2C, 3D, pX)$ $7A$ 0 0 0 0 $7B$ 0 1274 392 16464 $11A$ 0 462 330 18546 $13A$ 0 0 156 19344 $23A$ 0 138 828 19182 $23B$ 0 138 828 19182 pX $\Delta(2C, 5A, pX)$ $\Delta(2C, 5B, pX)$ $\Delta(2C, 5C, pX)$ $\Delta(2C, 7A, pX)$ $7A$ 0 17640 423360 - $7B$ 1274 775572 522732 - 11A 1848 467214 634392 490512 13A 0 93288 615264 118872 23A 2070 282210 711804 563592 pX $\Delta(2C, 7B, pX)$ $\Delta(2C, 11A, pX)$ $\Delta(2C, 13A, pX)$ 11A 12004608 - - 13A 5577624 <td>23<i>A</i></td> <td>1757591</td> <td>31654003</td> <td>13257200</td> <td></td> | 23 <i>A</i> | 1757591 | 31654003 | 13257200 | | | $7A$ 0 0 0 0 $7B$ 0 1274 392 16464 $11A$ 0 462 330 18546 $13A$ 0 0 156 19344 $23A$ 0 138 828 19182 $23B$ 0 138 828 19182 pX $\Delta(2C, 5A, pX)$ $\Delta(2C, 5B, pX)$ $\Delta(2C, 5C, pX)$ $\Delta(2C, 7A, pX)$ $7A$ 0 17640 423360 - $7B$ 1274 775572 522732 - $11A$ 1848 467214 634392 490512 $13A$ 0 93288 615264 118872 $23A$ 2070 282210 711804 563592 $23B$ $\Delta(2C, 7B, pX)$ $\Delta(2C, 11A, pX)$ $\Delta(2C, 13A, pX)$ $11A$ 12004608 - - $13A$ 5577624 139089600 - - $23A$ 9083160 163389240 68441376 | 23 <i>B</i> | 1757591 | 31654003 | 13257200 | | | $7B$ 0 1274 392 16464 $11A$ 0 462 330 18546 $13A$ 0 0 156 19344 $23A$ 0 138 828 19182 $23B$ 0 138 828 19182 pX $\Delta(2C, 5A, pX)$ $\Delta(2C, 5B, pX)$ $\Delta(2C, 5C, pX)$ $\Delta(2C, 7A, pX)$ $7A$ 0 17640 423360 - $7B$ 1274 775572 522732 - $11A$ 1848 467214 634392 490512 $13A$ 0 93288 615264 118872 $23A$ 2070 282210 711804 563592 pX $\Delta(2C, 7B, pX)$ $\Delta(2C, 11A, pX)$
$\Delta(2C, 13A, pX)$ $11A$ 12004608 - - pX $\Delta(20608)$ - - $13A$ 5577624 139089600 - $23A$ 9083160 163389240 68441376 | pX | $\Delta(2C,3A,pX)$ | $\Delta(2C,3B,pX)$ | $\Delta(2C,3C,pX)$ | $\Delta(2C,3D,pX)$ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 <i>A</i> | 0 | 0 | 0 | 0 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 <i>B</i> | 0 | 1274 | 392 | 16464 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 11 <i>A</i> | 0 | 462 | 330 | 18546 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 13 <i>A</i> | 0 | 0 | 156 | 19344 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 23 <i>A</i> | 0 | 138 | 828 | 19182 | | $7A$ 0 17640 423360 - $7B$ 1274 775572 522732 - $11A$ 1848 467214 634392 490512 $13A$ 0 93288 615264 118872 $23A$ 2070 282210 711804 563592 $23B$ 2070 282210 711804 563592 pX $\Delta(2C,7B,pX)$ $\Delta(2C,11A,pX)$ $\Delta(2C,13A,pX)$ $11A$ 12004608 $13A$ 5577624 139089600 - $23A$ 9083160 163389240 68441376 | 23 <i>B</i> | | | | | | $7B$ 1274 775572 522732 - $11A$ 1848 467214 634392 490512 $13A$ 0 93288 615264 118872 $23A$ 2070 282210 711804 563592 $23B$ 2070 282210 711804 563592 pX $\Delta(2C, 7B, pX)$ $\Delta(2C, 11A, pX)$ $\Delta(2C, 13A, pX)$ $11A$ 12004608 - - $13A$ 5577624 139089600 - $23A$ 9083160 163389240 68441376 | pX | $\Delta(2C, 5A, pX)$ | $\Delta(2C, 5B, pX)$ | $\Delta(2C, 5C, pX)$ | $\Delta(2C,7A,pX)$ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 <i>A</i> | 0 | 17640 | 423360 | - | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 <i>B</i> | 1274 | 775572 | 522732 | - | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 1848 | 467214 | 634392 | 490512 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0 | 93288 | 615264 | 118872 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 2070 | 282210 | 711804 | 563592 | | 11A 12004608 - - 13A 5577624 139089600 - 23A 9083160 163389240 68441376 | 23B | | | | 563592 | | 13A 5577624 139089600 - 23A 9083160 163389240 68441376 | pX | $\Delta(2C,7B,pX)$ | $\Delta(2C, 11A, pX)$ | $\Delta(2C, 13A, pX)$ | | | 23 <i>A</i> 9083160 163389240 68441376 | | 12004608 | - | - | | | 202 | | 5577624 | 139089600 | - | | | 23B 9083160 163389240 68441376 | | | 163389240 | 68441376 | | | | 23B | 9083160 | 163389240 | 68441376 | | $\subseteq H_i$ (for some $1 \le i \le r$), respectively. The number of pairs $(x, y) \in \Lambda$ generating a subgroup H of G will be given by $\Sigma^*(H)$ and the centralizer of a representative of lX will be denoted by $C_G(lX)$. A general conjugacy class of a subgroup H of G with elements of order n will be denoted by nx. Clearly, if $\Delta^*(G) > 0$, then G is (lX, mY, nZ)-generated and (lX, mY, nZ) is called a generating triple for G. The number of conjugates of a given subgroup H of G containing a fix element z is given by $\chi_{N_G(H)}(z)$, where $\chi_{N_G(H)}$ is the permutation character of G with action on the conjugates of H (cf. [15]). In most cases we will calculate this value from the fusion map from $N_G(H)$ into G stored in GAP, [10]. Now we discuss techniques that are useful in resolving generation type questions for finite groups. We begin with a theorem of Scott that, in certain situations, is very effective at establishing non-generations (see [11]). **Theorem 1.1.** [11] Let x_1, x_2, \dots, x_m be elements generating a group G with $x_1x_2\cdots x_m=1$, and let V be an irreducible module for G of dimension n. Let $C_V(x_i)$ denote the fixed point space of $\langle x_i \rangle$ on V, and let d_i be the dimension of $V/C_V(x_i)$. Then $d_1+\cdots d_m \geq 2n$. Further useful results that we shall use are: **Lemma 1.2.** [2] Let G be a finite centerless group and suppose lX, mY and nZ are G-conjugacy classes for which $\Delta^*(G) = \Delta_c^*(lX, mY, nZ) < |C_G(z)|$, $z \in nZ$. Then $\Delta^*(G) = 0$ and therefore G is not (lX, mY, nZ)-generated. **Lemma 1.3.** [16] Let G be a finite simple group and H a maximal subgroup of G containing a fixed element x. Then the number h of conjugates of H containing x is $\chi_H(x)$, where χ_H is the permutation character of G with action on the conjugates of H. In particular, $$h = \sum_{i=1}^{m} \frac{|C_G(x)|}{|C_H(x_i)|}$$ where x_1, x_2, \dots, x_m are representatives of the H-conjugacy classes that fuse to the G-conjugacy class of x. In the present paper we investigate the (2, p, q)-generations, p, q distinct primes, for the Conway's group Co_1 . We prove the following result: **Theorem.** The Conway's group Co_1 is (2, p, q)-generated for all $p, q \in \{3, 5, 7, 11, 13, 23\}$ with p < q, except when (p, q) = (3, 5) or (3, 7). ## 2. (2, 3, p)-Generations for Co_1 We consider triples (2, 3, p), in which $p \ge 5$ is prime. If the group Co_1 is (2, 3, p)-generated, then $\frac{1}{2} + \frac{1}{3} + \frac{1}{p} < 1$. Thus we only need to consider the cases p = 7, 11, 13, 23. We deal separately with each case in the following four subsections. For basic properties of the group Co_1 and information on its maximal subgroups the reader is referred to [3], [12] and [13]. It is a well known fact that Co_1 has exactly 22 conjugacy classes of maximal subgroups, as listed in Table II. 2.1. (2, 3, 7)-generation of Co_1 . The group Co_1 acts on a 24-dimensional vector space $\overline{\Lambda}$ over GF(2) and has three orbits on the set of non-zero vectors. The stabilizers are the groups Co_2 , Co_3 and $2^{11}: M_{24}$, and the permutation character of Co_1 on $\overline{\Lambda} - \{0\}$ is $\chi = 1_{Co_2} \uparrow {}^{Co_1} + 1_{Co_3} \uparrow {}^{Co_1} + 1_{2^{11}}: M_{24} \uparrow {}^{Co_1}$, and using GAP [10], we find that $$\chi=3\cdot 1a+2\cdot 299a+3\cdot 17250a+3\cdot 80730a+376740a$$ +644644a+2055625a+2417415a+2\cdot 5494125a, in which, na denotes the first irreducible character with degree n, in the library of GAP. Now for $g \in Co_1$, the value of $\chi(g)$ is the number of non-zero vectors of $\overline{\Lambda}$ fixed by g from which we can find the dimension δ_{nx} of the fixed space of $g \in nX$. Using the character table of Co_1 we list in Table III the values of $d_{px} = 24 - \delta_{px}$, for all conjugacy classes with prime order representatives. Finally, in Table IV, we list the partial fusion maps of the maximal subgroups into Co_1 | Group | Order | Group | Order | |------------------------------|--|--|--| | Co_2 | 2 ¹⁸ .3 ⁶ .5 ³ .7.11.23 | 3.Suz.2 | 214.38.52.7.11.13 | | $2^{11}:M_{24}$ | $2^{21}.3^3.5.7.11.23$ | Co_3 | 2 ¹⁰ .3 ⁷ .5 ³ .7.11.23 | | $2^{1+8}_{+}.O^{+}_{8}(2)$ | $2^{21}.3^{5}.5^{2}.7$ | $U_6(2).S_3$ | $2^{16}.3^{7}.5.7.11$ | | $(A_4\times G_2(4)):2$ | $2^{15}.3^4.5^2.7.13$ | $2^{2+12}:(A_8\times S_3)$ | $2^{21}.3^3.5.7$ | | $2^{4+12}.(S_3 \times 3S_6)$ | $2^{21}.3^{4}.5$ | $3^2.U_4(3).D_8$ | $2^{10}.3^8.5.7$ | | $3^6:2M_{12}$ | $2^{7}.3^{9}.5.11$ | $(A_5 imes J_2): 2$ | $2^{10}.3^4.5^3.7$ | | $3^{1+4}.2U_4(2).2$ | $2^8.3^9.5$ | $(A_6\times U_3(3)):2$ | $2^9.3^5.5.7$ | | $3^{3+4}:2(S_4\times S_4)$ | $2^{7}.3^{9}$ | $A_9 imes S_3$ | $2^7.3^5.5.7$ | | $(A_7\times L_2(7)):2$ | $2^7.3^3.5.7^2$ | $(D_{10} \times (A_5 \times A_5).2).2$ | $2^7.3^2.5^3$ | | $5^{1+2}:GL_2(5)$ | $2^5.3.5^4$ | $5^3:(4\times A_5).2$ | $2^5.3.5^4$ | | $5^2:2A_5$ | $2^3.3.5^3$ | $7^2:(3\times 2A_4)$ | $2^3.3^2.7^2$ | Table II: The maximal subgroups of Co₁ | d_{2A} | d_{2B} | d_{2C} | d_{3A} | d_{3B} | d_{3C} | d_{3D} | d_{5A} | |----------|----------|----------|----------|-----------|-----------|-----------|-----------| | 8 | 12 | 12 | 24 | 12 | 18 | · 16 | 24 | | d_{5B} | d_{5C} | d_{7A} | d_{7B} | d_{11A} | d_{13A} | d_{23A} | d_{23B} | | 16 | 20 | 24 | 18 | 20 | 24 | 22 | 22 | Table III: The codimensions $d_{nx} = \dim(V/C_v(nX))$ that we will use later. In this table h denotes the number of conjugates of the maximal subgroup H containing a fixed element z (see Lemma 1.3). It was first proved in [4] that the group Co_1 is not a Hurwitz group. The following is an alternative proof. \cdots Lemma 2.1. The group Co₁ is not (2, 3, 7)-generated. **Proof.** We must consider triples (2X, 3Y, 7Z) for which $\Delta_{Co_1}(2X, 3Y, 7Z) \neq 0$ and these are given in Table I. If $(2X, 3Y, 7Z) \neq (2B, 3D, 7A)$, (2B, 3D, 7B), (2C, 3B, 7B) or (2C, 3D, 7B), then $\Delta_{Co_1}(2X, 3Y, 7Z) < |C_{Co_1}(7Z)|$. Therefore, by Lemma 1.2, $\Delta^*(G) = 0$ and therefore Co_1 is not (2X, 3Y, 7Z)-generated, where (2X, 3Y, 7Z) = (2A, 3B, 7B), (2A, 3D, 7A), (2B, 3B, 7B) or (2C, 3C, 7B). Next we consider (2X, 3Y, 7Z) to be one of the triples (2B, 3D, 7B), (2C, 3B, 7B) or (2C, 3D, 7B). Using Table III, we have, $$d_{2B} + d_{3D} + d_{7B} = 12 + 16 + 18 = 46 < 48,$$ $d_{2C} + d_{3B} + d_{7B} = 12 + 12 + 18 = 42 < 48,$ $d_{2C} + d_{3D} + d_{7B} = 12 + 16 + 18 = 46 < 48.$ and hence, by Scott's theorem (2X, 3Y, 7Z) is a non-generating triple of Co_1 . Finally, we show that Co_1 is not (2B, 3D, 7A)-generated. It is easy to see that, in this case, $\Delta(G) = |C_G(7A)| = 17640$. By Table II, 3.Suz.2 is a maximal subgroup with non-empty intersection with the classes 2B, 3D, 7A and $\Sigma(3.Suz.2) = 1260$. Now we have, $\Delta^*(G) \leq \Delta(G) - 1260 < 17640 = |C_G(7A)|$ and non-generating of Co_1 by this triple follows from Lemma 1.2. This completes the proof. \square **2.2.** (2, 3, 11)-generation of Co_1 . We will use the maximal subgroups of Co_1 listed in the ATLAS extensively, especially those with order divisible by 11. We listed in Table IV, fusion maps of these maximal subgroups into Co_1 (obtained from GAP) that will enable us to evaluate $\Delta_c^*(2X, 3Y, 11Z)$. Table IV: Partial Fusion
Maps into Co. | Co_2 -classes | 2a | 2b | 2c | 3a | 3b | 5a | 5b | | |--|------------|-------------|-------------|-----|-------------|-----|-------------|------------| | $\rightarrow Co_1$ | 2A | 2A | 2C | 3C | 3B | 5C | 5B | | | Co_2 -classes | 7a | 11a | 23a | 23b | | | | | | $\rightarrow Co_1$ | 7B | 11 A | 23A | 23B | | | | | | h | 21 | 6 | 1 | 1 | | | | | | 3.Suz.2-classes | 2a | 2b | 2c | 2d | 3a | 3b | 3c | 3d | | $\rightarrow Co_1$ | 2A | 2B | 2B | 2C | 3A | 3A | 3B | 3B | | 3.Suz.2-classes | 3е | 3f | 5a | 5b | 7a | 11a | 13a | | | $\rightarrow Co_1$ | 3C | 3D | 5A | 5B | 7A | 11A | 13A | | | h | | | | | 35 | 1 | 4 | | | $2^{11}: M_{24}$ -classes | 2a | 2b | 2c | 2d | 2 e | 2f | 3a | 3 b | | $\rightarrow Co_1$ | 2A | 2C | 2A | 2C | 2C | 2B | 3B | 3D | | $2^{11}: M_{24}$ -classes | 5a | 7a | 7b | 11a | 23a | 23b | | | | $\rightarrow Co_1$ | 5B | 7B | 7B | 11A | 23A | 23B | | | | h | | 14 | 14 | 3 | 1 | 1 | | | | Co ₃ -classes | 2a | 2b | 3a | 3b | 3c | 5a | 5b | | | $\rightarrow Co_1$ | 2A | 2C | 3C | 3B | 3D | 5C | 5B | | | Co ₃ -classes | 7a | 11a | 11b | 23a | 23 b | | | | | $\rightarrow Co_1$ | 7B | 11 A | 11 A | 23A | 23B | | | | | h h | 28 | 6 | 6 | 1 | 1 | | | | | $U_6(2).S_3$ -classes | 2a | 2b | 2c | 2d | 2e | 3a | 3b | 3c | | $\rightarrow Co_1$ | 2A | 2A | 2C | 2A | 2C | 3B | 3C | 3B | | $U_6(2).S_3$ -classes | 3d | 3e | 3f | 3g | 5a | 7a | 11a | | | $\rightarrow Co_1$ | 3A | 3B | 3C | 3D | 5B | 7B | 11 A | | | h | | | | | | 28 | 2 | | | $(A_4 \times G_2(4)): 2 ext{-classes}$ | 2a | 2b | 2c | 2d | 2e | 2f | 3a | 3b | | $\rightarrow Co_1$ | 2A | 2B | 2B | 2B | 2B | 2C | 3A | 3D | | $(A_4 \times G_2(4)): 2 ext{-classes}$ | 3 c | 3d | 3 e | 5a | 5b | 7a | 13a | | | $\rightarrow Co_1$ | 3A | 3B | 3D | 5B | 5 A | 7A | 13A | | | h | | | | | | 35 | 1 | | | | | _ | | | | | | | Table IV (Continued) | -119 ol/o | | | | | | | | | | | | |---------------------------------------|------|------------|------------|-------------|------------|----|----|----|----|-----|----| | $2^{1+8}_{+}.O^{+}_{8}(2)$ -classes | 2a | 2b | 2 c | 2d | 2 e | 2f | 2g | 2h | 3a | 3b | 3c | | $\rightarrow Co_1$ | 2A | 2A | 2B | 2A . | 2C | 2C | 2C | 2A | 3B | 3C | 3A | | $2^{1+8}_{+}.O^{+}_{8}(2)$ -classes | 3d | 3e | 5a | 5b | 5c | 7a | | | | | | | $\rightarrow Co_1$ | 3B | 3C | 5A | 5B | 5C | 7B | | | | | | | h | | | | | | 21 | | | | | | | $2^{2+12}: (A_8 \times S_3)$ -classes | 2a | 2b | 2c | 2d | 2e | 2f | 2g | 2h | 2i | 2j | 2k | | $\rightarrow Co_1$ | 2A | 2A | 2B | 2C | 2A | 2C | 2C | 2A | 2C | 2C | 2B | | $2^{2+12}: (A_8 \times S_3)$ -classes | s 21 | 2m | 3a | 3b | 3c | 3d | 3e | 5a | 7a | 7b | | | $\rightarrow Co_1$ | 2C | 2B | 3D | 3A | 3D | 3B | 3D | 5A | 7B | 7B | | | $\mid h \mid$ | | | | | | | | | | 420 | | | $A_9 imes S_3$ -classes | 2a | 2b | 2c | 2d | 2e | 3a | 3b | 3c | 3d | 3e | 3f | | $\rightarrow Co_1$ | 2A | 2B | 2B | 2C | 2C | 3D | 3A | 3D | 3C | 3D | 3B | | $A_9 imes S_3$ -classes | 3g | 5a | 7a | | | | | | | | | | $\rightarrow Co_1$ | 3D | 5A | 7B | | | | | | | | | | h | | | 420 | | | | | | | | | | $(A_7 \times L_2(7))$: 2-classes | 2a | 2b | 2c | 2d | 2e | 3a | 3b | 3c | 3d | 3e | 5a | | $\rightarrow Co_1$ | 2A | 2B | 2B | 2B | 2C | 3D | 3A | 3D | 3B | 3D | 5A | | $(A_7 \times L_2(7))$: 2-classes | 7a | 7 b | 7c | 7d | | | | | | | | | $\rightarrow Co_1$ | 7A | 7B | 7A | 7B | | | | | | | | | h | | | 722 | 750 | | | | | | | | | $(A_5 \times J_2)$: 2-classes | 2a | 2b | 2c | 2d | 2e | 2f | 3a | 3b | 3c | 3d | 3e | | $\rightarrow Co_1$ | 2A | 2B | 2B | 2B | 2C | 2B | 3A | 3D | 3A | 3B | 3D | | $(A_5 imes J_2): ext{2-classes}$ | 5a | 5b | 5c | 5d | 5e | 5f | 5g | 7a | | | | | $\rightarrow Co_1$ | 5B | 5A | 5A | 5A | 5B | 5C | 5B | 7A | | | | | h | | | | | | | | 21 | | | | | $3^2.U_4(3).D_8$ -classes | 2a | 2b | 2c | 2d | 2e | 2f | 3a | 3b | 3c | 3d | 3e | | $\rightarrow Co_1$ | 2A | 2B | 2C | 2A | 2C | 2B | 3B | 3A | 3B | 3C | 3A | | $3^2.U_4(3).D_8$ -classes | 3f | 3g | 3h | 5a | 7a | | | | | | | | $\rightarrow Co_1$ | 3C | 3B | 3D | 5B | 7A | | | | | | | | h | | | | | 70 | **Lemma 2.2.** The group Co_1 is (2X, 3Y, 11Z)-generated if and only if (Y, Z) = (D, A) and $X \in \{B, C\}$. **Proof.** We first prove that Co_1 is (2X, 3D, 11A)-generated, where $X \in \{B, C\}$. To do this, assume that X = B, then by Table IV, the maximal subgroups of Co_1 , up to isomorphisms, that contain (2B, 3D, 11A)-generated subgroups are 3.Suz.2 and $2^{11}: M_{24}$. Furthermore, we calculate $\Delta(Co_1) = 4444$, $\Sigma(3.Suz.2) = 715$, and $\Sigma(2^{11}: M_{24}) = 154$. Therefore, $\Delta^*(Co_1) \ge 4444 - 715 -3.154 > 0$ and so Co_1 is (2B, 3D, 11A)-generated. Next, we assume that X = C, then by Table IV, the maximal subgroups of Co_1 , up to isomorphisms, that contain (2C, 3D, 11A)-generated subgroups are 3.Suz.2, $2^{11}: M_{24}$, Co_3 and $U_6(2).S_3$. We calculate $\Delta(Co_1) = 18546$, $\Sigma(3.Suz.2) = \Sigma(U_6(2).S_3) = 0$, $\Sigma(2^{11}: M_{24}) = 968$ and $\Sigma(Co_3) = 1342$. Using Table IV, we have, $\Delta^*(Co_1) \ge 18546 -6 \cdot 1342 - 3 \cdot 968 > 0$, and so Co_1 is (2C, 3D, 11A)-generated. Now we prove the non-generation of Co_1 by other (2X, 3Y, 11Z) triples. First of all, if $(X, Y) \not\in \{(2A, 3D), (2B, 3C), (2C, 3B), (2C, 3C)\}$, then $\Delta_{Co_1}^*(2X, 3Y, 11Z) \le \Delta_{Co_1}(2X, 3Y, 11Z) \le |C_{Co_1}(11Z)|$, and by Lemma 1.2, Co_1 is not (2X, 3Y, 11Z)-generated. Next, suppose that (X, Y) = (A, D) or (C, B). We apply the Scott's theorem and Table III, have, $$d_{2A} + d_{3D} + d_{11A} = 8 + 16 + 20 = 44 < 48,$$ $d_{2C} + d_{3B} + d_{11A} = 12 + 12 + 20 = 44 < 48.$ Therefore, Co_1 is not (2A, 3D, 11A)-and (2C, 3B, 11A)-generated. Also, if (X, Y) = (B, C), then the only maximal subgroups of Co_1 , up to isomorphisms, that contain (2B, 3C, 11A)-generated subgroups are 3.Suz.2. Furthermore, we calculate $\Delta(Co_1) = 66$ and $\Sigma(3.Suz.2) = 66$. Thus, $\Delta^*(Co_1) \le 66 - 66 = 0$ and so $\Delta^*(Co_1) = 0$. Finally, we show that Co_1 is not (2C, 3C, 11A)-generated. The maximal subgroups, up to isomorphisms, that contain (2C, 3C, 11A)-generated subgroups are Co_2 , 3.Suz.2, Co_3 and $U_6(2).S_3$. Furthermore, we have $\Delta(Co_1) = 330$, $\Sigma(Co_2) = 55$ and $\Sigma(3.Suz.2) = \Sigma(Co_3) = \Sigma(U_6(2).S_3) = 0$. Using similar argument as in above, the only maximal subgroups of Co_2 , up to isomorphisms, that contain (2C, 3C, 11A)-generated subgroups are $U_6(2).2$ and that $\Sigma_{Co_2}(U_6(2).2) = 0$. Therefore, $\Delta^*(Co_1) = 330 - 6 \cdot 55 = 0$, proving the result. \square **2.3.** (2, 3, 13)-generation of Co_1 . We will use the maximal subgroups of Co_1 with order divisible by 13. We listed in Table IV, fusion maps of these maximal subgroups into Co_1 , stored in GAP. We have, **Lemma 2.3.** The group Co_1 is (2X, 3Y, 13A)-generated if and only if $(X, Y) \in \{(B, D), (C, C), (C, D)\}$. **Proof.** Suppose $T = \{(B, B), (B, D), (C, C), (C, D)\}$ and $(X, Y) \not\in T$. Since $\Delta(Co_1) < |C_0(13A)|$, it follows from Lemma 1.2, that Co_1 is not (2X, 3Y, 13A)-generated. Thus, it is enough to investigate four cases that $(X, Y) \in T$ which we treat separately. Case (2B, 3B, 13A). We can see that $\Delta(Co_1)=156$ and that $|C_{Co_1}(13A)|=156$. By Table IV, 3. Suz. 2 is only maximal subgroup of Co_1 with non-empty intersection with all the conjugacy classes in this triple and $\Sigma(3.Suz.2)=39$. But, $\Delta^*(Co_1)\leq 156-39=117<156=|C_{Co_1}(13A)|$. Thus by Lemma 1.2, we conclude that Co_1 is not (2B, 3B, 13A)-generated. Case (2B, 3D, 13A). In this case, $\Delta(Co_1)=6396$ and maximal subgroups of Co_1 with non-empty intersection with all the conjugacy classes in this triple are, up to isomorphisms, 3.Suz.2 and $(A_4 \times G_2(4)):2$. Our calculations give, $\Sigma(3.Suz.2)=858$ and $\Sigma((A_4 \times G_2(4)):2)=0$. This implies that, $$\Delta^*(Co_1) \ge \Delta(Co_1) - 4\Sigma(Suz) - \Sigma((A_4 \times G_2(4)) : 2)$$ = 6396 - 4.858 = 2964. Thus $\Delta^*(Co_1) > 0$ and whence (2B, 3D, 13A) is a generating triple for Co_1 . Case (2C, 3C, 13A). By Table IV, 3.Suz.2 is only maximal subgroups of Co_1 , up to isomorphisms, with non-empty intersection with all the classes in this triple. Since $\Sigma(3.Suz.2)$ =0, hence Co_1 is (2C, 3C, 13A)-generated. Case (2C, 3D, 13A). The only maximal subgroups of Co_1 that may contain (2C, 3D, 13A)-generated proper subgroups are isomorphic to 3.Suz.2 and $(A_4 \times G_2(4)):2$. Moreover, $\Sigma(3.Suz.2) = \Sigma((A_4 \times G_2(4)):2) = 0$ and therefore Co_1 is (2C, 3D, 13A)-generated. This completes the proof. \square **2.4.** (2, 3, 23)-generation of Co_1 . Using character table of Co_1 , stored in GAP, we can see that Co_1 has exactly two conjugacy classes of elements of order 23, i.e., 23A and 23B, and that $23A^{-1}=23B$. Therefore, for investigation of (2X, 3Y, 23Z)-generation of Co_1 , we can assume that Z=A. **Lemma 2.4.** The group Co_1 is (2X, 3Y, 23Z)-generated if and only if $X \in \{B, C\}$ and $Y \in \{C, D\}$. **Proof.** Set, $T = \{(A, D), (B, B), (B, C), (B, D), (C, B), (C, C), (C, D)\}$. If $(X, Y) \not\in T$ then Δ $(Co_1) < |C_{Co_1}(23Z)|$, which implies the non-generation of Co_1 by triples (2X, 3Y, 23Z). Using Table III, we have, $$d_{2A} + d_{3D} + d_{23Z} = 8 + 16 + 22 = 46 < 48,$$ $d_{2B} + d_{3B} + d_{23Z} = 12 + 12 + 22 = 46 < 48,$ $d_{2C} + d_{3B} + d_{23Z} = 12 + 12 + 22 = 46 < 48.$ hence, if (X, Y)=(A, D), (B, B) or (C, B), then by Scott's theorem (2X, 3Y, 23Z) is a non-generating triple of Co_1 . Our main proof will consider a number of cases. Case (2B, 3C, 23A). Since, in this case, there is no maximal subgroups of Co_1 which intersect this triple, hence the group Co_1 is (2B, 3C, 23A)
generated. Case (2B, 3D, 23A). The only maximal subgroups of Co_1 that may contain (2B, 3D, 23A)-generated proper subgroups are isomorphic to $2^{11}: M_{24}$. Moreover, $\Delta(Co_1)=3841$ and $\Sigma(2^{11}: M_{24})=322$. On the other hand, $\Delta^*(Co_1) \geq \Delta(Co_1)-322>0$ and so Co_1 is (2B, 3D, 23A)-generated. Case (2C, 3C, 23A). The maximal subgroups of Co_1 that may contain (2C, 3C, 23A)-generated proper subgroups are isomorphic to Co_2 and Co_3 . We calculate that $\Delta(Co_1)=828$, $\Sigma(Co_2)=69$ and $\Sigma(Co_3)=0$. Thus, $\Delta^*(Co_1)\geq\Delta(Co_1)-\Sigma(Co_2)>0$, and so Co_1 is (2C, 3C, 23A)-generated. Case (2C, 3D, 23A). In this case, $\Delta(Co_1)=19182$ and the maximal subgroups of Co_1 with non-empty intersection with all the conjugacy classes in this triple are, up to isomorphisms, 2^{11} : M_{24} and Co_3 . We calculate that $\Sigma(2^{11}:M_{24})=414$ and $\Sigma(Co_3)=736$. Our calculations give, Δ^* (Co_1) $\geq \Delta(Co_1)-736-414>0$, and therefore Co_1 is (2C, 3D, 23A)-generated. \square We now summarize the above results in the following theorem. **Theorem 2.5.** The Conway's group Co_1 is (2, 3, p)-generated for all $p \in \{11, 13, 23\}$. **Proof.** The proof follows from the lemmas proved in sections 2.1-2.4 and the fact that the triangular group $T(2,3,5)\cong A_5$. \square ### 3. (2, 5, p)-Generations for Co_1 We consider triples (2, 5, p), in which $p \ge 7$ is prime. We deal separately with each case in the following four subsections. **3.1.** (2, 5, 7)-generation of Co_1 . In this section we obtain all the (2, 5, 7)-generations of the Conway's group Co_1 , with the exception of (2B, 5A, 7A) and (2B, 5B, 7A). In Table IV, we list the partial fusion maps of maximal subgroups into Co_1 that we will use later. **Lemma 3.1.** Suppose $(X, Y, Z) \neq (B, A, A)$, (B, B, A). The group Co_1 is (2X, 5Y, 7Z)- generated if and only if Y=C, $X\in\{B,C\}$ and $Z\in\{A,B\}$ or (X,Y,Z)=(C,B,A). **Proof.** Set, $S = \{(A, B, B), (A, C, B), (B, B, B), (C, A, B), (C, B, A), (C, B, B)\}$ and $T = \{(B, C, A), (B, C, B), (C, C, A), (C, C, B)\}$. We calculate that if $(X, Y, Z) \not\in S \cup T$ then $\Delta(Co_1) < |Cc_0|(7Z)|$. Thus by Lemma 1.2 we conclude that Co_1 is not (2X, 5Y, 7Z)-generated. On the other hand, by Table III, we have, $$d_{2A} + d_{5B} + d_{7B} = 42 < 48,$$ $$d_{2A} + d_{5C} + d_{7B} = 46 < 48,$$ $$d_{2B} + d_{5B} + d_{7B} = 46 < 48,$$ $$d_{2C} + d_{5B} + d_{7B} = 46 < 48.$$ and hence, by Scott's theorem, these are non-generating triples of Co_1 . Now, our main proof will consider a number of cases. Case (2C, 5A, 7B). In this case, $\Delta(Co_1)=1274$ and the maximal subgroups of Co_1 with non-empty intersection with all the conjugacy classes in this triple are, up to isomorphisms, $2_1^{1+8}.O_8^+(2)$, $2_2^{2+12}:(A_8\times S_3)$, $A_9\times S_3$ and $(A_7\times L_2(7)):2$. We calculate that $\Sigma(2_1^{1+8}.O_8^+(2))=210$, $\Sigma(2_2^{2+12}:(A_8\times S_3))=224$, $\Sigma(A_9\times S_3)=14$ and $\Sigma((A_7\times L_2(7)):2)=0$. Our calculations give, $\Delta^*(Co_1)\le 1274-224=1050<|C_{Co_1}(7B)|=1176$, and therefore Co_1 is not (2C, 5A, 7B)-generated. Case (2C, 5B, 7A). The maximal subgroups of Co_1 that may contain (2C, 5B, 7A)-generated proper subgroups are isomorphic to 3.Suz.2, $(A_4 \times G_2(4)) : 2$, $3^2.U_4(3).D_8$ and $(A_5 \times J_2) : 2$. We can see that $\Sigma(3.Suz.2) = \Sigma((A_4 \times G_2(4)) : 2) = \Sigma(3^2.U_4(3).D_8) = \Sigma((A_5 \times J_2) : 2) = 0$. Therefore, $\Delta^*(Co_1) = \Delta(Co_1) = 17640$, and so Co_1 is (2C, 5B, 7A)-generated. Case (2B, 5C, 7A). In this case $\Delta(Co_1)=17640$ and $(A_5 \times J_2):2$ is the unique maximal subgroups of Co_1 , up to isomorphisms, with non-empty intersection with each of the classes 2B, 5C and 7A. However, $\Sigma((A_5 \times J_2):2)=0$, proving the (2B, 5C, 7A)-generation of Co_1 . Case (2B, 5C, 7B). The only maximal subgroups of Co_1 that may contain (2B, 5C, 7B)-generated proper subgroups are isomorphic to $2^{1+8}_+.O^*_8(2)$. Moreover, $\Delta(Co_1)=189336$ and $\Sigma(2^{1+8}_+.O^*_8(2))=336$. On the other hand, $\Delta^*(Co_1)\geq\Delta(Co_1)-21.336>0$ and so Co_1 is (2B, 5C, 7B)-generated. Case (2C, 5C, 7A). In this case $\Delta(Co_1)=423360$ and $(A_5 \times J_2):2$ is the unique maximal subgroups of Co_1 , up to isomorphisms, with non-empty intersection with each of the classes 2C, 5C and 7A. However, $\Sigma((A_5 \times J_2):2)=0$, proving the (2C, 5C, 7A)-generation of Co_1 . Case (2C, 5C, 7B). The maximal subgroups of Co_1 that may contain (2C, 5C, 7B)-generated proper subgroups are isomorphic to Co_2 , Co_3 , and $2^{1+8}_+.O^+_8(2)$. We calculate $\Delta(G) = 522732$, $\Sigma(Co_2) = 9576$, $\Sigma(Co_3) = 1512$ and $\Sigma(2^{1+8}_+.O^+_8(2)) = 3556$. Our calculations give, $\Delta^*(Co_1) \ge \Delta(Co_1) - 21.9576 - 28.1512 - 21.3556 > 0$, and so Co_1 is (2C, 5C, 7B)-generated. This completes the proof. 3.2. (2, 5, 11)-generation of Co_1 . In this section we obtain all the (2X, 5Y, 11Z)-generation of Co_1 . In fact, we prove that, **Lemma 3.2.** The group Co_1 is (2X, 5Y, 11A)-generated if and only if $(X, Y) \in \{(A, C), (B, B), (B, C), (C, A), (C, B), (C, C)\}$. **Proof.** Set $R = \{(A, C), (B, B), (B, C), (C, A), (C, B), (C, C)\}$ and $S = \{(B, A), (A, B)\}$. If $(X, Y) \not\in R \cup S$, then we can see that $\Delta(Co_1) < |C_{Co_1}(11A)|$ and so Co_1 is not (2X, 5Y, 11A)-generated. We prove that Co_1 is (2X, 5Y, 11A)-generated if and only if $(X, Y) \in R$. Our main proof will consider a number of cases. Case (2B, 5A, 11A). In this case $\Delta(Co_1)=220$ and 3.Suz.2 is the unique maximal subgroups of Co_1 , up to isomorphisms, with non-empty intersection with each of the classes 2B, 5A and 11A. We calculate, $\Delta(Co_1)=\Sigma(3.Suz.2)=220$. This shows that $\Delta^*(Co_1)=0$, and so Co_1 is not (2B, 5A, 11A)-generated. Case (2A, 5B, 11A). Using Table III, we have $d_{2A} + d_{5B} + d_{11A} = 44 < 48$ and hence by Scott's theorem Co_1 is not (2A, 5B, 11A)-generated. Case (2A, 5C, 11A). The maximal subgroups of Co_1 that may contain (2A, 5C, 11A)-generated proper subgroups are isomorphic to Co_2 and Co_3 . We calculate $\Delta(G)=2178$, $\Sigma(Co_2)=165$ and $\Sigma(Co_3)=88$. Our calculations give, $\Delta^*(Co_1)\geq\Delta(Co_1)-6.165-6.88>0$, and so Co_1 is (2A, 5C, 11A)-generated. Case (2B, 5B, 11A). From the list of maximal subgroups of Co_1 we observe that, up to isomorphisms, 3.Suz.2 and $2^{11}: M_{24}$ are the only maximal subgroups of Co_1 that admit (2B, 5B, 11A)-generated subgroups. From the structure constant we calculate $\Delta(Co_1)=36300$, $\Sigma(3.Suz.2)=2277$ and $\Sigma(2^{11}: M_{24})=1628$. Thus, $\Delta^*(Co_1) \geq \Delta(Co_1)-2277-3.1628>0$. This shows that the Conway's group Co_1 is (2B, 5B, 11A)-generated. Case (2B, 5C, 11A). In this case $\Delta(Co_1)=157938$ and there is no maximal subgroups of Co_1 that contains (2B, 5C, 11A)-generated proper subgroups. Therefore, $\Delta^*(Co_1)=\Delta(Co_1)>0$, and so Co_1 is (2B, 5C, 11A)-generated. Case (2C, 5A, 11A). In this case $\Delta(Co_1)=1848$ and 3.Suz.2 is the unique maximal subgroups of Co_1 , up to isomorphisms, with non-empty intersection with each of the classes 2C, 5A and 11A. Now since, $\Sigma(3.Suz.2)=0$, hence $\Delta^*(Co_1)=\Delta(Co_1)$ and Co_1 is (2C, 5A, 11A)-generated. Case (2C, 5B, 11A). From the list of maximal subgroups of Co_1 we observe that, up to isomorphisms, Co_2 , 3.Suz.3, 2^{11} : M_{24} , Co_3 and $U_6(2).S_3$ are the only maximal subgroups of Co_1 with order divisible by 11. We calculate $\Delta(Co_1)=467214$, $\Sigma(3.Suz.2)=0$, $\Sigma(Co_2)=41712$, $\Sigma(2^{11}:$ M_{24})=6050, $\Sigma(Co_3)$ =15026, and $\Sigma(U_6(2).S_3)$ =17524. Also, a fixed element of order 7 is contained in 6 conjugates of Co_2 , 3 conjugates of 2^{11} : M_{24} , 12 conjugates of Co_3 and 2 conjugates of $U_6(2).S_3$. Therefore, $\Delta^*(Co_1) \ge \Delta(Co_1) - 6.41712 - 3.6050 - 12.15026 - 2.7524 > 0$, which proves the group Co_1 is (2C, 5B, 11A)-generated. Case (2C, 5C, 11A). Amongst the maximal subgroups of Co_1 with order divisible by $2 \times 5 \times 11$, the only subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to Co_2 and Co_3 . We can see that $\Delta(Co_1)=634392$, $\Sigma(Co_2)=10428$ and $\Sigma(Co_3)=0$. Our calculations give, $\Delta^*(Co_1) \geq \Delta(Co_1)-6\cdot 10428 > 0$, proving the result. 3.3. (2, 5, 13)-generations of Co_1 . In this section we obtain all of the (2X, 5Y, 13A)-generations of Co_1 . In fact, we prove that, **Lemma 3.3.** The group Co_1 is (2X, 5Y, 13A)-generated if and only if $(X, Y) \in \{(A, B), (A, C), (B, A), (B, B), (B, C), (C, B), (C, C)\}$. **Proof.** Set $T = \{(A, B), (A, C), (B, A), (B, B), (B, C), (C, B), (C, C)\}$. If $(X, Y) \not\in T$. then $\Delta(Co_1) < |C_{co_1}(13A)|$ and by Lemma 1.2, Co_1 is not (2X, 3Y, 13A)-generated. Moreover, if (X, Y) = (A, C), (B, C) or (C, C), then $\Delta(Co_1) \neq 0$ and Co_1 does not have any maximal subgroup which contains these triples. Therefore, for these triples Co_1 is (2X, 3Y, 13A)-generated. Now we continue the proof case by case. Case (2A, 5B, 13A). Amongst the maximal subgroups of Co_1 with order divisible by $2 \times 5 \times 13$, the only subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to 3.Suz.2 and $(A_4 \times G_2(4)): 2$. We can see that $\Delta(Co_1)=754$, $\Sigma(3.Suz.2)=130$ and $\Sigma((A_4 \times G_2(4)): 2)=26$. Our calculations give, $\Delta^*(Co_1) \geq \Delta(Co_1)-4.130-26>0$, proving the generation of Co_1 by this triple. Case (2B, 5A, 13A). In this case, $\Delta(Co_1)=6084$ and the only maximal subgroups with non-empty intersection
with any conjugacy class in this triple are isomorphic to, 3.Suz.2 and (A₄ × G₂(4)):2. We calculate, $\Sigma(3.Suz.2)=1053$ and $\Sigma((A_4 \times G_2(4)):2)=416$. Our calculations give, $\Delta^*(G) \geq \Delta(G) - 4.1053 - 416 > 0$. Therefore, Co_1 is (2B, 5A, 13A)-generated. Case (2B, 5B, 13A). In this case, $\Delta(Co_1)=109252$ and the only maximal subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to, 3.Suz.2 and $(A_4 \times G_2(4)):2$. We calculate, $\Sigma(3.Suz.2)=3484$ and $\Sigma((A_4 \times G_2(4)):2)=416$. Our calculations give, $\Delta^*(G) \geq \Delta(G) - 4.3484 - 416 > 0$. Therefore, Co_1 is (2B, 5B, 13A)-generated. Case (2C, 5B, 13A). From the list of maximal subgroups of Co_1 we observe that, up to isomorphisms, 3.Suz.2 and $(A_4 \times G_2(4)):2$ are the only maximal subgroups of Co_1 that admit (2C, 5B, 13A)-generated subgroups. From the structure constants we calculate $\Delta(Co_1)=93288$, $\Sigma(3.Suz.2)=0$ and $\Sigma((A_4 \times G_2(4)):2)=416$. Thus, $\Delta^*(Co_1) \geq \Delta(Co_1)-416>0$. This shows that the Conway's group Co_1 is (2C, 5B, 13A)-generated and the lemma is proved. \square 3.4. (2, 5, 23)-generation of Co_1 . In this section we obtain all of the (2X, 5Y, 23Z)-generation of the Conway's group Co_1 . Since $23A^{-1}=23B$, hence, the group Co_1 is (2X, 5Y, 23A)-generated if and only if it is (2X, 5Y, 23B)-generated. Therefore, it is enough to investigate the (2X, 5Y, 23A)-generation of Co_1 . **Lemma 3.4.** The group Co_1 is (2X, 5Y, 23Z)-generated if and only if $(X, Y) \in \{(A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)\}$. **Proof.** Set $T = \{(A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)\}$. If $(X, Y) \not\in T \cup \{(A, B)\}$, then $\Delta(Co_1) < |C_{Co_1}(23A)|$, and so Co_1 is not (2X, 5Y, 23A)-generated. Also, if (X, Y) = (A, B), then $d_{2A} + d_{5B} + d_{23A} = 46$ and by Scott's theorem (2A, 5B, 23A) is not a generating triple for Co_1 . We now assume that $(X, Y) \in T$ and show that Co_1 is (2X, 5Y, 23A)-generated. First of all, if (X, Y) = (B, A), (B, C) or (C, A), then there is no maximal subgroup of Co_1 that admit (2X, 5Y, 23A)-generated subgroups. Now for such a triple (2X, 5Y, 23A), $\Delta(Co_1) \neq 0$ and so Co_1 is (2X, 5Y, 23A)-generated. We investigate another triples case by case. Case (2A, 5C, 23A). From the list of maximal subgroups of Co_1 we observe that, up to isomorphisms, Co_2 and Co_3 are the only maximal subgroups of Co_1 that admit (2A, 5C, 23A)-generated subgroups. From the structure constants we calculate $\Delta(Co_1) = 3082$, $\Sigma(Co_2) = 345$ and $\Sigma(Co_3) = 115$. Thus, $\Delta^*(Co_1) \geq \Delta(Co_1) - 345 - 115 > 0$. This shows that the Conway's group Co_1 is (2A, 5C, 23A)-generated. Case (2B, 5B, 23A). Amongst the maximal subgroups of Co_1 with order divisible by $2 \times 5 \times 23$, the only maximal subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to $2^{11}: M_{24}$. We can see that $\Delta(Co_1) = 54119$, $\Sigma(2^{11}: M_{24}) = 1748$. Our calculations give, $\Delta^*(Co_1) \ge \Delta(Co_1) - 1748 > 0$, proving the generation of Co_1 by this triple. Case (2C, 5B, 23A). In this case, $\Delta(Co_1)=282210$ and the only maximal subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to Co_2 , Co_3 and $2^{11}: M_{24}$. We calculate, $\Sigma(Co_2)=37720$, $\Sigma(Co_3)=6716$ and $\Sigma((2^{11}: M_{24})=4002$. Our calculations give, $\Delta^*(G) \geq \Delta(G) - 37720 - 4002 - 6716 > 0$. Therefore, Co_1 is (2C, 5B, 23A)-generated. Case (2C, 5C, 23A). From the list of maximal subgroups of Co_1 we observe that, up to isomorphisms Co_2 and Co_3 are the only maximal subgroups of Co_1 that admit (2C, 5C, 23A)-generated subgroups. From the structure constants we calculate $\Delta(Co_1)=711804$, $\Sigma(Co_2)=9200$ and $\Sigma(Co_3)=1955$. Thus, $\Delta^*(Co_1)\geq\Delta(Co_1)-9200-1955>0$. This shows that the Conway's group Co_1 is (2C, 5C, 23A)-generated, which completes the proof. \Box We now summarize the above results in the following theorem: **Theorem 3.5.** The Conway's group Co_1 is (2, 5, p)-generated for all $p \in \{7, 11, 13, 23\}$. **Proof.** The proof follows from the lemmas proved in sections 3.1-3.4. \square ## 4. (2, 7, p)-Generations for Co_1 We will use the maximal subgroups of Co_1 listed in the ATLAS extensively, especially those with order divisible by 11, 13 and 23. We listed in Table IV fusion maps of these maximal subgroups into Co_1 (obtained from GAP) that will enable us to calculate $\Delta^*(2X, 7Y, pZ)$, for p = 11, 13 and 23. **4.1.** (2, 7, 11)-generation of Co_1 . The group Co_1 has exactly five maximal subgroups with order divisible by 11 which are isomorphic to Co_2 , Co_3 , 3.Suz.2, 2^{11} : M_{24} or $U_6(2).S_3$. In Table IV we calculate the partial fusion maps of these subgroups into Co_1 , obtained from GAP. Using this calculation, we have, **Lemma 4.1.** The group Co_1 is (2X, 7Y, 11A)-generated if and only if $(X, Y) \in \{(A, A), (B, A), (B, B), (C, A), (C, B)\}$. **Proof.** Set $T = \{(A, A), (B, A), (B, B), (C, A), (C, B)\}$. If $(X, Y) \not\in T \cup \{(A, B)\}$, then $\Delta(Co_1) < |C_{Co_1}(11A)|$, and so Co_1 is not (2X, 7Y, 11A)-generated. Also, if (X, Y) = (A, B), then $d_{2A} + d_{7B} + d_{11A} = 46 < 48$ and by Scott's theorem (2A, 7B, 11A) is not a generating triple. Our proof will need to consider a number of cases. Case (2A, 7A, 11A). The only maximal subgroups of Co_1 with non-empty intersection with the conjugacy classes in this triple is, up to isomorphisms, 3.Suz.2. We calculate $\Delta(Co_1)$ = 6204 and $\Sigma(3.Suz.2)$ =726. Now since $\Delta^*(Co_1)$ =6204-726=5478>0, Co_1 is (2A, 7A, 11A)-generated. Case (2B, 7A, 11A). In this case, $\Delta(Co_1)=100342$ and 3.Suz.2 is the only maximal subgroups of Co_1 , up to isomorphisms, with non-empty intersection with this triple. We can see that $\Sigma(3.Suz.2)=8008$, and so $\Delta^*(Co_1)\geq 100342-8008>0$. This shows the generation of Co_1 by this triple. Case (2B, 7B, 11A). From the list of maximal subgroups of Co_1 , we observe that, up to isomorphisms, $2^{11}: M_{24}$ is the only maximal subgroups of Co_1 that admit (2B, 7B, 11A)-generated subgroups. From the character table of Co_1 and Table IV, we can see that $\Delta(Co_1) = 1357092$ and $\Sigma(2^{11}: M_{24}) = 9504$. Therefore, $\Delta^*(Co_1) \geq \Delta(Co_1) - 3.9504 > 0$, which proves the generation of Co_1 by this triple. Case (2C, 7A, 11A). Amongst the maximal subgroups of Co1 with order divisible by 2× 7×11 , up to isomorphisms, 3. Suz. 2 is the only maximal subgroup with non-empty intersection with the conjugacy classes of this triple. Now, from the character table of Co_1 and Table III, we have, $\Delta(Co_1)=490512$ and $\Sigma(3.Suz.2)=0$. This shows the generation of Co_1 by this triple. Case (2C, 7B, 11A). The only maximal subgroups of Co_1 that may contain (2C, 7B, 11A)-generated subgroups, are isomorphic to Co_2 , Co_3 , 2^{11} : M_{24} and $U_6(2).S_3$. We easily calculate the structure constant $\Delta(Co_1)=12004608$, $\Sigma(Co_2)=472384$, $\Sigma(Co_3)=114532$, $\Sigma(2^{11}:M_{24})=33968$ and $\Sigma(U_6(2).S_3)=35640$. Thus, $\Delta^*(Co_1) \geq \Delta(Co_1)-6\cdot472384-12\cdot114532-3\cdot33968-2\cdot35640>0$, proving the result. \square **4.2.** (2, 7, 13)-generation of Co_1 . The group Co_1 has exactly two maximal subgroup with order divisible by 13, which are isomorphic to 3.Suz.2 and $(A_4 \times G_2(4)):2$. In Table IV, we calculate the partial fusion map of these subgroups, obtained from GAP. Using this calculation, we have, **Lemma 4.2.** The group Co_1 is (2X, 7Y, 13A)-generated if and only if $X \in \{A, B, C\}$ and $Y \in \{A, B\}$. **Proof.** We first assume that $(X, Y) \not\in \{A, B, C\} \times \{A, B\}$. Then, $\Delta(Co_1) < |C_{Co_1}(13A)|$ and by Lemma 1.2, Co_1 is not (2X, 7Y, 13A)-generated. We prove the generation of Co_1 by other triples. If (X, Y) = (A, B), (B, B) or (C, B), then $\Delta(Co_1) \neq 0$ and there is no maximal subgroups which contains (2X, 7Y, 13A)-generated subgroups. Therefore, Co_1 is (2X, 7Y, 13A)-generated. We continue our proof case by case. Case (2A, 7A, 13A). The only maximal subgroups of Co_1 that may contain (2A, 7A, 13A)-generated subgroups, are isomorphic to 3.Suz.2. and $(A_4 \times G_2(4))$: 2. We easily calculate the structure constant $\Delta(Co_1)=5837$, $\Sigma(3.Suz.2)=689$ and $\Sigma((A_4 \times G_2(4)):2)=221$. Hence, Δ^* $(Co_1) \geq \Delta(Co_1)-4.689-221>0$, and the (2A, 7A, 13A)-generation of Co_1 follows. Case (2B, 7A, 13A). Amongst the maximal subgroups of Co_1 with order divisible by $2 \times 7 \times 13$, up to isomorphisms, 3. Suz. 2 and $(A_4 \times G_2(4))$: 2 are the only maximal subgroups with non-empty intersection with the conjugacy classes of this triple. Now, from the character table of Co_1 and Table IV, we have, $\Delta(Co_1)=437372$, $\Sigma(3.Suz.2)=17303$ and $\Sigma((A_4 \times G_2(4)):2)=3120$. Hence, $\Delta^*(Co_1) \geq \Delta(Co_1)-4.17303-3120 > 0$, and the (2A, 7A, 13A)-generation of Co_1 follows. Case (2C, 7A, 13A). From the list of maximal subgroups of Co_1 , Table II, we observe that, up to isomorphisms, 3.Suz.2 and $(A_4 \times G_2(4)):2$ are the only maximal subgroups of Co_1 that admit (2C, 7A, 13A)-generated subgroups. But, $\Delta(Co_1)=118872$ and $\Sigma(3.Suz.2)=\Sigma((A_4 \times G_2(4)):2)=0$. Therefore, Co_1 is (2C, 7A, 13A)-generated. This completes the proof. \square 4.3. (2, 7, 23)-generation of Co_1 . From the list of maximal subgroups of Co_1 , Table II, we can see that Co_2 , Co_3 and 2^{11} : M_{24} , are the only maximal subgroups
with order divisible by 23. We use the fusion maps of these subgroups into Co_1 , to investigate that (2X, 7Y, 23Z) is a generation triple for Co_1 or not. Also, since $23A^{-1}=23B$, hence it is enough to consider the case 23A. Using this information, we have, **Lemma 4.3.** The group Co_1 is (2X, 7Y, 23A)-generated if and only if $X \in \{A, B, C\}$ and $Y \in \{A, B\}$. **Proof.** We first assume that $(X, Y) \not\in \{A, B, C\} \times \{A, B\}$. Then, $\Delta(Co_1) < |C_{Co_1}(23A)|$ and by Lemma 1.2, Co_1 is not (2X, 7Y, 23A)-generated. We prove the generation of Co_1 by other triples. If (X, Y) = (A, A), (B, A) or (C, A), then $\Delta(Co_1) \neq 0$ and there is no maximal subgroups which contains (2X, 7Y, 23A)-generated subgroups. Therefore, Co_1 is (2X, 7Y, 23A)-generated. We continue our proof case by case. Case (2A, 7B, 23A). The only maximal subgroups of Co_1 that may contain (2A, 7B, 23A)-generated subgroups, are isomorphic to Co_2 , Co_3 and 2^{11} : M_{24} . We easily calculate the structure constant $\Delta(Co_1)=39399$, $\Sigma(Co_2)=14168$, $\Sigma(Co_3)=3197$ and $\Sigma(2^{11}:M_{24})=2024$. Hence, $\Delta^*(Co_1)\geq\Delta(Co_1)-3197-2024-14168>0$, and the (2A, 7B, 23A)-generation of Co_1 follows. Case (2B, 7B, 23A). Amongst the maximal subgroups of Co_1 with order divisible by $2 \times 7 \times 23$, up to isomorphisms, $2^{11}: M_{24}$ is the only maximal subgroup with non-empty intersection with the conjugacy classes of this triple. Now, from the character table of Co_1 and Table IV, we have, $\Delta(Co_1)=1757591$, $\Sigma(2^{11}:M_{24})=13616$. Hence, $\Delta^*(Co_1)\geq \Delta(Co_1)-13616>0$, and the (2B,7B,23A)-generation of Co_1 follows. Case (2C, 7B, 23A). From the list of maximal subgroups of Co_1 , Table II, we observe that, up to isomorphisms, Co_2 , Co_3 and 2^{11} : M_{24} are the only maximal subgroups of Co_1 that admit (2C, 7B, 23A)-generated subgroups. But, $\Delta(Co_1)=9083160$, $\Sigma(Co_2)=471960$, $\Sigma(Co_3)=56971$ and $\Sigma(2^{11}:M_{24})=27784$. Hence, $\Delta^*(Co_1)\geq\Delta(Co_1)-56971-27784-471960>0$, and so Co_1 is (2C, 7B, 23A)-generated. This completes the proof. \Box We now summarize the above results in the following theorem: **Theorem 4.4.** The Conway's group Co_1 is (2,7,p)-generated for all $p \in \{11,13,23\}$. **Proof.** The proof follows from the lemmas proved in sections 4.1-4.3. □ ## 5. (2, 11, 13)-, (2, 11, 23)- and (2, 13, 23)-Generations for Co1 In this section we consider the (2, p, q)-generation of Co_1 , for (p, q)=(11, 13), (11, 23) and (13, 23). **Lemma 5.1.** The group Co_1 is (2X, pA, qY)-generated, for (p, q) = (11, 13), (11, 23) or (13, 23), if and only if $X \in \{A, B, C\}$ and $Y \in \{A, B\}$. **Proof.** We first show that Co_1 is (2X, 13A, 23Y)-generated. To do this, it is easy to see that $\Delta(Co_1) \neq 0$ and there is no maximal subgroups of Co_1 with non-empty intersection with this triple. This shows the (2X, 13A, 23Y)-generation of Co_1 . Next we show the (2X, 11A, 13A) and (2X, 11A, 23A)-generation of Co_1 . We now consider the number of cases. Case (2X, 11A, 13A). From the list of maximal subgroups of Co_1 , Table II, we can see that 3.Suz.2 is the only maximal subgroups of Co_1 with order divisible by $2\times11\times13$. Now, it is easy to see that if X=A, B or C then $\Delta^*(Co_1)\geq\Delta(Co_1)-4\Sigma(3.Suz.2)>0$, which proves the generation of Co_1 by this triple. Case (2A, 11A, 23A). Amongst the maximal subgroups of Co_1 with order divisible by $2 \times 11 \times 23$, up to isomorphisms, Co_2 , Co_3 and 2^{11} : M_{24} are the only maximal subgroup of Co_1 with non-empty intersection with the conjugacy classes of this triple. We calculate $\Delta(Co_1) = 728295$, $\Sigma(Co_2) = 98923$, $\Sigma(Co_3) = 15456$ and $\Sigma(2^{11}: M_{24}) = 10304$. Hence, $\Delta^*(Co_1) \geq \Delta(Co_1) = 98923 - 15456 - 10304 > 0$. Thus, Co_1 , is (2A, 11A, 23A)-generated. Case (2B, 11A, 23A). The only maximal subgroup of Co_1 with non-empty intersection with the conjugacy classes of this triple is isomorphic to 2^{11} : M_{24} . We easily calculate $\Delta(Co_1) = 31654003$ and $\Sigma(2^{11}: M_{24}) = 38272$. Hence, $\Delta^*(Co_1) \geq \Delta(Co_1) - 38272 > 0$ and generation of Co_1 by this triple follows. Case (2C, 11A, 23A). The maximal subgroups of Co_1 with non-empty intersection with all the classes in this triple are, up to isomorphisms, Co_2 , Co_3 and 2^{11} : M_{24} . We calculate $\Delta(Co_1) = 163389240$, $\Sigma(Co_2) = 2605624$, $\Sigma(Co_3) = 241592$ and $\Sigma(2^{11}: M_{24}) = 110400$. Hence, $\Delta^*(Co_1) \geq \Delta$ (Co_1) = 2605624 - 110400 - 241592 > 0, and the result follows. \square We are now ready to state the main results of this paper: **Theorem.** The Conway's group Co_1 is (2, p, q)-generated for all $p, q \in \{3, 5, 7, 11, 13, 23\}$ with p < q, except when (p, q) = (3, 5) or (3, 7). **Proof.** The proof follows from the Theorems 2.5, 3.5, 4.4 and Lemma 5.1. ### References - [1] M. D. E. Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. 30 (1984), 73-90. - [2] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math, Soc. 116 (1992), 653-663. - [3] J. H. Conway, R. T. Curtis, S. P. Norton and R. A. Wilson, "Atlas of Finite Groups," Oxford Univ. Press (Clarendon), Oxford, 1985. - [4] M. R. Darafsheh, On some subgroups of C_1 , Ph. D. thesis, University of Birmingham, U. K., 1978. - [5] S. Ganief and J. Moori, (p, q, r)-Generations of the smallest Conway's group Co₃, J. Algebra 188 (1997), 516-530. - [6] S. Ganief and J. Moori, Generating pairs for the Conway groups Co_2 and Co_3 , J. Group Theory 1 (1998), 237-256. - [7] S. Ganief and J. Moori, 2-Generations of the Forth Janko Group J₄, J. Algebra 212 (1999), 305-322. - [8] J. Moori, (p, q, r)-Generations for the Janko groups J_1 and J_2 , Nova J. Algebra and Geometry, Vol. 2, No. 3 (1993), 277-285. - [9] J. Moori, (2, 3, p)-Generations for the Fischer group F_{22} , Comm. Algebra 2 (11) (1994), 4597-4610. - [10] M. Schonert et al., "GAP- Groups, Algorithms and Programming," Lehrstuhl D fur Mathematik, RWTH, Aachen, 1992. - [11] L. L. Scott, Matrices and cohomology, Ann. of Math. (3) 105 (1977), 473-492. - [12] R. A. Wilson, The maximal subgroups of Conway's group Co1, J. Alg. 85 (1983), 144-165. - [13] R. A. Wilson, On the 3-local subgroups of Conway's group Co1, J. Alg. 113 (1988), 261-262. - [14] A. J. Woldar, Representing M_{11} , M_{12} , M_{22} and M_{23} on surfaces of least genus, Comm. Algebra 18 (1990), 15-86. - [15] A. J. Woldar, Sporadic simple groups which are Hurwitz, J. Algebra 144 (1991), 443-450. - [16] A. J. Woldar, 3/2-Generation of the sporadic simple groups, Comm. Algebra 22 (2) (1994), 675-685. - [17] A. J. Woldar, On Hurwits generation and genus actions of sporadic groups, Illinois Math. J. (3) 33 (1989), 416-437. M. R. Darafsheh Department of Mathematics and Computer Science, University of Tehran, Tehran, Iran E-mail: Darafshe@vax. ipm. ac. ir A. R. Ashrafi Department of Mathematics University of Kashan, Kashan, Iran and Institute for Studies in Theoretical Physics and Mathematics Tehran, Iran E-mail: Ashrafi@vax. ipm. ac. ir