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Abstract

In this paper, we describe some properties of plurigenera defined for hypersurface
isolated singularities, which have relations with more fundamental, well-known plur-
igenera {7x}, especially in case singularities are so-called purely elliptic singularities.

1. Introduction

In this paper, we will discuss the plurigenera {7a(X, x)}mex and related subjects of hyper-
surface isolated singularities of dimension greater than or equal to two.

Knoller [11] showed that for a normal Gorenstein isolated singularity (X, z) and a
resolution of the singularity 7: X - X, (02™):/(mx@®™): is a finite dimensional vector space
over the complex number field C and that the dimension (X, z) of it is independent of the
choice of a resolution z for any positive integer 7, where wy (resp wz) is the canonical sheaf
of X (resp. X). Hence {ya(X, z)}men are regarded as invariants of the singularity (X, x).
Indeed, {7#(X, z)}men characterize a singularity. For example, for a two-dimensional normal
Gorenstein singularity (X, x), the condition that y=(X, x)=0 for every m is equivalent to that
(X, x) is a famous rational double point, that is, (X, z) is analytically equivalent to the
hypersurface singularity at the origin O of C® defined by one of the following equations :

An(n21): 2%+ y*+2"'=0; Du(n>4): 2*+y?z+2""'=0;
Eo: 4+ P +2'=0;, E;: 2*+y°+y2*=0; Es:2*+y°+25=0.

On the other hand, we have another set of plurigenera {8z(X, 2)}mex for a normal Goren-
stein isolated singularity. (X, ) — see Definition 4.1 in this paper. These give different
characterization of singularities. For example, for a normal two-dimensional singularity (X,
x), the condition that 8a(X, x)=0 for every m is equivalent to that (X, x) is a quotient
singularity, that is, (X, x) is analytically equivalent to a quotient (C¥/ G, O) of C2 by a finite
subgroup G of GL(2, C).
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{yn(X, 2)}men and {8a(X, x)}nex are fundamental invariants of normal isolated singular-
ities, which contain the most fundamental invariant of normal isolated singularities: the
geometric genus p,=7=434.. Including higher dimensional cases, many facts are known about
these two plurigenera. We refer the reader to Ishii [7] on this subject.

As in the study of algebraic varieties, in the study of singularities, “hypersurface” singular-
ities are investigated more deeply than the general cases. But now we cannot calculate ym
explicitly, while, for example, we can calculate the Hodge numbers of toric hypersurfaces [1].
Our aim in this paper is to make some progress in this subject.

Let us give an outline of this paper :

In § 3, we will define one more set of plurigenera {#a(X, x)}me~ for a hypersurface isolated
singularity (X, x) and show that ym(X, 2)<7#a(X, x) for every m. In [15], a formula to
calculate 8-(X, x) for a hypersurface isolated singularity (X, x) is already given. The defini-
tions of {#x(X, x)}men and the proof of the inequalities above are inspired by this formula.
And we have a conjecture that under a suitable condition, ya(X, x)=7(X, z) holds for every
m although we cannot identify such a condition now — see Remark 3.4.3.

In § 4, we will give several facts about {7=(X, x)}men in case (X, x) is a so-called purely
elliptic singularity, which is a singularity such that 8.(X, x)=1 for every m, and will give some
example to {7n}men and {Fm}men, Where yn=7Fn holds for every m. Finally, we will give a note
on {7n}men for purely elliptic singularities of a special type.

2. Preliminaries

2.1. General settings. Let (X, x)=(V(f),0) be a hypersurface isolated singularity of dimen-
sion 7 defined by a polynomial f=Xic@zspraa* 2 EC[2, 21, ..., 2-), where =0 is the origin of
the (#+1)-dimensional affine space C™** and z*=[I’-02¥ for each nonnegative integral vector
A=(, Ay, ..., Ar). We alway assume that 7 is greater than or equals to two.

In this paper, we also always assume that the polynomial f is nondegenerate : The convex
hull of the set Ua,zo(A+(R=0)"*") is called the Newton diagram of f and denoted by I'+(f). The
union of the compact faces of T'+(¥) is called the Newton boundary of T'.(f) and denoted by I'
(f). We associate a polynomial fa:=3lhesnizspmair-z' with each face A of T(f). A
polynomial £ is said to be nondegenerate if fa has no solutions in (C*)™*' for any face A of T'
.

We regard C™*! as an affine toric variety Vs associated with the fan 2 in Nx=N ® 2R for
N=Z7* consisting of the faces of the cone (R=0)"*'. Then the set of the exponents of
monomials in Clz, 2, ..., 2-] is naturally identified with the set of vectors with nonnegative
entries in the dual space M :=Homz(N, Z). We refer the reader to Fulton [2] or Oda [12] on
the theory of toric varieties.
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For each vector n in (R=0)"*, define ,(n) :=min{<4, n)| AET.(f)} and
A(n) :=T.(f)N{AE Ng|<A, n>=I(n)}.
After these definitions, we define the dual diagram of each face A of I'.(f):
A*:={nENg|A(n)=A}.

Then the closure of A* in Ny is a cone and the set of the closures of the dual diagrams of all
the faces of T'.(f) forms a fan S(f). This is a subdivision of the fan S and called the dual fan
of the Newton diagram I'.(f) of £.

Take a nonsingular subdivision £(f) of =(f) and denote by Vs the toric variety associat-
ed with 2(f). We can associate a map of fans (N, $(f)) - (N, 3) with the subdivision $(f) of
3. This map of fans induces a proper, birational morphism of toric varieties :

M: Vyy » Ve=C™

In the following, we assume that the subdivision $(f) is the one satisfying that the
morphism II induces an isomorphism

Veo\II'(z) 5 Vi\(z).

Then it is well-known that the restriction z : X —» X of Il on the proper transform X of X with
respect to II is a good resolution of the singularity (X, z) — see Kempf et al. [10].

3. The plurigenera {7x(X, x)}nen and {#n(X, x)}nen for a hypersurface iso-
lated singularity (X, x)

Let (X, x)=(V(¥),0), £2(f) and I1: Vs » C™* asin § 2.

3.1. Differential forms around a singularity

r+1

3.11. Let Q¢r+1(X) be the sheaf of meromorphic differential forms on C™* with single pole
along X. For any open subset U, we have

QXN U)=C orei(U)

where n=daAdzaANdz/f.
Let (Q¢ri(X))°™ represent the m-times tensor product of Q74(X) for each positive
integer m.
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3.1.2. Let U be an open neighborhood of the origin z=0 of C™*' and let \If be an element of

(Q4(X))e™(U). Then ¥ is written as ¥=¢-7°", where € Z¢r+1(U), that is a holomorpic
function on U.

Now expand ¢ in a power series at the origin x, say, ¥=2liezzor1¢i2", where z*:=[Ii-

A

2¥ This gives rise to an isomorphism

QX" - Clao, 21, ..oy 27} 25",

where C{z, 21, ..., 2r} is the ring of convergent power series and 7. is the germ of 7 at x. Denote
by gv the image of each element ¥.(Q5511(X))2™ by this isomorphism.

We define a diagram I',(g) for each power series g in C{z, zi, ..., 2} to be the convex hull
of the set Ucuo(A+(R=0)""?) in Mg=R™*. For g and for each vector n of N, define

l(n) :=min{<4, nd| A€T+(9)}.

3.1.3. The morphism II: Vs — C™*' induces a homomorphism of sheaves:
m* : (QLrh(X))em - I[,J*(m,g(',,\n-1(,,(}?\H"(x))°’"),

which is defined by the pull-backs of differential forms, where I : Ve\II™"(z) » Vs is the
inclusion. Then the image of an element of (Q%+}1(X))*"(U) by IT*, for an open neighborhood
U of z, can be regarded as a meromorphic differential form with single pole along X and with
poles along irreducible components of I"'(x). We note that I™(x)= U sesvinzwDs, where Z
(1) (resp. $(£)(1)) denotes the set of one-dimensional cones of X (resp. 2(f)) and D; denotes the
invariant divisor of the toric variety Vs corresponding to one-dimensional cone 4.

Proposition 3.1. Let ¥ be an element of (Qari(X))2™.  Then I*(¥<) has zeros of order lge,
(n(@))+m(<Q, n(6)> —1— I,(n(p))) along the invariant divisor D; corresponding to sES(HANS
), where 1:=(1,1,..,1)EM.

Proof, This is an easy modification of [15], Lemma 2.1. o

3.1.4. The homomorphism (Q{,;:,)(X )em - f*(m,;_:n\“-:(,)()?\H"(x))“’) induced by the inclu-
sion [ : Vep\II™Y(z) = Vay is injective, so that we may regard the former as a subsheaf of the
latter.

By Proposition 3.1, for an element ¥.€(Q& (X)), H*(W;)EH*(QV;}I)()? 1)2" if and only
if lge,(n(8))+m(<1, n(p)>—1—I(n(5))) 20 for any PES(AHNZ(1). Here we define a subset
mAL(2(F)) of My to be the set:
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(A€(R=20™| <%/1, n(6)> 2 L(n(p))—<1, n(B)>+1 for any SES(F)ANS()).
Then we have the following :

Lemma 3.2. H*(\IJ‘I)EH*(Q{,‘;(‘,)()?))?'" if and only if Ti(ge,)CmALE(f)).

Proof.  As we mentioned above, IT"(W.)EML.(Q7},(X))2™ if and only if lgv,(n(5))+ m(<1, n(5)
—1=14(n(4)))=0 for any p€S(FN\=(1).

Now assume that IT*(W.)EML(Q}4(X)2™.  Since v, (n(5))=min{<2, n(5)>| AET+(gv,)},
we have <2, n(8)>+ m(<1, n)—1—I,(n(5))) =0, so that

(o m(AD 2 [(n(8) <L, (@) +1

holds for any AE€T+(gv,). Therefore, we obtain I'.(ge,)C mA(E(f)).
The converse is obvious. o

3.15. Define the C-submodule A{™ of (Qz1(X))2"=C{2, 21, ..., 2.} 2™ to be

{9- 22" | g€ mAL(E(f))).

Lemma 3.3. The homomorphism
IT*: A - (@7, ()2

is an isomorphism.

Proof. Recall that we have an inclusion M.(Q%},(X))2" < I TQVE -1 X\ (2)))2™
given by the restriction map. Also note that we have an isomorphism IT* : (Q4F(X))2"=
Q& n(X\MZ2™ 5 MV (XN (2)))2™ since #+1>3 and 1| vay: Vao\II™(z) » €™\
{x} is an isomorphism.

Then it follows that for any element of H*(QV;;/)(X N2™, there exists an element W= y.-
72" in (QEH(X))2™. By Proposition 3.2, Tu(¢#:)CmAL3(f)), so that ¥.€A™. Hence the
map in the lemma is surjective.

The injectivity of the map is obvious. (m]

3.2. Poincaré residue maps

3.2.1. Define the sheaf QY to be the direct image 7.Q¥) of Q%\» with respect to the inclusion
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i: X\z} - X.
Let U be an open subset of C"*'. We have a natural map, called the Poincaré residue map,

Resx : Qgri(XXU) - (XN V)

by sending W=y 7 to Resx(¥) :=¥| xy.Resx(7), where 7=daAdaA-Adz/f and Resx(7)
i=(=1)"NdaA- A8z A+ Ndz)/(0f/0z;) (if 3f/3z;+0).
This induces the maps between the tensor products :

Res$” : (A (X))em(U) - (Qx)°™(XNU).
Therefore, we have a homomorphism of sheaves for any positive integer »z:

Res$™: (QLrh(X))em - (Q%)°™.
Lemma 3.4. The homomorphism of sheaves Resk™ is surjective for every m.

Proof. This lemma follows the adjunction formula for a nonsingular variety and a Cartier
divisor on it.

322. On the other hand, since X is a nonsingular divisor of a nonsingular variety Vs, we
have another Poincaré residue map

Res¥™: (Q7%,(X))°" - (Q%)°"

for each positive integer m.

3.3. The definition of {72(X, x)}nen

3.3.1. Let (X, x) be a normal isolated Gorenstein singularity of dimension 7 and let 7: X -
X be a good resolution of the singularity (X, z). Then, the sequence

0 - (QR)°" = F+(Q%e-1)°"
is exact, where 7 : X\7'(x) » X is the inclusion, so that
0 - m(Q7)°™ - (Q%)°" = T 14 (QR\e-1)°"

is also exact. Therefore, we can regard m(Q%)°™ as a subsheaf of (Q%)°™.
Here we give the definition of the plurigenera {ym}men introduced by Knoller (11]:
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Proposition and Definition 3.5 (Kndller). For a normal isolated Gorenstein singularity (X, x)
and a positive integer m, (3™ +/(Tx®™)x is a finite dimensional vector space over C, where 1 :
X - X is a good resolution of the singularity (X, ).

The dimension of this vector space is independent of the choice of a resolution and is
denoted by vn(X, ), that is,

ra(X, ) i=dimc(@w3™)/(me 0F™) e =dimc(Q%)2 ™/ m(Q%)S ",

where wx (resp. wx) is the canonical sheaf of X (resp. X).

We sometimes use the symbol 7 for ya(X, x) for simplicity.

3.4. The definition of {#4(X, x)}nen of a hypersurface isolated singularity
(X, x) and relations to {7x(X, )}nex

3.4.1. Next we will define the plurigenera {7=(X, x)}nex for a hypersurface isolated singularity
(X, x). The definition of {#)men is inspired by the formula for another set of the plurigenera
{0n(X, x)}men in [15], Thorem 2.2. See [14] and (15] for details on {Sn}men. So we assume
that (X, x)=(V(¥),0), where fEC[z, 2, .., 2-] is a nondegenerate polynomial and 0 is the
origin of C™*! and we use the notation in § 2.

Recall that the definition of the diagram mA (3(f)) for each mEN. Define mA_(S(f)) :=
(R20)"*\mA.(E(f)).

Now we define {#n(X, x)}nen as follows:

Definition 3.6. Let (X, )=(V(f), 0) be an isolated singularity at the origin of C"*! defined by
a nondegenerate polynomial fEC[z, 21, ..., zr]. Then we define 7(X, x) to be

#HmA_C))NM)—~HAS(Z20) ' M| A+ ()N mAa-G(f)) +0)

for each mEN, where #A denotes the cardinality of a set A.

34.2.

Theorem 3.7. We have the following inequality between ya(X, x) and 7a(X, x) for every me
N:

rn(X, 2)<7ulX, x).

The following proof is a modification of [15], Thorem 2.2 for the formula for .
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Proof. Let 6 be an element of (Q%)°™. By Lemma 3.4, the homomorphism Res%™: (Q¢rh
(X)2™ - (Q%)2™ between the stalks at x is surjective. Hence there exists an element ¥.=
Y=+ 72" such that Resg™(¥:)=0, where ¥:E %, .. We may regard ¥: as a convergent power
series: DiezpriCazt.

We write ¢ as a sum of two series: Yz,—+ ¥r.+, Where Yiz,+ :=DiemarGUNnzzor1Ca-Z' and
Yr.- i =Vr—Yr.s. Define oy =¥+ 9™ and ¥z :=y;--75". Then ¥:=¥,-+¥s+. Since
Y2+ E AP, we have IT*(¥..)EML(Q7},(X))2" by Lemma 3.2.

Since the diagram:

(m) ReS?(m r\®m ; r em
AY —— (Q%)3 =l*(ﬂx\(;}).r

| e

ML(QF (X)) ThReeS ™ 1 Q% e-1)s "

commutes, 7*(Res$"™(¥z.))E (%)™, Therefore, (Q%):™/ m(Q%):™ is generated by the
elements {Res§™(z'- w3 | AEmA-E(F))N(Z=0)"*}).
Next assume that 7*(Res%”(¥:.-)) is contained by the image of the homomorphism :

Q) M(Res$™) : Q5 ,(X))°™ - Mu(Q%)°™

Then, by Lemma 3.3, there exists an element ®;= ¢z "€ A™ such that the image of the
composite of IT* and M«(Res%") is just 7*(Res3"(¥x.-)). Then we have (Y- | x)=7*($z| x)
in m(Z2)z. Since 7*: Gk.x » m(2)x is injective, ¥r.-|x=dz|x holds, so that there exists a
power series Ziezsgrda-Z' such that Vo — 0:=(Dicizpradi-z')+ fz. 1t follows that ¢r,-=
Siezzordi (2 fz)-.  This completes the proof. o

34.3. Remark. In the proof of the theorem just above, if the homomorphism (1) is surjective,
we obtain an equation:

(X, 2)=7n(X, ).

Until now, we cannot state the condition under which the homomorphism (1) is surjective.

3.5. The diagram A.(3(f))

35.1. We can rewrite mA+(3(f)) as

(A€ (@20 M |LAS AU
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and we have
mA-(3(F))=(R=0)""\mA(3(f)).

Hence we obtain the following :
Corollary 3.8. 7u(X, x) is determined by the diagram A.(S(F)).

35.2. Remark. Here, we note that the diagram A+(3(¥)) is the same I's(y) introduced by Ishii
(8] in order to construct the canonical model of the hypersurface isolated singularity (X, )=
(V(¥),0). Indeed, Ishii obtained the following result :

Theorem 3.9 (Ishii). Let 3o be the dual fan associated with the polytope A(3(f)) and let ¢ : X»
= X be the birational morphism induced by the subdivision S0 of =. Denote by 7: X3 = Xo be
the normalization.

Then the composite ¢ ° 5: X§ = X is the canonical modification.

4. Application to purely elliptic singularities

4.1. Preliminaries

4.1.1. In this section, we will apply the result obtained in § 3 to a particular class of singular-
ities, called purely elliptic singularities. First of all, we recall the definition of the plurigenera
{6a(X, x)}men to introduce the notion of purely elliptic singularities.

Proposition and Definition 4.1 ([14]). For a normal isolated Gorenstein singularity (X, z)
and a positive integer m, (w3™)z/ mw$"(m—1)E)): is a finite dimensional vector space over
C, where n: X > X is a good resolution of the singularity (X, x), wx (resp. wz) is the canonical
sheaf of X (resp. X), and E is the exceptional divisor.

The dimension of the vector space is independent of the choice of a good resolution n and
denoted by 6+(X, x), that is,

(X, x) r=dimc(wx™):/ (e w$"(m—1)E)):.

Definition 4.2 ([14]). A normal isolated Gorenstein singularity (X, z) is said to be a purely
elliptic singularity if 6n=1 for all mEN.

4.1.2. There is a criterion whether an isolated singularity defined by a polynomial is a purely
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elliptic singularity :

Proposition 4.3 ([15]). Let (X, x)=(V(¥),0) be an r-dimensional isolated singularity defined
by a nondegenerate polynomial fEClz, 2, ..., 2:].

Then (X, x) is a purely elliptic singularity if and only if the Newton boundary T(f)
contains the vector 1=(1,1, .., 1)EM.

4.2. The essential cone and the diagram mA.(3(f))

421. Let (X, z)=(V(f),0) be an r-dimensional purely elliptic singularity defined by a non-
degenerate polynomial fEC[z, 21, ..., 2r].

Let 2(f) be a nonsingular subdivision of the dual fan 3(f) of f such that the primitive
integral generators of one-dimensional cones are all positive vectors.

Recall that mA.(3(f)) is the set:

(A (Za0) M|y, n(6) 2 LAR(B) <L, n()+1 for amy SES(AANZ(D).

We will divide the set S(F}1)\=(1) into two classes. To do this, we introduce the notion
of the essential cone due to Ishii [6] :

Definition 4.4 (Ishii). The set
Ci(f) :={nENg| l(n) 241, n>}

is a cone in Ny and called the essential cone.

4.2.2. In case (X, x)=(V,0) is a purely elliptic singularity, /(n)<<1, n> holds for any nENg
since the Newton boundary I'(f) contains 1€M. Hence in this case, we have

C(f)={nENg|,(n)=4, nd}.

If nE(R=0)"*" but n&Z Ci(f), then I(n)<<1, ), so that /(n)—<1,n>+1<0. Hence
iz m-a,n+1
holds for any A€(Z=0)"*'. Thus, we can write mA.(3(f)) as follows:

Proposition 4.5. If (X, x)=(V(f),0) is a purely elliptic singularily, then mAL(2(F)) equals to
the set :
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{1e(z0)™'cM I<%A, n(a)> =1 for any FEE(FNZD)N CAQ)

or
{A€(Z20'CM <A, n(B)> 2 m for any FEE(FHINZD) N CHAD)).

When (X, x)=(V(¥), 0) is a purely elliptic singularity, by this proposition, we have only to
take a nonsigular subdivision of the essential cone Ci(f) in order to obtain mA.(f). An
algorithm to get a nonsigular subdivision is given by Oka [13].

4.3. 7= and special vectors : systems of weights

4.3.1. Here we investigate the most simple case, that is the diagram A.(3(¥)) has only one
compact face. In this case, there exists a special integral vector in the essential cone Ci(f),
which Ishii [6] calls the absolutely minimal vector in Ci(f): Denote by Ci(f)[1] the set of
primitive integral vectors in Ci(f). Then a primitive integral vector p={(ps, 1, ..., pr) is said to
be absolutely minimal if for any element q={qo, @1, ..., -)E Ci(f)[1], p:<g: holds for i=0, 1, ...,
r.

The following is easy to check.

Proposition 4.6. If there exists an absolutely minimal vector p in C:i(f)[1], then the diagram
mA(Z(f)) has only one compact face, more precisely,

mAL(E(f))=mA.(p)
={AE(R=20)"*'|<A, P> = m)}

and its unique compact face is
{AE(R=20)""'[<4, p>=m}.

Conversely, if A(3(f)) has only one compact face o, then the primitive integral generator
p=n(0%) of the dual cone 8% is the absolutely minimal vector in C:i(F)[1].

4.3.2. Remark. Due to Ishii [6], if A-(2(f)) has a unique compact face &, then the canonical
model of the purely elliptic singularity (X, £)=(V(f),0) is obtained by the weighted blow-up
with respect to the integral vector p=n(d¥).

The statement that the essential cone of a hypersurface purely elliptic singularity contains
the absolutely minimal vector is false in general. Counter examples are given by Ishii [6] § 4.1.
Nevertheless, many examples of hypersurface purely elliptic singularities whose essential cones
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contains the absolutely minimal vectors are known.

4.3.3. For a positive vector p=(po, p1, ..., p-)E M, denote po+p+--+p, by deg p. Then we
can write down the formula for 7z(X, x) as the following simple form:

Theorem 4.7. Let (X, x)=(V(f),0) be a purely elliptic singularity defined by a nondegenerate
polynomial fECl2, 2, ..., 2r).

Assume that A(3(f)) has a unique compact face 8 and let p:=n(dF) be the primitive
integral gemerator of the dual cone 8f. Then we have

@ Fu(X, £)=#(mA(p) N M) —#HAE(Z20) ' C M| (A+T.(p)) N mA_(p)+0}
3) =#(mA_(p) N M) —#((m—degp)A-(p)N M),

where mA-(p) :=(R=0)"""\mA.(p) and T+(p):=(<1, p>)A.+(p).

Proof. We have only to show that the set
{A€(Z20) | (A+T+()) N mA(p)+8}
equals to the sets
{A€(Z20)"*'|(A+T+(p)) N mA_(p)+0}
and
(m—degp)A-(P)N M.

For AE(Z20)"*, if (A+T())Nm-(p)=+8, then (A+T+(p)) N mA_(p)+0 since I'.(f)CT+(p)
holds. Conversely, assume that for AE(Zz0)™"', (A+T.(p))NmA_(p)+0. Then since the
compact face of I'+(p) is parallel to the boundary of mA.(p) and contains 1€M, A+1€(A+T,
(p))NmA_(p). Note that the Newton diagram T'.(f) of a purely elliptic singularity contains
1€ M, so that A+1€(A+T(f))NmA-(p)=+=0. Thus the first set equals to the second one.

Next note that (A-+T.(p)) N mA_(p)+8 if and only if A+1EmA_(p) for AE(Z=0)"*', which
is equivalent to <A+1, p><m, that is, {4, p><m—degp. Thus the second set equals to the third
one. o

A set of positive integers (po, Dy, ..., pr) is sometimes called a system of weights or weight
system. We may assume that the absolutely minimal vector p=(po, 11, ..., pr) has positive
integers as its entries, so that we can regard it as a system of weights.

By the previous theorem, we have the following :
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Corollary 4.8. Let (X, x)=(V(¥),0) be a purely elliptic singularity defined by a nondegenerate
pobymomial fEC[2, 2, ..., zr).

Assume that A(S(f)) has a unique compact face S and let p:=n(8}) be the primitive
integral gemerator of the dual cone 8. Then 7u(X, x) is determined completely by the weight
system p=(po, py, ..., pr).

4.34. Examples. It is well-known that a two-dimensional hypersurface purely elliptic singu-
larity is analytically equivalent to an isolated singularity (X, x)=(V(f),0) defined by the
polynomial either case (1):

B+ B+ a2, (p, q, 720, A50),
the case (2):
B+t 2+ Aazz, (p, 720, A£0),
or the case (3):
B+A+28"+Aaaz, (r=0,1%0).

In the case (1), p:=(1, 1, 1)€M is the absolutely minimal vector in the essential cone Ci(f)
and we have

#(mA(p) N M)=-mlm+1)(m +2).
Now that degp=3, we have
Pa(X, 2)=HmA- (D) M)~ #(m—degp)A-(p) N\ M) =3 (2~ m) + 1.
In the case (2), p:=(2,1, 1)€ M is the absolutely minimal vector in Ci(f) and we have
%m(m+2)(2m+5), m even,
#Hma-(DNM)=

%(m+1)(m+3)(2m+1), m odd.

Then since degp=4, when m is even or or odd, we have

Fa(X, 2)=H#mA(p)\ M)~ #((m—degn)A-(p) N M)=Z(a~ m) +1.

Finally, in the case (3), p=(3, 2, 1) is the absolutely minimal vector in Ci(f) and #(mA_(p)
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NM) equals to

7—12m(m+6)(2m+3)+%m, m=0 mod 6,
H(m=1)m+5)em+ D) +35(m—1)m+5)+5(m=1)+1, m=1 mod 6,
Fo(m=2)(m+)em—1) +5(m—Dm+)+m-2+1, m=2 mod,
‘%z(m—S)(m+3)(2m—3)+%(m—1)(m+3)+%(m—3)+1, m=3 mod 6,

%(m—4)(m+2)(2m—5)+%(m—1)(m+z)+%(m—4)+1, m=4 mod 6,

-717(m—5)(m+1)(2m—7)+%(m—1)(m+1)+%{m—5)+1, m=5 mod 6.

Although #(mA_(p) N M) are given by the six polynomials in m as above, #{(mA_(p) N M) —#((m
—degp)A-(p)N M) are represented by a polynomial

7u( X, x)=#¥(mA-(p) N M) —#({(m—degp)A-(p) N M) =%(m2 —m)+1.

On the other hand, we have the following formula which give 7= for a Gorenstein surface
singularity :

Proposition 4.9 (Kato [9]). Let (X, x) be a Gorenstein singularity of dimension two and «:
(X, E) - (X, x) be the minimal resolution.
Then

rn(X, x)=—K*(m*—m)+ps(X, x),

where K is a canonical divisor on X and ps(X, x) is the geometric genus of the singularity (X,

x),

Now po(X, £)=38(X, x)=1 holds for the singularity (X, x) defined by a polynomial as in
(1), (2) of (3) since (X, x) is a purely elliptic singularity. Moreover it is well-known that K*=
—3 for the singularity defined by a polynomial as in (1), that K*=—2 for the singularity defined
by a polynomial as in (2), and that K?=—1 for the singularity defined by a polynomial as in (3).
These are examples where ya(X, z)=7u(X, x) for every m.
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4.4. Types of purely elliptic singularities

44.1. Let (X, z) be an r-dimentional purely elliptic singularity and z: X - X be a good
resolution of (X, z). Then it is known that Kx=nx*Kx+ E;— E; holds, where Kx (resp. Kz) is
a canonical divisor of X (resp. X), E; is a positive divisor and Ej is a reduced divisor.

Ishii [5] classified the purely elliptic singularities into » classes by means of the mixed
Hodge structures of the cohomologies of the support of Ej:

Proposition 4.10 (Ishii).
C=H'E;, G)=GRH"E))='® HY¥{(E)),

where Hi (%) is the (i, j)-component of Gri;H™(*).
Hence, in particular, for a unique i (0<i<r—1),

H'"Y(E;, 4)=Hyi(E))=C.

Definition 4.11 (Ishii). A purely elliptic singularity (X, x) is said to be of #pe (0, i) if H™"(E,,
&%,) consists of the (0, 7)-Hodge component.

In case (X, z)=(V(f),0) is a purely elliptic singularity defined by a nondegenerate
polynomial fEC|[z, z, ..., 2}, we also have a criterion of what type the singularity (X, x) is:

Proposition 4.12 ([15]). Let (X, x)=(V(f),0) be an r-dimensional purely elliptic singularity
defined by a nondegenerate polynomial f. Then (X, x) is of type (0, dimAi(f)—1) if dimAi(¥f)
=2 and of Bpe (0,0) if dimA(f)=1 or 0, where Ai(f) is the face of the Newton boundary T'(f)
containing 1EM in its relative interior.

We call the face Ai(f) in the proposition just above the initial face of T'(f).

44.2. Let (X, x)=(V(f),0) be a purely elliptic singularity of type (0, 7—1). Then by the
criterion of Watanabe’s 4.12, the initial face Ai(f) is of »-dimension.

It follows that the essential cone Ci(f) is a one-dimensional cone and its primitive integral
generator p is the absolutely minimal vector in Ci(f). Thus, we can attach a system of weights
p=(po, p1, ..., pr) to each hypersurface purely elliptic singularity of type (0, » —1).

Therefore, we can apply Theorem 4.7 to every r-dimensional hypersurface purely elliptic
singularity of type (0, » —1) and hence {7=(X, x)}nen are determined completely by the system
of weights p.
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