On plurigenera of hypersurface purely elliptic singularities

Naohiro Kanesaka and Kimio Watanabe

(Received November 19, 1999)

Abstract

In this paper, we describe some properties of plurigenera defined for hypersurface isolated singularities, which have relations with more fundamental, well-known plurigenera $\{\gamma_m\}$, especially in case singularities are so-called purely elliptic singularities.

1. Introduction

In this paper, we will discuss the plurigenera $\{\gamma_m(X, x)\}_{m\in\mathbb{N}}$ and related subjects of hypersurface isolated singularities of dimension greater than or equal to two.

Knöller [11] showed that for a normal Gorenstein isolated singularity (X, x) and a resolution of the singularity $\pi: \widetilde{X} \to X$, $(\omega_X^{\otimes m})_x/(\pi_*\omega_X^{\otimes m})_x$ is a finite dimensional vector space over the complex number field $\mathbb C$ and that the dimension $\gamma_m(X,x)$ of it is independent of the choice of a resolution π for any positive integer m, where ω_X (resp ω_X) is the canonical sheaf of X (resp. \widetilde{X}). Hence $\{\gamma_m(X,x)\}_{m\in\mathbb N}$ are regarded as invariants of the singularity (X,x). Indeed, $\{\gamma_m(X,x)\}_{m\in\mathbb N}$ characterize a singularity. For example, for a two-dimensional normal Gorenstein singularity (X,x), the condition that $\gamma_m(X,x)=0$ for every m is equivalent to that (X,x) is a famous rational double point, that is, (X,x) is analytically equivalent to the hypersurface singularity at the origin O of $\mathbb C^3$ defined by one of the following equations:

$$A_n(n \ge 1): x^2 + y^2 + z^{n+1} = 0;$$
 $D_n(n \ge 4): x^2 + y^2 z + z^{n-1} = 0;$ $E_6: x^2 + y^3 + z^4 = 0;$ $E_7: x^2 + y^3 + yz^3 = 0;$ $E_8: x^2 + y^3 + z^5 = 0.$

On the other hand, we have another set of plurigenera $\{\delta_m(X,x)\}_{m\in\mathbb{N}}$ for a normal Gorenstein isolated singularity (X,x) — see Definition 4.1 in this paper. These give different characterization of singularities. For example, for a normal two-dimensional singularity (X,x), the condition that $\delta_m(X,x)=0$ for every m is equivalent to that (X,x) is a quotient singularity, that is, (X,x) is analytically equivalent to a quotient $(\mathbb{C}^2/G,0)$ of \mathbb{C}^2 by a finite subgroup G of $GL(2,\mathbb{C})$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 32S25; Secondary 14B05, 32S05.

 $\{\gamma_m(X,x)\}_{m\in\mathbb{N}}$ and $\{\delta_m(X,x)\}_{m\in\mathbb{N}}$ are fundamental invariants of normal isolated singularities, which contain the most fundamental invariant of normal isolated singularities: the geometric genus $p_g = \gamma_1 = \delta_1$. Including higher dimensional cases, many facts are known about these two plurigenera. We refer the reader to Ishii [7] on this subject.

As in the study of algebraic varieties, in the study of singularities, "hypersurface" singularities are investigated more deeply than the general cases. But now we cannot calculate γ_m explicitly, while, for example, we can calculate the Hodge numbers of toric hypersurfaces [1]. Our aim in this paper is to make some progress in this subject.

Let us give an outline of this paper:

In § 3, we will define one more set of plurigenera $\{\hat{\gamma}_m(X,x)\}_{m\in\mathbb{N}}$ for a hypersurface isolated singularity (X,x) and show that $\gamma_m(X,x) \leq \hat{\gamma}_m(X,x)$ for every m. In [15], a formula to calculate $\delta_m(X,x)$ for a hypersurface isolated singularity (X,x) is already given. The definitions of $\{\hat{\gamma}_m(X,x)\}_{m\in\mathbb{N}}$ and the proof of the inequalities above are inspired by this formula. And we have a conjecture that under a suitable condition, $\gamma_m(X,x) = \hat{\gamma}_m(X,x)$ holds for every m although we cannot identify such a condition now — see Remark 3.4.3.

In § 4, we will give several facts about $\{\hat{\gamma}_m(X,x)\}_{m\in\mathbb{N}}$ in case (X,x) is a so-called *purely elliptic singularity*, which is a singularity such that $\delta_m(X,x)=1$ for every m, and will give some example to $\{\gamma_m\}_{m\in\mathbb{N}}$ and $\{\hat{\gamma}_m\}_{m\in\mathbb{N}}$, where $\gamma_m=\hat{\gamma}_m$ holds for every m. Finally, we will give a note on $\{\hat{\gamma}_m\}_{m\in\mathbb{N}}$ for purely elliptic singularities of a special type.

2. Preliminaries

2.1. General settings. Let (X, x) = (V(f), 0) be a hypersurface isolated singularity of dimension r defined by a polynomial $f = \sum_{\lambda \in (\mathbb{Z} \geq 0)^{r+1}} a_{\lambda} \cdot \mathbf{z}^{\lambda} \in \mathbb{C}[z_0, z_1, ..., z_r]$, where x = 0 is the origin of the (r+1)-dimensional affine space \mathbb{C}^{r+1} and $\mathbf{z}^{\lambda} = \prod_{i=0}^{r} z_i^{\lambda_i}$ for each nonnegative integral vector $\lambda = (\lambda_0, \lambda_1, ..., \lambda_r)$. We alway assume that r is greater than or equals to two.

In this paper, we also always assume that the polynomial f is nondegenerate: The convex hull of the set $\bigcup_{a,\neq 0} (\lambda + (\mathbb{R}_{\geq 0})^{r+1})$ is called the *Newton diagram* of f and denoted by $\Gamma_+(f)$. The union of the compact faces of $\Gamma_+(f)$ is called the *Newton boundary* of $\Gamma_+(f)$ and denoted by Γ (f). We associate a polynomial $f_{\Delta} := \sum_{\lambda \in \Delta \cap (\mathbb{Z}_{\geq 0})^{r+1}} a_{\lambda} \cdot \mathbf{z}^{\lambda}$ with each face Δ of $\Gamma(f)$. A polynomial f is said to be *nondegenerate* if f_{Δ} has no solutions in $(\mathbb{C}^*)^{r+1}$ for any face Δ of $\Gamma(f)$.

We regard \mathbb{C}^{r+1} as an affine toric variety V_{Σ} associated with the fan Σ in $N_{\mathbb{R}} \cong N \otimes_{\mathbb{Z}} \mathbb{R}$ for $N \cong \mathbb{Z}^{r+1}$ consisting of the faces of the cone $(\mathbb{R}_{\geq 0})^{r+1}$. Then the set of the exponents of monomials in $\mathbb{C}[z_0, z_1, ..., z_r]$ is naturally identified with the set of vectors with nonnegative entries in the dual space $M := \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. We refer the reader to Fulton [2] or Oda [12] on the theory of toric varieties.

For each vector \mathbf{n} in $(\mathbb{R}_{\geq 0})^{r+1}$, define $l_f(\mathbf{n}) := \min\{\langle \lambda, \mathbf{n} \rangle | \lambda \in \Gamma_+(f)\}$ and

$$\Delta(\mathbf{n}) := \Gamma_{+}(f) \cap \{\lambda \in N_{\mathbb{R}} | \langle \lambda, \mathbf{n} \rangle = l(\mathbf{n})\}.$$

After these definitions, we define the dual diagram of each face Δ of $\Gamma_+(f)$:

$$\Delta^* := \{ \mathbf{n} \in \mathcal{N}_{\mathbf{R}} | \Delta(\mathbf{n}) = \Delta \}.$$

Then the closure of Δ^* in N_R is a cone and the set of the closures of the dual diagrams of all the faces of $\Gamma_+(f)$ forms a fan $\Sigma(f)$. This is a subdivision of the fan Σ and called the *dual fan* of the Newton diagram $\Gamma_+(f)$ of f.

Take a nonsingular subdivision $\widehat{\Sigma}(f)$ of $\Sigma(f)$ and denote by $V_{\widehat{\Sigma}(f)}$ the toric variety associated with $\widehat{\Sigma}(f)$. We can associate a map of fans $(N, \widehat{\Sigma}(f)) \to (N, \Sigma)$ with the subdivision $\widehat{\Sigma}(f)$ of Σ . This map of fans induces a proper, birational morphism of toric varieties:

$$\Pi: V_{\widehat{\Sigma}(f)} \to V_{\Sigma} \cong \mathbb{C}^{r+1}.$$

In the following, we assume that the subdivision $\hat{\Sigma}(f)$ is the one satisfying that the morphism Π induces an isomorphism

$$V_{\widehat{\Sigma}(f)}\backslash \Pi^{-1}(x) \cong V_{\Sigma}\backslash \{x\}.$$

Then it is well-known that the restriction $\pi: \widetilde{X} \to X$ of Π on the proper transform \widetilde{X} of X with respect to Π is a good resolution of the singularity (X, x) — see Kempf et al. [10].

3. The plurigenera $\{\gamma_m(X, x)\}_{m\in\mathbb{N}}$ and $\{\hat{\gamma}_m(X, x)\}_{m\in\mathbb{N}}$ for a hypersurface isolated singularity (X, x)

Let
$$(X, x) = (V(f), 0)$$
, $\widehat{\Sigma}(f)$ and $\Pi: V_{\widehat{\Sigma}(f)} \to \mathbb{C}^{r+1}$ as in § 2.

3.1. Differential forms around a singularity

3.1.1. Let $\Omega_{\mathbb{C}^{r+1}}^{r+1}(X)$ be the sheaf of meromorphic differential forms on \mathbb{C}^{r+1} with single pole along X. For any open subset U, we have

$$\Omega_{\mathbf{C}^{r+1}}^{r+1}(X)(U) = \mathcal{O}_{\mathbf{C}^{r+1}}(U) \cdot \eta,$$

where $\eta = dz_0 \wedge dz_1 \wedge \cdots \wedge dz_r / f$.

Let $(\Omega_{\mathbb{C}^{r+1}}^{r+1}(X))^{\otimes m}$ represent the *m*-times tensor product of $\Omega_{\mathbb{C}^{r+1}}^{r+1}(X)$ for each positive integer *m*.

3.1.2. Let U be an open neighborhood of the origin x=0 of \mathbb{C}^{r+1} and let Ψ be an element of $(\Omega^{r+1}_{\mathbb{C}^{r+1}}(X))^{\otimes m}(U)$. Then Ψ is written as $\Psi = \psi \cdot \eta^{\otimes m}$, where $\psi \in \mathcal{O}_{\mathbb{C}^{r+1}}(U)$, that is a holomorpic function on U.

Now expand ψ in a power series at the origin x, say, $\psi = \sum_{\lambda \in (\mathbf{Z} \geq 0)^{r+1}} c_{\lambda} \cdot \mathbf{z}^{\lambda}$, where $\mathbf{z}^{\lambda} := \prod_{i=0}^{r} z_{i}^{\lambda}$. This gives rise to an isomorphism

$$(\Omega_{Cr+1}^{r+1}(X))_x^{\otimes m} \to \mathbb{C}\{z_0, z_1, ..., z_r\} \cdot \eta_x^{\otimes m},$$

where $\mathbb{C}\{z_0, z_1, ..., z_r\}$ is the ring of convergent power series and η_x is the germ of η at x. Denote by g_{Ψ} the image of each element $\Psi_x \in (\Omega_{C^{r+1}}^{r+1}(X))_x^{\otimes m}$ by this isomorphism.

We define a diagram $\Gamma_+(g)$ for each power series g in $\mathbb{C}\{z_0, z_1, ..., z_r\}$ to be the convex hull of the set $\bigcup_{c_1\neq 0}(\lambda+(\mathbb{R}_{\geq 0})^{r+1})$ in $M_{\mathbb{R}}\cong\mathbb{R}^{r+1}$. For g and for each vector n of N, define

$$l_{\sigma}(\mathbf{n}) := \min\{\langle \lambda, \mathbf{n} \rangle | \lambda \in \Gamma_{+}(g)\}.$$

3.1.3. The morphism $\Pi: V_{\Sigma(f)} \to \mathbb{C}^{r+1}$ induces a homomorphism of sheaves:

$$\Pi^*: (\Omega^{r+1}_{\mathbb{C}^{r+1}}(X))^{\otimes m} \to \Pi_* \tilde{I}_* (\Omega^{r+1}_{V_{\Sigma(f)} \backslash \Pi^{-1}(x)}(\tilde{X} \backslash \Pi^{-1}(x))^{\otimes m}),$$

which is defined by the pull-backs of differential forms, where $\tilde{I}: V_{\Sigma(f)}\backslash\Pi^{-1}(x) \to V_{\Sigma(f)}$ is the inclusion. Then the image of an element of $(\Omega_{C^{r+1}}^{r+1}(X))^{\otimes m}(U)$ by Π^* , for an open neighborhood U of x, can be regarded as a meromorphic differential form with single pole along \widetilde{X} and with poles along irreducible components of $\Pi^{-1}(x)$. We note that $\Pi^{-1}(x) = \bigcup_{\tilde{\rho} \in \Sigma(f)(1)\backslash\Sigma(1)} D_{\tilde{\rho}}$, where Σ (1) (resp. $\hat{\Sigma}(f)(1)$) denotes the set of one-dimensional cones of Σ (resp. $\hat{\Sigma}(f)$) and $D_{\tilde{\rho}}$ denotes the invariant divisor of the toric variety $V_{\Sigma(f)}$ corresponding to one-dimensional cone $\hat{\rho}$.

Proposition 3.1. Let Ψ_x be an element of $(\Omega_{\mathbb{C}^{r+1}}^{r+1}(X))_x^{\otimes m}$. Then $\Pi^*(\Psi_x)$ has zeros of order lg_{Ψ_x} $(\mathfrak{n}(\hat{\rho})) + m(\langle 1, \mathfrak{n}(\hat{\rho}) \rangle - 1 - l_f(\mathfrak{n}(\hat{\rho})))$ along the invariant divisor $D_{\hat{\rho}}$ corresponding to $\hat{\rho} \in \widehat{\Sigma}(f)(1) \setminus \Sigma$ (1), where $\mathbf{1} := (1, 1, ..., 1) \in M$.

Proof. This is an easy modification of [15], Lemma 2.1.

3.1.4. The homomorphism $(\Omega_{V_{2(f)}}^{r+1}(\widetilde{X}))^{\otimes_m} \to \tilde{I}_*(\Omega_{V_{2(f)}\setminus\Pi^{-1}(x)}^{r+1}(\widetilde{X}\setminus\Pi^{-1}(x))^{\otimes_m})$ induced by the inclusion $\tilde{I}: V_{2(f)}\setminus\Pi^{-1}(x) \to V_{2(f)}$ is injective, so that we may regard the former as a subsheaf of the latter.

By Proposition 3.1, for an element $\Psi_x \in (\Omega_{\mathbb{C}^{r+1}}^{r+1}(X))_x^{\otimes m}$, $\Pi^*(\Psi_x) \in \Pi_*(\Omega_{V_{\Sigma(f)}}^{r+1}(\widetilde{X}))_x^{\otimes m}$ if and only if $lg_{\Psi_x}(\mathbf{n}(\widehat{\rho})) + m(\langle 1, \mathbf{n}(\widehat{\rho}) \rangle - 1 - l_f(\mathbf{n}(\widehat{\rho}))) \geq 0$ for any $\widehat{\rho} \in \widehat{\Sigma}(f)(1) \setminus \Sigma(1)$. Here we define a subset $m\Delta_+(\widehat{\Sigma}(f))$ of M_R to be the set:

$$\{\lambda \in (\mathbb{R}_{\geq 0})^{r+1} \mid \langle \frac{1}{m}\lambda, \, \mathbf{n}(\hat{\rho}) \rangle \geq l_f(\mathbf{n}(\hat{\rho})) - \langle 1, \, \mathbf{n}(\hat{\rho}) \rangle + 1 \text{ for any } \hat{\rho} \in \widehat{\Sigma}(f)(1) \setminus \Sigma(1) \}.$$

Then we have the following:

Lemma 3.2. $\Pi^*(\Psi_x) \in \Pi_*(\Omega^{r+1}_{V_2^*(f)}(\widetilde{X}))_x^{\otimes m}$ if and only if $\Gamma_+(g_{\Psi_x}) \subset m\Delta_+(\widehat{\Sigma}(f))$.

Proof. As we mentioned above, $\Pi^*(\Psi_x) \in \Pi_*(\Omega^{r+1}_{V_{\Sigma(f)}}(\widetilde{X}))_x^{\otimes m}$ if and only if $lg_{\Psi_x}(\mathbf{n}(\hat{\rho})) + m(\langle 1, \mathbf{n}(\hat{\rho}) \rangle -1 - l_f(\mathbf{n}(\hat{\rho}))) \geq 0$ for any $\hat{\rho} \in \widehat{\Sigma}(f) \setminus \Sigma(1)$.

Now assume that $\Pi^*(\Psi_x) \in \Pi_*(\Omega^{r+1}_{V_2^*(f)}(\widetilde{X}))_x^{\otimes m}$. Since $lg_{\Psi_x}(\mathbf{n}(\hat{\rho})) = \min\{\langle \lambda, \mathbf{n}(\hat{\rho}) \rangle | \lambda \in \Gamma_+(g_{\Psi_x})\}$, we have $\langle \lambda, \mathbf{n}(\hat{\rho}) \rangle + m(\langle 1, \mathbf{n} \rangle - 1 - l_f(\mathbf{n}(\hat{\rho}))) \geq 0$, so that

$$\langle \frac{1}{m} \lambda, \mathbf{n}(\hat{\rho}) \rangle \geq l_f(\mathbf{n}(\hat{\rho})) - \langle 1, \mathbf{n}(\hat{\rho}) \rangle + 1$$

holds for any $\lambda \in \Gamma_+(g_{\Psi_x})$. Therefore, we obtain $\Gamma_+(g_{\Psi_x}) \subset m\Delta_+(\widehat{\Sigma}(f))$.

The converse is obvious.

3.1.5. Define the C-submodule $A_+^{(m)}$ of $(\Omega_{Cr+1}^{r+1}(X))_r^{\otimes m} = \mathbb{C}\{z_0, z_1, ..., z_r\} \cdot \eta_r^{\otimes m}$ to be

$$\{g \cdot \eta_x^{\otimes m} | g \in m\Delta_+(\widehat{\Sigma}(f))\}$$

Lemma 3.3. The homomorphism

$$\Pi^*:A_+^{(m)}\to \Pi_*(\Omega^{r+1}_{V\widehat{\Sigma}(f)}(\widetilde{X}))_x^{\otimes m}$$

is an isomorphism.

Proof. Recall that we have an inclusion $\Pi_*(\Omega^{r+1}_{V_{\Sigma(f)}}(\widetilde{X}))_x^{\otimes m} \to \Pi_* \tilde{I}_*(\Omega^{r+1}_{V_{\Sigma(f)}\setminus\Pi^{-1}(x)}(\widetilde{X}\setminus\Pi^{-1}(x)))_x^{\otimes m}$ given by the restriction map. Also note that we have an isomorphism $\Pi^*: (\Omega^{r+1}_{C^r+1}(X))_x^{\otimes m} \cong (\Omega^{r+1}_{C^r+1\setminus\{x\}}(X\setminus\{x\}))_x^{\otimes m} \cong \Pi_*(\Omega^{r+1}_{V_{\Sigma(f)}}(\widetilde{X}\setminus\Pi^{-1}(x)))_x^{\otimes m}$ since $r+1\geq 3$ and $\Pi|_{V_{\Sigma(f)}}: V_{\Sigma(f)}\setminus\Pi^{-1}(x) \to \mathbb{C}^{r+1}\setminus\{x\}$ is an isomorphism.

Then it follows that for any element of $\Pi_*(\Omega^{r+1}_{V\hat{\Sigma}(f)}(X))_x^{\otimes m}$, there exists an element $\Psi_x = \psi_x \cdot \eta_x^{\otimes m}$ in $(\Omega^{r+1}_{C^{r+1}}(X))_x^{\otimes m}$. By Proposition 3.2, $\Gamma_+(\psi_x) \subset m\Delta_+(\hat{\Sigma}(f))$, so that $\Psi_x \in A_+^{(m)}$. Hence the map in the lemma is surjective.

The injectivity of the map is obvious.

3.2. Poincaré residue maps

3.2.1. Define the sheaf Ω_X^r to be the direct image $i_*\Omega_{X\setminus\{x\}}^r$ of $\Omega_{X\setminus\{x\}}^r$ with respect to the inclusion

 $i: X \setminus \{x\} \to X$.

Let U be an open subset of \mathbb{C}^{r+1} . We have a natural map, called the *Poincaré residue map*,

$$\operatorname{Res}_X: \Omega^{r+1}_{cr+1}(X)(U) \to \Omega^r_X(X \cap U)$$

by sending $\Psi = \psi \cdot \eta$ to $\operatorname{Res}_X(\Psi) := \psi|_{X \setminus \{x\}} \cdot \operatorname{Res}_X(\eta)$, where $\eta = dz_0 \wedge dz_1 \wedge \cdots \wedge dz_r / f$ and $\operatorname{Res}_X(\eta) := (-1)^{j-1} (dz_0 \wedge \cdots \wedge d\widehat{z_j} \wedge \cdots \wedge dz_r) / (\partial f / \partial z_j)$ (if $\partial f / \partial z_j \neq 0$).

This induces the maps between the tensor products:

$$\operatorname{Res}_X^{\otimes m}: (\Omega_{Cr+1}^{r+1}(X))^{\otimes m}(U) \to (\Omega_X^r)^{\otimes m}(X \cap U).$$

Therefore, we have a homomorphism of sheaves for any positive integer m:

$$\operatorname{Res}_X^{\otimes m}: (\Omega_{C^{r+1}}^{r+1}(X))^{\otimes m} \to (\Omega_X^r)^{\otimes m}.$$

Lemma 3.4. The homomorphism of sheaves $\operatorname{Res}_X^{\otimes m}$ is surjective for every m.

Proof. This lemma follows the adjunction formula for a nonsingular variety and a Cartier divisor on it.

3.2.2. On the other hand, since \widetilde{X} is a nonsingular divisor of a nonsingular variety $V_{\mathfrak{L}(I)}$, we have another Poincaré residue map

$$\operatorname{Res}_{X}^{\otimes m}: (\Omega^{r+1}_{V_{\Sigma}^{r}(I)}(\widetilde{X}))^{\otimes m} \to (\Omega^{r}_{\widetilde{X}})^{\otimes m}$$

for each positive integer m.

3.3. The definition of $\{\gamma_m(X, x)\}_{m\in\mathbb{N}}$

3.3.1. Let (X, x) be a normal isolated Gorenstein singularity of dimension r and let $\pi: \widetilde{X} \to X$ be a good resolution of the singularity (X, x). Then, the sequence

$$0 \to (\Omega_{\vec{X}}^r)^{\otimes m} \to \ \tilde{i}_* (\Omega_{\vec{X} \setminus \pi^{-1}(x)}^r)^{\otimes m}$$

is exact, where $\tilde{i}: \widetilde{X} \backslash \pi^{-1}(x) \to \widetilde{X}$ is the inclusion, so that

$$0 \to \pi_*(\Omega^r_{\tilde{X}})^{\otimes m} \to (\Omega^r_X)^{\otimes m} \cong \pi_* \, \tilde{i}_* (\Omega^r_{\tilde{X} \setminus \pi^{-1}(x)})^{\otimes m}$$

is also exact. Therefore, we can regard $\pi_*(\Omega_X^r)^{\otimes m}$ as a subsheaf of $(\Omega_X^r)^{\otimes m}$.

Here we give the definition of the plurigenera $\{\gamma_m\}_{m\in\mathbb{N}}$ introduced by Knöller [11]:

Proposition and Definition 3.5 (Knöller). For a normal isolated Gorenstein singularity (X, x) and a positive integer m, $(\omega_X^{\otimes m})_x/(\pi_*\omega_X^{\otimes m})_x$ is a finite dimensional vector space over \mathbb{C} , where $\pi: \widetilde{X} \to X$ is a good resolution of the singularity (X, x).

The dimension of this vector space is independent of the choice of a resolution and is denoted by $\gamma_m(X, x)$, that is,

$$\gamma_m(X, x) := \dim_{\mathbb{C}}(\omega_X^{\otimes m})_x / (\pi_* \omega_X^{\otimes m})_x = \dim_{\mathbb{C}}(\Omega_X^r)_x^{\otimes m} / \pi_*(\Omega_X^r)_x^{\otimes m},$$

where ω_X (resp. $\omega_{\tilde{X}}$) is the canonical sheaf of X (resp. \tilde{X}).

We sometimes use the symbol γ_m for $\gamma_m(X, x)$ for simplicity.

3.4. The definition of $\{\hat{\gamma}_m(X, x)\}_{m\in\mathbb{N}}$ of a hypersurface isolated singularity (X, x) and relations to $\{\gamma_m(X, x)\}_{m\in\mathbb{N}}$

3.4.1. Next we will define the plurigenera $\{\hat{\gamma}_m(X,x)\}_{m\in\mathbb{N}}$ for a hypersurface isolated singularity (X,x). The definition of $\{\hat{\gamma}_m\}_{m\in\mathbb{N}}$ is inspired by the formula for another set of the plurigenera $\{\delta_m(X,x)\}_{m\in\mathbb{N}}$ in [15], Thorem 2.2. See [14] and [15] for details on $\{\delta_m\}_{m\in\mathbb{N}}$. So we assume that (X,x)=(V(f),0), where $f\in\mathbb{C}[z_0,z_1,...,z_r]$ is a nondegenerate polynomial and 0 is the origin of \mathbb{C}^{r+1} and we use the notation in § 2.

Recall that the definition of the diagram $m\Delta_+(\widehat{\Sigma}(f))$ for each $m \in \mathbb{N}$. Define $m\Delta_-(\widehat{\Sigma}(f)) := (\mathbb{R}_{\geq 0})^{r+1} \backslash m\Delta_+(\widehat{\Sigma}(f))$.

Now we define $\{\hat{\gamma}_m(X,x)\}_{m\in\mathbb{N}}$ as follows:

Definition 3.6. Let (X, x) = (V(f), 0) be an isolated singularity at the origin of \mathbb{C}^{r+1} defined by a nondegenerate polynomial $f \in \mathbb{C}[z_0, z_1, ..., z_r]$. Then we define $\hat{\gamma}_m(X, x)$ to be

$$\#(m\Delta_{-}(\widehat{\Sigma}(f))\cap M) - \#\{\lambda \in (\mathbf{Z}_{\geq 0})^{r+1} \subset M \mid (\lambda + \Gamma_{+}(f)) \cap m\Delta_{-}(\widehat{\Sigma}(f)) \neq \emptyset\}$$

for each $m \in \mathbb{N}$, where #A denotes the cardinality of a set A.

3.4.2.

Theorem 3.7. We have the following inequality between $\gamma_m(X, x)$ and $\hat{\gamma}_m(X, x)$ for every $m \in \mathbb{N}$:

$$\gamma_m(X, x) \leq \hat{\gamma}_m(X, x)$$
.

The following proof is a modification of [15], Thorem 2.2 for the formula for δ_m .

Proof. Let θ be an element of $(\Omega_X^r)_x^{\otimes m}$. By Lemma 3.4, the homomorphism $\operatorname{Res}_X^{\otimes m}: (\Omega_{C^{r+1}}^{r+1}(X))_x^{\otimes m} \to (\Omega_X^r)_x^{\otimes m}$ between the stalks at x is surjective. Hence there exists an element $\Psi_x = \psi_x \cdot \eta_x^{\otimes m}$ such that $\operatorname{Res}_X^{\otimes m}(\Psi_x) = \theta$, where $\psi_x \in \mathscr{O}_{X, x}$. We may regard ψ_x as a convergent power series: $\sum_{\lambda \in (Z > 0)^{r+1}} c_\lambda \cdot \mathbf{z}^{\lambda}$.

We write ψ_x as a sum of two series: $\psi_{x,-} + \psi_{x,+}$, where $\psi_{x,+} := \sum_{\lambda \in m\Delta_+(\hat{\Sigma}(f)) \cap (Z_{\geq 0})^{r+1} C_{\lambda} \cdot \mathbf{z}^{\lambda}}$ and $\psi_{x,-} := \psi_x - \psi_{x,+}$. Define $\Psi_{x,+} := \psi_{x,+} \cdot \eta_x^{\otimes m}$ and $\Psi_{x,-} := \psi_{x,-} \cdot \eta_x^{\otimes m}$. Then $\Psi_x = \Psi_{x,-} + \Psi_{x,+}$. Since $\psi_{x,+} \in A_+^{(m)}$, we have $\Pi^*(\Psi_{x,+}) \in \Pi_*(\Omega_{Y_{\geq (f)}}^{r+1}(\widetilde{X}))_x^{\otimes m}$ by Lemma 3.2.

Since the diagram:

$$A_{+}^{(m)} \xrightarrow{\operatorname{Res}_{X}^{\otimes m}} (\Omega_{X}^{r})_{x}^{\otimes m} = i_{*}(\Omega_{X\backslash\{x\}}^{r})_{x}^{\otimes m}$$

$$\downarrow \pi^{*} \qquad \qquad \downarrow \pi^{*}$$

$$\Pi_{*}(\Omega_{X}^{r+1}(\widetilde{X}))_{x}^{\otimes m} \xrightarrow{\Pi_{*}(\operatorname{Res}_{X}^{\otimes m})} \pi_{*} i_{*}(\Omega_{X\backslash\{x-1\}(x)}^{r})_{x}^{\otimes m}$$

commutes, $\pi^*(\operatorname{Res}_X^{\otimes m}(\Psi_{x,+})) \in \pi_*(\Omega_X^r)_x^{\otimes m}$. Therefore, $(\Omega_X^r)_x^{\otimes m}/\pi_*(\Omega_X^r)_x^{\otimes m}$ is generated by the elements $\{\operatorname{Res}_X^{\otimes m}(\mathbf{z}^{\lambda} \cdot \boldsymbol{\omega}_X^{\otimes m}) | \lambda \in m\Delta_-(\widehat{\Sigma}(f)) \cap (\mathbf{Z}_{\geq 0})^{r+1} \}$.

Next assume that $\pi^*(\operatorname{Res}_X^{\otimes m}(\Psi_{x,-}))$ is contained by the image of the homomorphism :

(1)
$$\Pi_*(\operatorname{Res}_{X}^{\otimes m}): \Pi_*(\Omega_{V_{\Sigma}^{r}(I)}^{r+1}(\widetilde{X}))^{\otimes m} \to \Pi_*(\Omega_{X}^{r})^{\otimes m}.$$

Then, by Lemma 3.3, there exists an element $\Phi_x = \phi_x \cdot \eta_x^{\otimes m} \in A_+^{(m)}$ such that the image of the composite of Π^* and $\Pi_*(\operatorname{Res}_X^{\otimes m})$ is just $\pi^*(\operatorname{Res}_X^{\otimes m}(\Psi_{x,-}))$. Then we have $\pi^*(\psi_{x,-}|_X) = \pi^*(\phi_x|_X)$ in $\pi_*(\mathcal{O}_{\bar{X}})_x$. Since $\pi^* : \mathcal{O}_{X,x} \to \pi_*(\mathcal{O}_{\bar{X}})_x$ is injective, $\psi_{x,-}|_X = \phi_x|_X$ holds, so that there exists a power series $\sum_{\lambda \in (\mathbb{Z} \geq 0)^{r+1}} d_\lambda \cdot \mathbf{z}^{\lambda}$ such that $\psi_{x,-} = \phi_x = \sum_{\lambda \in (\mathbb{Z} \geq 0)^{r+1}} d_\lambda \cdot (\mathbf{z}^{\lambda} \cdot f_x)$. It follows that $\psi_{x,-} = \sum_{\lambda \in (\mathbb{Z} \geq 0)^{r+1}} d_\lambda \cdot (\mathbf{z}^{\lambda} \cdot f_x)$. This completes the proof.

3.4.3. *Remark.* In the proof of the theorem just above, if the homomorphism (1) is surjective, we obtain an equation:

$$\gamma_m(X, x) = \hat{\gamma}_m(X, x)$$

Until now, we cannot state the condition under which the homomorphism (1) is surjective.

3.5. The diagram $\Delta_{+}(\widehat{\Sigma}(f))$

3.5.1. We can rewrite $m\Delta_{+}(\hat{\Sigma}(f))$ as

$$\{\lambda \in (\mathbb{Z}_{\geq 0})^{r+1} \subset M \mid \frac{1}{m} \lambda \in \Delta_{+}(\widehat{\Sigma}(f))\}$$

and we have

$$m\Delta_{-}(\hat{\Sigma}(f)) = (\mathbb{R}_{\geq 0})^{r+1} \backslash m\Delta_{+}(\hat{\Sigma}(f)).$$

Hence we obtain the following:

Corollary 3.8. $\hat{\gamma}_m(X, x)$ is determined by the diagram $\Delta_+(\hat{\Sigma}(f))$.

3.5.2. Remark. Here, we note that the diagram $\Delta_+(\widehat{\Sigma}(f))$ is the same $\Gamma_{\widehat{\Sigma}(f)}$ introduced by Ishii [8] in order to construct the canonical model of the hypersurface isolated singularity (X, x) = (V(f), 0). Indeed, Ishii obtained the following result:

Theorem 3.9 (Ishii). Let Σ_0 be the dual fan associated with the polytope $\Delta_+(\widehat{\Sigma}(f))$ and let $\varphi: X_0 \to X$ be the birational morphism induced by the subdivision Σ_0 of Σ . Denote by $\eta: X_0 \to X_0$ be the normalization.

Then the composite $\varphi \circ \eta : X'_0 \to X$ is the canonical modification.

4. Application to purely elliptic singularities

4.1. Preliminaries

4.1.1. In this section, we will apply the result obtained in § 3 to a particular class of singularities, called purely elliptic singularities. First of all, we recall the definition of the plurigenera $\{\delta_m(X,x)\}_{m\in\mathbb{N}}$ to introduce the notion of purely elliptic singularities.

Proposition and Definition 4.1 ([14]). For a normal isolated Gorenstein singularity (X, x) and a positive integer m, $(\omega_X^{\otimes m})_x/\pi_*(\omega_X^{\otimes m}((m-1)E))_x$ is a finite dimensional vector space over \mathbb{C} , where $\pi: \widetilde{X} \to X$ is a good resolution of the singularity (X, x), ω_X (resp. $\omega_{\widetilde{X}}$) is the canonical sheaf of X (resp. \widetilde{X}), and E is the exceptional divisor.

The dimension of the vector space is independent of the choice of a good resolution π and denoted by $\delta_m(X, x)$, that is,

$$\delta_m(X, x) := \dim_{\mathbb{C}}(\omega_X^{\otimes m})_x / (\pi_* \omega_X^{\otimes m}((m-1)E))_x$$

Definition 4.2 ([14]). A normal isolated Gorenstein singularity (X, x) is said to be a *purely elliptic singularity* if $\delta_m=1$ for all $m\in\mathbb{N}$.

4.1.2. There is a criterion whether an isolated singularity defined by a polynomial is a purely

elliptic singularity:

Proposition 4.3 ([15]). Let (X, x) = (V(f), 0) be an r-dimensional isolated singularity defined by a nondegenerate polynomial $f \in \mathbb{C}[z_0, z_1, ..., z_r]$.

Then (X, x) is a purely elliptic singularity if and only if the Newton boundary $\Gamma(f)$ contains the vector $1=(1, 1, ..., 1) \in M$.

4.2. The essential cone and the diagram $m\Delta_{+}(\hat{\Sigma}(f))$

4.2.1. Let (X, x) = (V(f), 0) be an r-dimensional purely elliptic singularity defined by a non-degenerate polynomial $f \in \mathbb{C}[z_0, z_1, ..., z_r]$.

Let $\hat{\Sigma}(f)$ be a nonsingular subdivision of the dual fan $\Sigma(f)$ of f such that the primitive integral generators of one-dimensional cones are all positive vectors.

Recall that $m\Delta_{+}(\hat{\Sigma}(f))$ is the set:

$$\{\lambda \in (\mathbf{Z}_{\geq 0})^{r+1} \subset M \mid \langle \frac{1}{m}\lambda, \mathbf{n}(\hat{\rho}) \rangle \geq l_f(\mathbf{n}(\hat{\rho})) - \langle 1, \mathbf{n}(\hat{\rho}) \rangle + 1 \text{ for any } \hat{\rho} \in \widehat{\Sigma}(f)(1) \setminus \Sigma(1) \}.$$

We will divide the set $\hat{\Sigma}(f)(1)\backslash\Sigma(1)$ into two classes. To do this, we introduce the notion of the essential cone due to Ishii [6]:

Definition 4.4 (Ishii). The set

$$C_1(f) := \{ \mathbf{n} \in N_{\mathbf{R}} | l_f(\mathbf{n}) \ge \langle 1, \mathbf{n} \rangle \}$$

is a cone in N_R and called the essential cone.

4.2.2. In case (X, x) = (V, 0) is a purely elliptic singularity, $l_f(n) \le \langle 1, n \rangle$ holds for any $n \in N_R$ since the Newton boundary $\Gamma(f)$ contains $1 \in M$. Hence in this case, we have

$$C_1(f) = \{ \mathbf{n} \in N_{\mathbb{R}} | l_f(\mathbf{n}) = \langle \mathbf{1}, \mathbf{n} \rangle \}.$$

If $\mathbf{n} \in (\mathbb{R}_{\geq 0})^{r+1}$ but $\mathbf{n} \not\in C_1(f)$, then $l_f(\mathbf{n}) < \langle 1, \mathbf{n} \rangle$, so that $l_f(\mathbf{n}) - \langle 1, \mathbf{n} \rangle + 1 \leq 0$. Hence

$$\langle \frac{1}{m} \lambda, \mathbf{n} \rangle \geq l_f(\mathbf{n}) - \langle \mathbf{1}, \mathbf{n} \rangle + 1$$

holds for any $\lambda \in (\mathbb{Z}_{\geq 0})^{r+1}$. Thus, we can write $m\Delta_+(\widehat{\Sigma}(f))$ as follows:

Proposition 4.5. If (X, x) = (V(f), 0) is a purely elliptic singularity, then $m\Delta_+(\hat{\Sigma}(f))$ equals to the set:

$$\{\lambda \in (\mathbf{Z}_{\geq 0})^{r+1} \subset M \mid \langle \frac{1}{m}\lambda, \mathbf{n}(\hat{\rho}) \rangle \geq 1 \text{ for any } \hat{\rho} \in (\hat{\Sigma}(f)(1) \setminus \Sigma(1)) \cap C_1(f)(1) \}$$

or

$$\{\lambda \in (\mathbb{Z}_{\geq 0})^{r+1} \subset M \mid \langle \lambda, \mathbf{n}(\hat{\rho}) \rangle \geq m \text{ for any } \hat{\rho} \in (\widehat{\Sigma}(f)(1) \setminus \Sigma(1)) \cap C_1(f)(1)\}.$$

When (X, x) = (V(f), 0) is a purely elliptic singularity, by this proposition, we have only to take a nonsigular subdivision of the essential cone $C_1(f)$ in order to obtain $m\Delta_+(f)$. An algorithm to get a nonsigular subdivision is given by Oka [13].

4.3. $\hat{\gamma}_m$ and special vectors: systems of weights

4.3.1. Here we investigate the most simple case, that is the diagram $\Delta_+(\hat{\Sigma}(f))$ has only one compact face. In this case, there exists a special integral vector in the essential cone $C_1(f)$, which Ishii [6] calls the absolutely minimal vector in $C_1(f)$: Denote by $C_1(f)[1]$ the set of primitive integral vectors in $C_1(f)$. Then a primitive integral vector $\mathbf{p} = (p_0, p_1, ..., p_r)$ is said to be absolutely minimal if for any element $\mathbf{q} = (q_0, q_1, ..., q_r) \in C_1(f)[1]$, $p_i \leq q_i$ holds for i = 0, 1, ..., r.

The following is easy to check.

Proposition 4.6. If there exists an absolutely minimal vector \mathbf{p} in $C_1(f)[1]$, then the diagram $m\Delta_+(\widehat{\Sigma}(f))$ has only one compact face, more precisely,

$$m\Delta_{+}(\widehat{\Sigma}(f)) = m\Delta_{+}(\mathbf{p})$$
$$:= \{\lambda \in (\mathbb{R}_{\geq 0})^{r+1} | \langle \lambda, \mathbf{p} \rangle \geq m \}$$

and its unique compact face is

$$\{\lambda \in (\mathbb{R}_{\geq 0})^{r+1} | \langle \lambda, \mathbf{p} \rangle = m\}.$$

Conversely, if $\Delta_+(\hat{\Sigma}(f))$ has only one compact face δ_0 , then the primitive integral generator $\mathbf{p}=\mathbf{n}(\delta_0^*)$ of the dual cone δ_0^* is the absolutely minimal vector in $C_1(f)[1]$.

4.3.2. Remark. Due to Ishii [6], if $\Delta_+(\hat{\Sigma}(f))$ has a unique compact face δ_0 , then the canonical model of the purely elliptic singularity (X, x) = (V(f), 0) is obtained by the weighted blow-up with respect to the integral vector $\mathbf{p} = \mathbf{n}(\delta_0^*)$.

The statement that the essential cone of a hypersurface purely elliptic singularity contains the absolutely minimal vector is false in general. Counter examples are given by Ishii [6] § 4.1. Nevertheless, many examples of hypersurface purely elliptic singularities whose essential cones

contains the absolutely minimal vectors are known.

4.3.3. For a positive vector $\mathbf{p} = (p_0, p_1, ..., p_r) \in M$, denote $p_0 + p_1 + \cdots + p_r$ by deg \mathbf{p} . Then we can write down the formula for $\hat{\gamma}_m(X, x)$ as the following simple form:

Theorem 4.7. Let (X, x) = (V(f), 0) be a purely elliptic singularity defined by a nondegenerate polynomial $f \in \mathbb{C}[z_0, z_1, ..., z_r]$.

Assume that $\Delta_{+}(\hat{\Sigma}(f))$ has a unique compact face δ_{0} and let $\mathbf{p} := \mathbf{n}(\delta_{0}^{*})$ be the primitive integral generator of the dual cone δ_{0}^{*} . Then we have

(2)
$$\hat{\gamma}_m(X, x) = \#(m\Delta_{-}(\mathbf{p}) \cap M) - \#\{\lambda \in (\mathbf{Z}_{\geq 0})^{r+1} \subset M \mid (\lambda + \Gamma_{+}(\mathbf{p})) \cap m\Delta_{-}(\mathbf{p}) \neq \emptyset\}$$

$$= \#(m\Delta_{-}(\mathbf{p}) \cap M) - \#((m - \deg \mathbf{p})\Delta_{-}(\mathbf{p}) \cap M),$$

where $m\Delta_{-}(\mathbf{p}) := (\mathbb{R}_{\geq 0})^{r+1} \setminus m\Delta_{+}(\mathbf{p})$ and $\Gamma_{+}(\mathbf{p}) := (\langle 1, \mathbf{p} \rangle)\Delta_{+}(\mathbf{p})$.

Proof. We have only to show that the set

$$\{\lambda \in (\mathbf{Z}_{\geq 0})^{r+1} | (\lambda + \Gamma_{+}(f)) \cap m\Delta_{-}(\mathbf{p}) \neq \emptyset \}$$

equals to the sets

$$\{\lambda \in (\mathbb{Z}_{\geq 0})^{r+1} | (\lambda + \Gamma_{+}(\mathbf{p})) \cap m\Delta_{-}(\mathbf{p}) \neq \emptyset \}$$

and

$$(m-\operatorname{degp})\Delta_{-}(\mathbf{p})\cap M$$
.

For $\lambda \in (\mathbf{Z}_{\geq 0})^{r+1}$, if $(\lambda + \Gamma_{+}(f)) \cap m_{-}(\mathbf{p}) \neq \emptyset$, then $(\lambda + \Gamma_{+}(\mathbf{p})) \cap m\Delta_{-}(\mathbf{p}) \neq \emptyset$ since $\Gamma_{+}(f) \subset \Gamma_{+}(\mathbf{p})$ holds. Conversely, assume that for $\lambda \in (\mathbf{Z}_{\geq 0})^{r+1}$, $(\lambda + \Gamma_{+}(\mathbf{p})) \cap m\Delta_{-}(\mathbf{p}) \neq \emptyset$. Then since the compact face of $\Gamma_{+}(\mathbf{p})$ is parallel to the boundary of $m\Delta_{+}(\mathbf{p})$ and contains $1 \in M$, $\lambda + 1 \in (\lambda + \Gamma_{+}(\mathbf{p})) \cap m\Delta_{-}(\mathbf{p})$. Note that the Newton diagram $\Gamma_{+}(f)$ of a purely elliptic singularity contains $1 \in M$, so that $\lambda + 1 \in (\lambda + \Gamma_{+}(f)) \cap m\Delta_{-}(\mathbf{p}) \neq \emptyset$. Thus the first set equals to the second one.

Next note that $(\lambda + \Gamma_+(\mathbf{p})) \cap m\Delta_-(\mathbf{p}) \neq \emptyset$ if and only if $\lambda + 1 \in m\Delta_-(\mathbf{p})$ for $\lambda \in (\mathbb{Z}_{\geq 0})^{r+1}$, which is equivalent to $\langle \lambda + 1, \mathbf{p} \rangle < m$, that is, $\langle \lambda, \mathbf{p} \rangle < m - \text{degp}$. Thus the second set equals to the third one.

A set of positive integers $(p_0, p_1, ..., p_r)$ is sometimes called a *system of weights* or *weight* system. We may assume that the absolutely minimal vector $\mathbf{p} = (p_0, p_1, ..., p_r)$ has positive integers as its entries, so that we can regard it as a system of weights.

By the previous theorem, we have the following:

Corollary 4.8. Let (X, x) = (V(f), 0) be a purely elliptic singularity defined by a nondegenerate polynomial $f \in \mathbb{C}[z_0, z_1, ..., z_r]$.

Assume that $\Delta_+(\hat{\Sigma}(f))$ has a unique compact face δ_0 and let $\mathbf{p} := \mathbf{n}(\delta_0^*)$ be the primitive integral generator of the dual cone δ_0^* . Then $\hat{\gamma}_m(X, x)$ is determined completely by the weight system $\mathbf{p} = (p_0, p_1, ..., p_r)$.

4.3.4. Examples. It is well-known that a two-dimensional hypersurface purely elliptic singularity is analytically equivalent to an isolated singularity (X, x) = (V(f), 0) defined by the polynomial either case (1):

$$z_0^{3+p} + z_1^{3+q} + z_2^{3+r} + \lambda z_0 z_1 z_2$$
, $(p, q, r \ge 0, \lambda \ne 0)$,

the case (2):

$$z_0^2 + z_1^{4+q} + z_2^{4+r} + \lambda z_0 z_1 z_2$$
, $(p, r \ge 0, \lambda \ne 0)$.

or the case (3):

$$z_2^2 + z_1^3 + z_2^{6+r} + \lambda z_0 z_1 z_2$$
, $(r \ge 0, \lambda \ne 0)$.

In the case (1), $\mathbf{p} := (1, 1, 1) \in M$ is the absolutely minimal vector in the essential cone $C_1(f)$ and we have

$$\#(m\Delta_{-}(\mathbf{p})\cap M)=\frac{1}{6}m(m+1)(m+2).$$

Now that degp=3, we have

$$\tilde{\gamma}_m(X,x) = \#(m\Delta_{-}(\mathbf{p}) \cap M) - \#((m-\operatorname{degp})\Delta_{-}(\mathbf{p}) \cap M) = \frac{3}{2}(m^2 - m) + 1.$$

In the case (2), $\mathbf{p} := (2, 1, 1) \in M$ is the absolutely minimal vector in $C_1(f)$ and we have

#
$$(m\Delta_{-}(\mathbf{p})\cap M) = \begin{cases} \frac{1}{24}m(m+2)(2m+5), & m \text{ even,} \\ \frac{1}{24}(m+1)(m+3)(2m+1), & m \text{ odd.} \end{cases}$$

Then since $deg \mathbf{p} = 4$, when m is even or or odd, we have

$$\hat{\gamma}_m(X,x) = \#(m\Delta_{-}(\mathbf{p})\cap M) - \#((m-\operatorname{degp})\Delta_{-}(\mathbf{p})\cap M) = \frac{2}{2}(m^2-m)+1.$$

Finally, in the case (3), $\mathbf{p} = (3, 2, 1)$ is the absolutely minimal vector in $C_1(f)$ and $\#(m\Delta_{-}(\mathbf{p}))$

 $\cap M$) equals to

$$\begin{cases} \frac{1}{72}m(m+6)(2m+3) + \frac{1}{6}m, & m \equiv 0 \mod 6, \\ \frac{1}{72}(m-1)(m+5)(2m+1) + \frac{1}{12}(m-1)(m+5) + \frac{1}{6}(m-1) + 1, & m \equiv 1 \mod 6, \\ \frac{1}{72}(m-2)(m+4)(2m-1) + \frac{1}{6}(m-1)(m+4) + \frac{1}{6}(m-2) + 1, & m \equiv 2 \mod 6, \\ \frac{1}{72}(m-3)(m+3)(2m-3) + \frac{1}{4}(m-1)(m+3) + \frac{1}{6}(m-3) + 1, & m \equiv 3 \mod 6, \\ \frac{1}{72}(m-4)(m+2)(2m-5) + \frac{1}{3}(m-1)(m+2) + \frac{1}{6}(m-4) + 1, & m \equiv 4 \mod 6, \\ \frac{1}{72}(m-5)(m+1)(2m-7) + \frac{5}{12}(m-1)(m+1) + \frac{1}{6}(m-5) + 1, & m \equiv 5 \mod 6. \end{cases}$$

Although $\#(m\Delta_{-}(\mathbf{p})\cap M)$ are given by the six polynomials in m as above, $\#(m\Delta_{-}(\mathbf{p})\cap M)-\#((m-\deg\mathbf{p})\Delta_{-}(\mathbf{p})\cap M)$ are represented by a polynomial

$$\hat{\gamma}_m(X, x) = \#(m\Delta_{-}(\mathbf{p}) \cap M) - \#((m - \deg \mathbf{p})\Delta_{-}(\mathbf{p}) \cap M) = \frac{1}{2}(m^2 - m) + 1.$$

On the other hand, we have the following formula which give γ_m for a Gorenstein surface singularity:

Proposition 4.9 (Kato [9]). Let (X, x) be a Gorenstein singularity of dimension two and π : $(\tilde{X}, E) \to (X, x)$ be the minimal resolution.

Then

$$\gamma_{m}(X, x) = -K^{2}(m^{2}-m) + p_{a}(X, x)$$

where K is a canonical divisor on \widetilde{X} and $p_0(X, x)$ is the geometric genus of the singularity (X, x).

Now $p_{\theta}(X, x) = \delta_1(X, x) = 1$ holds for the singularity (X, x) defined by a polynomial as in (1), (2) of (3) since (X, x) is a purely elliptic singularity. Moreover it is well-known that $K^2 = -3$ for the singularity defined by a polynomial as in (1), that $K^2 = -2$ for the singularity defined by a polynomial as in (2), and that $K^2 = -1$ for the singularity defined by a polynomial as in (3).

These are examples where $\gamma_m(X, x) = \hat{\gamma}_m(X, x)$ for every m.

4.4. Types of purely elliptic singularities

4.4.1. Let (X, x) be an r-dimentional purely elliptic singularity and $\pi: \widetilde{X} \to X$ be a good resolution of (X, x). Then it is known that $K_{\widetilde{X}} = \pi^* K_X + E_I - E_J$ holds, where K_X (resp. $K_{\widetilde{X}}$) is a canonical divisor of X (resp. \widetilde{X}), E_I is a positive divisor and E_J is a reduced divisor.

Ishii [5] classified the purely elliptic singularities into r classes by means of the mixed Hodge structures of the cohomologies of the support of E_I :

Proposition 4.10 (Ishii).

$$\mathbb{C} \cong H^{r-1}(E_J, \mathcal{O}_I) \cong \operatorname{Gr}_F^0 H^{r-1}(E_J) = \bigoplus_{i=0}^{r-1} H_{r-1}^{0,i}(E_J),$$

where $H_m^{i,j}(*)$ is the (i,j)-component of $Gr_{i+j}^W H^m(*)$.

Hence, in particular, for a unique $i (0 \le i \le r-1)$,

$$H^{r-1}(E_I, \mathcal{O}_I) = H^{0, i}_{r-1}(E_I) \cong \mathbb{C}.$$

Definition 4.11 (Ishii). A purely elliptic singularity (X, x) is said to be of type (0, i) if $H^{r-1}(E_J, \mathcal{O}_{E_I})$ consists of the (0, i)-Hodge component.

In case (X, x) = (V(f), 0) is a purely elliptic singularity defined by a nondegenerate polynomial $f \in \mathbb{C}[z_0, z_1, ..., z_r]$, we also have a criterion of what type the singularity (X, x) is:

Proposition 4.12 ([15]). Let (X, x) = (V(f), 0) be an r-dimensional purely elliptic singularity defined by a nondegenerate polynomial f. Then (X, x) is of type $(0, \dim \Delta_1(f) - 1)$ if $\dim \Delta_1(f) \ge 2$ and of type (0, 0) if $\dim \Delta_1(f) = 1$ or 0, where $\Delta_1(f)$ is the face of the Newton boundary $\Gamma(f)$ containing $1 \in M$ in its relative interior.

We call the face $\Delta_1(f)$ in the proposition just above the *initial face* of $\Gamma(f)$.

4.4.2. Let (X, x) = (V(f), 0) be a purely elliptic singularity of type (0, r-1). Then by the criterion of Watanabe's 4.12, the initial face $\Delta_1(f)$ is of r-dimension.

It follows that the essential cone $C_1(f)$ is a one-dimensional cone and its primitive integral generator \mathbf{p} is the absolutely minimal vector in $C_1(f)$. Thus, we can attach a system of weights $\mathbf{p} = (p_0, p_1, ..., p_r)$ to each hypersurface purely elliptic singularity of type (0, r-1).

Therefore, we can apply Theorem 4.7 to every r-dimensional hypersurface purely elliptic singularity of type (0, r-1) and hence $\{\hat{\gamma}_m(X, x)\}_{m\in\mathbb{N}}$ are determined completely by the system of weights \mathbf{p} .

References

- [1] V. I. Danilov and A. G. Khovanskii. Newton polyhedra and an algorithm for computing Hodge-Deligne numbers. *Math. USSR Izvestiya*, 29 (2), 1987.
- [2] W. Fulton. Introduction to Toric Varieties. Princeton University Press, Princeton, NJ, 1993.
- [3] P. Griffiths and J. Harris. *Principles of Algebraic Geometry*. Pure & Applied mathematics. John Willy & Sons, New York, Chichester, Brisbane, Tronto, 1978.
- [4] R. Hartshorne. Algebraic Geometry. Number 52 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1977.
- [5] S. Ishii. On isolated Gorenstein singularities. Math. Ann., 270: 541-554, 1985.
- [6] S. Ishii. The canonical modifications by weighted blowups. J. Algebraic Geom., 5: 783-799, 1996.
- [7] S. Ishii. Introduction to singularities (in Japanese). Springer-Verlag Tokyo, Tokyo, 1997.
- [8] S. Ishii. Minimal, canonical and log-canonical models of hypersurface singularities. In *Contemporary Mathematics*, volume 207. American Mathematical Society, 1997.
- [9] M. Kato. Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension 2. Math. Ann., 222: 243-250, 1976.
- [10] G. Kempf, F. Knudesn, D. Mumford, and B. Saint-Donat. *Toroidal Embeddings*. Number 339 in Lecture Note in Math. Springer, 1973.
- [11] F. W. Knöller. 2-dimensionale Singularitäten und Differentialformen. *Math. Ann.*, 206: 205-213, 1973.
- [12] T. Oda. Convex Bodies and Algebraic Geometry. Number 3. Folge, Band 15 in Ergebnisse der Mathematik und ihrer Genzgebiete. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.
- [13] M. Oka. On the resolution of hypersurface singularities. In T. Suwa and P. Wagreich, editors, Complex Analytic Singularities, number 8 in Advanced Studies in Pure Math., pages 405-436. Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986.
- [14] K. Watanabe. On plurigenera of normal isolated singularities I. *Math. Ann.*, 250: 65-94, 1980.
- [15] K. Watanabe. On plurigenera of normal isolated singularities II. In T. Suwa and P. Wagreich, editors, Complex Analytic Singularities, number 8 in Advanced Studies in Pure Math., pages 671-685. Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986.

Naohiro Kanesaka

Institute of Mathematics

Univercity of Tsukuba

Tsukuba-shi Ibaraki, 305-8571, Japan

E-mail address: kanesaka@math. tsukuba. ac. jp

Kimio Watanabe

Institute of Mathematics

'Univercity of Tsukuba

Tsukuba-shi Ibaraki, 305-8571, Japan

E-mail address: kimio@math. tsukuba. ac. jp