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Abstract

To clarify the difference of two mapping-space topologies : the strong topology and the .
very strong topology, A. du Plessis and H. Vosegaard wrote an example which indicates
the difference of such two topologies. However we found a non-constructed part in the
example. So, we construct a sufficiently concrete example, since the construction is not
so trivial in the sense of technique.

1. Introduction

In this paper we consider the spaces of C*-maps between C*-manifolds(4#=0,1, 2, ..., ).
For such spaces, several topologies are defined : the weak topology rC*, the strong topology
tW*(k=0, 1,2, ..., ) and the very strong topology V>, where the notations are due to A. du
Plessis and T. Wall [3]. We recall these definitions in § 2. The origin of our paper is the
following lemma in [3] :

Lemma 3.4.18 Let N and P be smooth manifolds. Let U be an open subset of N, and 7
an integer with 0<7<oo, For each fE€C’(N, P), there is a tW"-neighborhood {{ of f|v in
C™(U, P) such that for every ZElY, the map 4*: N = P defined by % on U and by f outside
U is C". Moreover, the map 2~ k* from {{ to C"(N, P) is (zC*, tW*)-continuous for 0<s<
7 (where the (zC*, W*®)-continuity is the continuity between N with zC*-topology and P with
tW*-topology).

A. du Plessis and T. Wall wrote in [3] that the above lemma should be false for the case
r=0c0, Proposition 5.2 in [2] shows this in the category of C*-functions. In fact, let N=RD
U=R., P=R, f=0and {{ a tW=-open neighborhood of f|». Then their counter-example is
given by the sum ¢, if C>-functions e.EU(nEN) satisfy that suppar a1l @5+ =1 for some
fixed » and 0 outside [ﬁ, %] But they did not construct such ¢. explicitly.

For this reason we want to give a more concrete counter-example in § 3. The detailed
construction of the counter-example is interesting from the viewpoint of technique and is not
yet appeared in the other papers. So, we believe that this result is worth publishing.
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Moreover we show that if we take an arbitrary tW=-open neighborhood I{ for certain N, P,
U and f then there always exists a C“-function % in J{ which cannot be extended smoothly
outside UU. In our construction we use a quite analytic method. For reader’s convenience we
deal with the behavior of some function near the origin in the appendix (§ 4).

Nevertheless J. Cerf showed the case »=oc of the above lemma for zV=-topology. In our
previous paper [6], we have given a detailed proof for such a claim of Cerf, since he gave only
a sketch of proof.

Acknowledgement : The author would like to express his sincere gratitude to Professor T.
Matumoto for his helpful comments after careful reading.

2. Mapping-space topologies

First, let N and P be smooth manifolds, i.e., these are paracompact C* manifolds. Note
that if a manifold is paracompact, then it possesses a countable open basis, and it admits to
possess a metric. In this section, we recall the definitions of the mapping-space topologies as
given in [3].

Let kEN, and let D be a closed subset of N. We define

o, (W)={g€C*(N, P)|j*9(D)C W},

where W is an open subset in J*(N, P). Then {&, o(W)| WCJ*(N, P), W is open} forms an
open basis for a topology on C*(N, P), which we denote by 7&. The fact that zAC z5*! is clear.
Then the topology 75 is defined so that U .z# forms its basis.

The Thom topology rC* is defined so that U z% forms its basis, where K runs through all
compact subsets of N.

The Whitney C*-topology (or the strong topology) tW= is defined to be z¥.

Now we give the definition of the very strong topology as follows : let {K.}.en be a locally
finite compact covering of N, where N is the set of natural numbers. Then, a basis for V>
is given by all the sets of the form (N .v., where v, is a z%-open subset of C*(N, P). The very
strong topology does not depend on the choice of the covering {Ka}aen ([2], Lemma 1.1.1).

Note that when N is compact, the three topologies rC*, tW* and rV™ coincide with each
other.

Second, for C"-manifolds N and P, the Thom topology rC"(0<7 <o) and the Whitney
C’-topology (or the strong topology) tW7(» <o) on C"(N, P) are defined by using

k. o(W)={g€C"(N, P)|/"o(D)C W}

instead of %, p(W). The basis of rC” is given by Ukr#, and rW" is defined to be 7
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3. Detailed construction of an example

The following theorem has been given in Cerf’s paper [1, I. 4.3.4.4, p. 273] with a sketch of
proof and is also cited in [2, Proposition 1.2.2] without any proof. We gave a detailed proof
in [6] based on the idea of the proof of Lemma 3.4.18 in [3].

Theorem 1. Suppose N and P are smooth manifolds, U is an open subset of N and f is in
C(N, P). Then there is a tV=-neighborhood U of f|v in C*(U, P) such that the induced map
B*:N — P, defined by h on U and by f outside U, is C* for all h€l{.

The statement of Theorem 1 is false for tW™-case. In fact, we can construct an example as
follows.

Proposition 1. Set N=(—0,2) and U=(0,2). Let f:N — R be the zero map. Then there
is no tW*-open neighborhood U of flv in C*(U,R) such that every analytic hEld extends
outside U smoothly.

proof. Let U be a tW=-open neighborhood of |y in C*(U, R). It is enough to show that {f
contains an analytic function # which cannot extend outside U smoothly. Since there exists
an open set # in {{ and a natural number £ such that € u € rf, we may assume that { is a basic
tf-open set ; i.e.

U={g=C"(U, R)|j*o(U)C W}

for some open subset W of J*(U, R).
We consider a map from the jet space J*(U, R) to UXR**! by

JHU, R)D(z, i*v(x)) » (z, v(x), v'(x), -, v*¥(z))€ U X R**\,
Next we define Um by

Un={(z, y)EUXR||y|< m(x)}

where m(x)= J’% and »(x) is the supremum of radii of open balls in W centered at (z,
0, 0EW.
k

We first construct %2 on (0,1]. Let 7 be [0,1]. Then there exists a C>-function ¢:7 = I
such that
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o(z)=0, on z<[0, €]
a(z)=1, on x€[l—e¢,1]
a(z)=0, on z<€[0,1]

where ¢ is a sufficiently small positive number. We consider a finite covering of [%, 1](ne
N) by open balls in {{=» whose centers are in [%, 1]. We may assume that no balls are
contained in the other ball and these balls have non-empty intersections only with neighboring
balls in the covering. Assume also that the radius of the open disk containing the point (l,
1) is sufficiently small. Denote the xz-coordinates of the crossing points by a, b, ¢, --- with 1
>a>b>c>--->—%—, for example as in Figure 1.

Now consider a C*-function in this Figure 1, where 0< B<A. Define y=7 on[c, 1] by ¥
=A on[a,1), y=B on [c, #] and

y=a(“2:2>(A—B)+B (z<[b, a)).

Similarly we define f from on [¢, 1] to on [%, 1].

Next we repeat the same definition on [% %] gradually we get a C*-function on (0, 1],
and no generality is lost by assuming this function converges to 0 as x = 0 and 0<¢’(z)<1.
We call this function f for “function like stairs”. Then the next relation is satisfied on (0, 1]

since f is an increasing function.
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oa)= [ [ [ @ e drdz< ()
k

¢* (@)= [ Fa)dr< 7 (2)
0<¢™(z)< f(x).

Moreover we get the following relation on (0, 1] :

[fox'"/ozf () sin (log # (2))dz-dxdz | < 9(2)< f()
k

[ [77@) sin (tog # (@) dx---dz| < g(2)< F(2)
k-1

| F(x) sin (log #(2))|<g*(x)< f(x),

where we construct #(x) as follows:
We take a new function like stairs H(x) on (0, 1] which satisfies H(x)<xf(x) on (0,1]. Then
we define #(x) by

1.1 1_1
.%(x)=<%+ L0 )H(z)+( B )H(x)si“(—myl )

Now we will construct a counter-example %(x) of class C* on (0,1]. If f(x) does not

converge to 0 for x — 0, then it is sufficient to define 4(x) by

h(.r)=_£x_£x"'_/o-xf(x)dr---drdr.
k

So, we may assume fF'(x) = 0(x - 0). Then
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iz)= [ [ [*F(2) sin (log #(2))dz---dadz
k

is a desired function. The fact that 4 belongs { on (0, 1] is explained by the previous relation,
and this function cannot be extended outside (0, 1] from the origin. Indeed, the (£+1)-st
derivative is

D¥**Vp=(f(z) sin (log #(z))y

=f'(z) sin (log #(x))+ 7 (x) cos (log %(x))_g: '((;))

f(x)

Since the first term converges to 0 as x - 0, we consider the second term mainly. 7(2)

becomes positive infinity as x — 0, because of the order for #(x). By Proposition 2 in the
later section 4 there exists some ¢>0 such that there is some pE(0, 8] with cos (log #(p))-
#'(p)>c for any 6>0. Hence if we extend this #(x) towards outside U then the (£+1)-st
derivative of 4(x) does not become continuous at the origin, i.e., this is a C* counter-example
on (0, 1] for Theorem 1 with zW* instead of V>,

We can construct a C* counter-example #(x) on U=(0, 2) in I by using a function &(x)

in C=((0,1], R). Itiseon|0, 1 and o(z) on i, 1| where £>>0 is sufficiently small, and ¢(x)
2 2

is a bump function in C*® —1—,1 ,R ] such as o{x)=¢ near -1—, 0), o(x)=0 near (1, 0) where
2 2

[l /5o(x)| is sufficiently small on [%, 1]. Then %(x) is defined by A(x)e(x) on (0, 1] and 0 on [1,

2). Next we construct an analytic counter-example based on this k(x).
ar ={ge C(U, R Diz) - o)<, 9€U, 0si<i+1)

is an open neighborhood of %(x) in zW*. For a preparation, we quote the following lemma in
[5] (p. 65).

Lemma 1. (Grauert-Remmert) Let N and P be C® manifolds. Then C®(N, P) is dense in
C=(N, P) with respect to tW™-topology.

From this Lemma 1, . contains an analytic function §(x). This §(x) is our analytic counter-
example. In fact, (x)EUf and the (£+1)-st derivative shakes near 0 in the above sense and
g(x) cannot be extended outside U smoothly.
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Remark 1. In general, the above h(x) on (0,1] cannot be extended on (0,2) keeping the
condition that ’x) coincides with Wx) on (0, 1].

4, Appendix

We use the xy-plane RXR. We consider a C*-function y=H(x) on (0, 1] which satisfies
the following conditions: H(x)>0 on (0, 1], limz-+oH (x)=0, OS%H (x)<1.
Define y= #(x) on (0, 1] by

#(x)=aH(x)+ bH(x) sin (#(x))

where a=8+ a;B’ b a;ﬂ with >8>0, for example a=% and B=% as in§ 3.

Proposition 2. There exists a constant ¢ >0 such that for any >0 there is some p<(0, €] which
satisfies

|cos (log #(p)) # (p)|=c.

proof. (outline) First we calculate the derivative of #(x),

7(@)=aH () + bH'(z) sin (g )+ H(@) cos ()< ( H(a;él;g;(x)).

Then the third term is

0 (oo G -+-H5)

whence (%)( -1l H’(x)) - —oo (for £ = +0) bacause Z’((;))

z  Hx) =0. From the condition 0<
H'(x)<1, we notice the fact that the behavior of #’(z) is dominated by the third term (%)
when z is close to 0 We define points (z;, 0)(0<xisl iEN) as follows :
cos (log BH (.1::))— 5 log BH(x:)—log BH(x:im1)=27, dr{cos (log BH(z:))} <0, and if z: liesin a

continuous mterval then we choose the point of the right edge of that interval.

On the interval [x:+1, 2], an interval [/, x:] is defined by

{xE[xm, x:]| cos (log BH(J:))271§-}.

From the condition 0< H'(x)<1, i.e., OS%(BH(I))S& we get
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(A) %—-%(BH(I:)—ﬂH(xi+l))<xf_ li<xi—Ziv.

Step 1:
We define the period of #(x) in [xi+1, x:] by max {the period of sin (x—HlGT)|:cE[x.-+x, x,v]},
and we estimate this period of #(x) in [x:41, 2:]. Since

27 —(xH(x))?

(%)’ =2z H(x)+xH' (x)
xH(x

and 0< H'(z)<1,

2n{x:H (x:))?

Hz) =2nx?H (x:)

{the period of #(x) in [&is, x:]}<
where the right term of the above inequality is the case of H'(z:)=0. Then we will compare
the degree of becoming smaller between the left term of (A4) %(H (z:)— H(x:+1)) and the period
of #(x)

1
H 3 _H i+1
24 ;x) (ze)) (1(; H(x,-“)))
7xtH(x:) 87\ 22 H(zx:)

H(.’L‘i)
%"

e ) ae(a(ima)) < 4o Gor i v

Therefore the order of becoming smaller of # (x)’s period is larger than the order of becoming
smaller of %(H ()= H(x:+1)) and z:i—zis.

By using the relation H(xz:)= , we get

Step 2 :

Next we compare the degree of becoming smaller between the amplitude of #(x) at z, i.e.,
aH(z)— BH(x) and BH(z:)— BH(x:+1). The amplitude of #(x) at a1 is @H(xen1) — BH(x:41)
=(a—ﬂ)H(x.—+,), then

(a—B)H(xi41) a—8 H(xiw1) a—2p 1
BH(x:)— BH (x:+1) B H(xi)—H(xis1) B &1

where the first equality comes from the same argument in Step 1. Similarly, the amplitude of
#(x) at x: is (e— B)H(x:), and

(e—B)H(x:) a—f._ 1
BH(.Z‘i)_IgH(-Z'HI) B 1— 1

e21t
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Hence

a—f _ 1 aH(x)—BH(x) _a—f8 . _ 1
ﬂ e —1 < BH(JI.')_BH(.Z';'“) = B - 1 ° xe[xfﬂy xt‘]
e

for arbitrary i.

Final Step :

Then we divide (0, 1] whenever the period of #(x) proceeds 2z on (0, 1] with x’s approaching

to 0, i.e., by every proceeding 2z of xH;(.z)’ and denote these dividing points by (4EN) from

x1 towards 0, then let Y: and Z{(AEN) be

Y,,={0"V(x)|| ~W"(-r)|2—1‘, 2€[tes1, kt]}
Zi={7# (z)| xE€[tes, ke]}.

Moreover put Y as the longest interval in Y. Then we can find a sufficiently large Mi(€N)
such that if £=N, then

length Yi >3
lengthZ, = 4°

This reason is explained by the first expression (%). In addition,
?kﬂ ﬁ:l*‘ﬁ

holds, because the order of the becoming smaller of the period of #°(x) is sufficiently small for
that of the amplitude (a— 8)H(x), SH(x:)— BH(x:+1) and x:— x:+1 by Step 1, 2 with the inequal-
ity (A). Therefore if we take a sufficiently large N:(€EN) then for any point yE[SH(l),
BH(x:))(i= N5), we can find a point p such as

y=#(p), |# ’(p)lé%, pE[xis, ).

This concludes our proof.
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