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1. Introduction

Let E® be a 3-dimensional Euclidean space. A surface in E®is called a translation surface
if it is obtained as a graph of a function F(x, y)=p(x)+¢(y), where p(x) and ¢(y) are
differentiable functions. And a surface is said to be minimal if its mean curvature is zero
identically. As well known, for the minimal translation surfaces in the 3-dimensional Eu-
clidean space E® F. Scherk proved the following classical theorem: Let M be a minimal
translation surface in E® then it must be a plane or a surface which is a graph of a function is
as az=In cos (ax)—In cos (ay), where a is a non-zero constant.

It is natural to consider the similar problem that affine minimal translation surfaces in the
affine space R®. F. Manhart [1] proved:

Theorem A. Let M be an nondegenerate affine minimal translation surface in R®. Then M .is
one of the graph of the following funclions under affine transformations :

() z=xty?
z=x‘§‘i’y§
2
z2=x%ty3,
(ii) z=Inx—Iny

z==*Inr*(1+cos ht), ¢+sinhi=y

z=xInx*(l—cos t), ¢—sint=y
z=*t(1+cosht)£(1+coshs), t+sinht=z, s+sinhs=y
z=*+(1+cosht)t(1—coss), ¢+sinht=x, s—sinhs=y

z=*+(1—cos t)x(1—cos s), t—sint=x, s—sins=y.

In [4], M. Magid studied nondegenerate affine surfaces which are both affine minimal and
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timelike minimal, and obtained a complete classification. In the present paper, we study affine
translation surfaces of constant affine mean curvature and obtain :

Theorem. Let M be a nondegenerate affine translation surface of constant affine mean curva-
ture in R®. Then besides (i) and (ii) in Theorem A, M is the graph of the following function
up to equiaffine transformations :

(iii) e=FAr+3ar [ [+ ortas)an,
where A and C are constant and H(+0) is the affine mean curvature of M.
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2. Preliminaries

Let f: M - R? be an immersion of a connected differentiable 2-manifold into the affine
space R? equipped with usual flat connection D and the canonical volume element w, and £ an
arbitrary vector field along f transversal to /(M). For any vector fields X and Y on M, we
write

Dxfi(Y)=£(VxY)+h(X, Y)E, 2.1
Dxt=—£(SX)+(X)E, (2.2)

thus definiting an affine connection V, a symmetric tensor % of type (0, 2) and a tensor S of type
(1, 1) which is called the affine shape operator, and a 1-form z, called the transversal connection
form. We call % the affine fundamental form. We define by H =% trace S the affine mean
curvature of M. We call f affine minimal if H is zero identically. We define a volume
elenment § on M by

0(X, Xo)= o(£f(X0), /(20), E)=det(f:(X1), £+(X2), ), (2.3)

for any tangent vectors X, Xz of M.

We say that f is nondegenerate if % is nondegenerate. This condition does not depand on
choise of £. In this case, it is known that there is a unique choice of & such that the correspond-
ing induced connection V, the nondegenerate metric 4, and the induced volume element 4 satisfy

(i) V=0, thus (V, @) is an equiaffine structure on M ;
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(ii) 8=ws», where w(X), Xz)=|det(h(X;:, X;)) |7 (the volume element given by #). We call
such a pair (f, £) a Blaschke immersion. We call V the induced connection and % the affine
metric. Condition (i) implies that =0 so that Dxé=— fx(SX).

Let z*=F(x', 2% be a differentiable function on a domain DCR?. We consider an immer-
sion

F:D3(2, 2HeEM - (2, 2%, F(z', x?))ER.

We start with a tentative choice of transversal field &=(0,0,1). Since D;&=0, we have r=
0. Denote by 9; the coordinate vector field d/dx’, then we have

£(@)=01,0, F), f(3)=(01, F),
where F;=0F/dx’. Thus we get

Daff+(3)=(0,0, Fy)=Fu&, Fy= aﬁgx" '

and then the induced connection V° and the affine fundamental form %° with respect to & are
given as

gl(ai)=0v ho(ai, 3;)=Fu
Thus the immersion is nondegenerate if and only if det(Fi;)#0. Taking ¢=|det(Fy) l%, we set

i G DYACRRL S

where ¢;=3¢/0x’ and (F¥) is the inverse matrix of the matrix (F). From which we have

D= —J;;‘a;(F i) f+(0%).
Then (f, &) is a Blaschke immersion, and the affine shape operator is
S(8:) =J§3£(F % $i)0%.
Hence we see that the affine mean curvature of M satisfies
H=5Sa(F,). @.4)

3. Proof of the main Theorem

From now on, we assume that M is a translation surface i.e. it is obtained as the graph of
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function F(x, y)=p(r)+4q(y), where p(z) and ¢(y) are differentiable functions. Hence, we
have

77, 0
(Fﬁ)=(ha>=(” (=)

), (pv)=(pﬁ)-l=(””(’”)" 0 )
a"(y)

0 q"(y)™?

and

#=Idet(F)lt=I"(@)a" () 0.

In the first, we assume that p”(x)>0 and ¢"(y)>0. By a direct calculation we have

— pmz ” 1

q ", my=-3 Il r_ i 2”1 2 12 " (4) ]
2H=—m "¢V | — e ") 0" q"+(0"q") 0 g
1

102 1

+ _4q”2 p q" -T+

3 II ”’ -— Vi 7, s
e R R e PO P
ie.,

7

8H=( _Tq”lz-'- qqu(l))q” 7

1 L e, ” ”_ﬂ nL
D ‘+(_T” *+p p“’)p ‘g

Let p"(x)=£(x), ¢"(y)=g(y). Then
8H ( __f’2+ff”)f-]T % (_%g'z_i_gy”)g_% :
=Q(x)gt+ R(y)F%, 3.1)

where

11

Q(x)=(—%f’z+ff")f—4, R(y)= (——y’z+gg ) .
In order to prove our Theorem we need the following Lemma :
Lemma. If H=constant and f'g'+0, then H=0.
proof. Since H=constant differentiating (3.1) with respect to x and y we get
b1 15,8, )
0=Qgt+RFH, (32)

and
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1
0=1Qstg+ RV,

From (3.2) and (3.3) we get

@ __ R, = A= constant,

£ agt
and
IS’ = —%=#=constant.
g4y 4f%
From (3.4) and (3.5) we get
4 —i ’
Q=Af"¢f
R=—4ig+
R=-1g"tg
and
R'=pgt¢
=—dpuft
Q=—pfif
From (3.6) and (3.7) we get
A=—p

since f+0 and f'#+0. Then we have
R=—4ig+
Q=4Af%.
Substituting (3.8) into (3.1) we get
8H=4Af*gt—4Afigr=0.

This completes the proof of the Lemma.
When f’(x)=0 and ¢'(y)=0, we can easily get that
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p(x)=ax®+bx+c

a(y)=dy*+ey+/, (3.9)
where q, b, c, d, e, f and are constnt. The solution (3.9) is included in the results of [1].

The remainder is to treat the cases that f(x)=0, ¢'(y)+0. We see that f(z)=¢"(z)=C
=constant and Q@(z)=0. Thus from (3.1) we have

C=8HCr%=8Hf'%=(—% ’2+gg”)g“l_4',
namely
7 2 ” H
Setting
—dg _
g dy S:
then we have
v ds 1 ds®
9= dg5~ 2 dg
Thus from (3.10) we have
4 11 2 o~
d 2 g =2Cgxv. (3.11)

The equation (3.11) has the solution
sz=g%'( —%Cg'%+ Cz),
ie.,
d 7, 3 o1
=xtgi(ag—i+b)z, (3.12)

where a=—%C, b=_C; are constant.

Let g'%= m. We get from (3.12) that dm=i%(am+ b)zdy, and

= i%y-*- GCs, (3.13)
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Cs being a constant.
From which we get

ie.,

)= oly) = m—s= 1 4.\, 3CECT4
a"(y)=g(y)=m 4—[—30l 4H(y;t?c3) +W] ]

e
Setting A1=—3Ci%, As ; Cs, As 33}_?2, from which we get

7"(9)=[AH(y = AP+ As] 5

_ a4 As -4
— A B ar+ 2] (3.14)
From (3.14) we get

(¥t a A1+

aw)= [ [‘art] sz ap+ 52| P as)at

ALY As -3

—ars [ [(ae+52) ds}dv.
Therefore when f(x)=0, g'(y)+0, we obtain the solution of equation (3.1):

p(x)=%Clx’+ bzx+ec,

a(y)=(—-3)3Cs fy ”{ j' :(Hsz+%)-%ds}dv, (3.15)
and so
a=§Ca*+az+b+33CH [ { [+ c)'%ais}dv, (3.16)

where ¢, b, c=% are constant.
Therefore under equiaffine transformation

from (3.16) we get
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e=tAz+3tar |’ ”{ [+ c)-%ds}dv, (317)

where A=C, and C is a constant.

For the case of p"(x)q"(y)<0, without loss of the generality, we may assume that p"(z)<
0 and ¢”(y)>0. Thus by setting p(x)=—p(x)>0 and gi=4(y) we see that p{(x)g{(y)>0.
Using the same method as above we can get

2= -—;—Ax2+3'%A% j;o ,,{ j; :(Hs’+ c)'%ds}dv.

Thus we completes the proof of Theorem. (m}
Now we consider a special case. Taking C=0 from (3.17) we can get

2=1 Az ARBH) Sy i+ Py + P, (3.18)

where P and P, are constant. By an equiaffine transformation

r=z, y=y, z2=z2—Py—P

we get from (3.18) that
a=f A+ ANGH) Sy
and a surface

(x, v, %A.rz-i—%A%‘(.?H )'%y'%).
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