On affine translation surfaces of constant mean curvature

Huafei Sun

(Received December 21, 1999) Revised January 28, 2000)

1. Introduction

Let E^3 be a 3-dimensional Euclidean space. A surface in E^3 is called a translation surface if it is obtained as a graph of a function F(x,y)=p(x)+q(y), where p(x) and q(y) are differentiable functions. And a surface is said to be minimal if its mean curvature is zero identically. As well known, for the minimal translation surfaces in the 3-dimensional Euclidean space E^3 , F. Scherk proved the following classical theorem: Let M be a minimal translation surface in E^3 , then it must be a plane or a surface which is a graph of a function is as $az=\ln\cos{(ax)}-\ln\cos{(ay)}$, where a is a non-zero constant.

It is natural to consider the similar problem that affine minimal translation surfaces in the affine space R^3 . F. Manhart [1] proved:

Theorem A. Let M be an nondegenerate affine minimal translation surface in \mathbb{R}^3 . Then M is one of the graph of the following functions under affine transformations:

(i)
$$z=x^2\pm y^2$$
 $z=x^{\frac{2}{3}}\pm y^{\frac{2}{3}}$ $z=x^2\pm y^{\frac{2}{3}},$

(ii)
$$z = \ln x - \ln y$$

 $z = \pm \ln x \pm (1 + \cos ht), \quad t + \sin ht = y$
 $z = \pm \ln x \pm (1 - \cos t), \quad t - \sin t = y$
 $z = \pm (1 + \cos ht) \pm (1 + \cos hs), \quad t + \sin ht = x, \quad s + \sin hs = y$
 $z = \pm (1 + \cos ht) \pm (1 - \cos s), \quad t + \sin ht = x, \quad s - \sin hs = y$
 $z = \pm (1 - \cos t) \pm (1 - \cos s), \quad t - \sin t = x, \quad s - \sin s = y.$

In [4], M. Magid studied nondegenerate affine surfaces which are both affine minimal and

The subject is supported by JSPS

50 Huafei Sun

timelike minimal, and obtained a complete classification. In the present paper, we study affine translation surfaces of constant affine mean curvature and obtain:

Theorem. Let M be a nondegenerate affine translation surface of constant affine mean curvature in \mathbb{R}^3 . Then besides (i) and (ii) in Theorem A, M is the graph of the following function up to equiaffine transformations:

(iii)
$$z = \frac{1}{2}Ax^2 + 3^{-\frac{4}{3}}A^{\frac{1}{3}} \int_{v_0}^{v} \left\{ \int_{v_0}^{v} (Hs^2 + C)^{-\frac{3}{4}} ds \right\} dv,$$

where A and C are constant and $H(\neq 0)$ is the affine mean curvature of M.

Acknowledgement. I would like to thank Professor K. Yamada for his advice and encouragement and Professor T. Kurose for his valuable suggestions. I also would like to express my thanks to Professor T. Sasaki for useful help.

2. Preliminaries

Let $f: M \to R^3$ be an immersion of a connected differentiable 2-manifold into the affine space R^3 equipped with usual flat connection D and the canonical volume element ω , and ξ an arbitrary vector field along f transversal to f(M). For any vector fields X and Y on M, we write

$$D_{X}f_{*}(Y) = f_{*}(\nabla_{X}Y) + h(X, Y)\xi, \tag{2.1}$$

$$D_X \xi = -f_*(SX) + \tau(X)\xi, \tag{2.2}$$

thus definiting an affine connection ∇ , a symmetric tensor h of type (0,2) and a tensor S of type (1,1) which is called the affine shape operator, and a 1-form τ , called the transversal connection form. We call h the affine fundamental form. We define by $H=\frac{1}{2}$ trace S the affine mean curvature of M. We call f affine minimal if H is zero identically. We define a volume element θ on M by

$$\theta(X_1, X_2) = \omega(f_*(X_1), f_*(X_2), \xi) = \det(f_*(X_1), f_*(X_2), \xi), \tag{2.3}$$

for any tangent vectors X_1 , X_2 of M.

We say that f is nondegenerate if h is nondegenerate. This condition does not depand on choise of ξ . In this case, it is known that there is a unique choice of ξ such that the corresponding induced connection ∇ , the nondegenerate metric h, and the induced volume element θ satisfy

(i) $\nabla \theta = 0$, thus (∇, θ) is an equiaffine structure on M;

(ii) $\theta = \omega_h$, where $\omega_h(X_1, X_2) = |\det(h(X_i, X_j))|^{\frac{1}{2}}$ (the volume element given by h). We call such a pair (f, ξ) a Blaschke immersion. We call ∇ the induced connection and h the affine metric. Condition (i) implies that $\tau = 0$ so that $D_X \xi = -f_*(SX)$.

Let $x^3 = F(x^1, x^2)$ be a differentiable function on a domain $D \subseteq \mathbb{R}^2$. We consider an immersion

$$f: D \ni (x^1, x^2) \in M \mapsto (x^1, x^2, F(x^1, x^2)) \in R^3.$$

We start with a tentative choice of transversal field $\xi_0 = (0, 0, 1)$. Since $D_{\theta_i}\xi_0 = 0$, we have $\tau = 0$. Denote by ∂_i the coordinate vector field $\partial/\partial x^i$, then we have

$$f_*(\partial_1) = (1, 0, F_1), f_*(\partial_2) = (0, 1, F_2),$$

where $F_i = \partial F / \partial x^i$. Thus we get

$$D_{\partial i}(f_{*}(\partial_{i})) = (0, 0, F_{ii}) = F_{ii}\xi, \quad F_{ii} = \frac{\partial^{2} F}{\partial x^{i} \partial x^{i}},$$

and then the induced connection ∇^0 and the affine fundamental form h^0 with respect to ξ_0 are given as

$$\nabla^0_{\partial i}(\partial_i) = 0$$
, $h^0(\partial_i, \partial_i) = F_{ii}$.

Thus the immersion is nondegenerate if and only if $\det(F_{ij}) \neq 0$. Taking $\phi = |\det(F_{ij})|^{\frac{1}{4}}$, we set

$$\xi = -\sum_{k,j} (F^{kj}\phi_j) f_*(\partial_k) + \phi \xi_0,$$

where $\phi_i = \partial \phi / \partial x^j$ and (F^{ij}) is the inverse matrix of the matrix (F_{ij}) . From which we have

$$D_{\partial_i}\xi = -\sum_{i,k} \partial_i (F^{ki}\phi_i) f_*(\partial_k).$$

Then (f, ξ) is a Blaschke immersion, and the affine shape operator is

$$S(\partial_i) = \sum_{j,k} \partial_i (F^{kj} \phi_j) \partial_k.$$

Hence we see that the affine mean curvature of M satisfies

$$H = \frac{1}{2} \sum_{i,j} \partial_i (F^{ij} \phi_j). \tag{2.4}$$

3. Proof of the main Theorem

From now on, we assume that M is a translation surface i.e. it is obtained as the graph of

52 Huafei Sun

function F(x, y) = p(x) + q(y), where p(x) and q(y) are differentiable functions. Hence, we have

$$(F_{ij}) = (h_{ij}) = \begin{pmatrix} p''(x) & 0 \\ 0 & q''(y) \end{pmatrix}, \quad (F^{ij}) = (F_{ij})^{-1} = \begin{pmatrix} p''(x)^{-1} & 0 \\ 0 & q''(y)^{-1} \end{pmatrix},$$

and

$$\phi = |\det(F_{ij})|^{\frac{1}{4}} = |p''(x)q''(y)|^{\frac{1}{4}} \neq 0.$$

In the first, we assume that p''(x)>0 and q''(y)>0. By a direct calculation we have

$$\begin{split} 2H &= \frac{-p'''^2q''}{4p''^2} (p''q'')^{-\frac{3}{4}} + \frac{1}{4p''} \bigg[-\frac{3}{4} (q''p'')^{-\frac{7}{4}} p'''^2 q''^2 + (p''q'')^{-\frac{3}{4}} p^{(4)} q'' \bigg] \\ &\quad + \frac{-q'''^2p''}{4q''^2} (p''q'')^{-\frac{3}{4}} + \frac{1}{4q''} \bigg[-\frac{3}{4} (q''p'')^{-\frac{7}{4}} q'''^2 p''^2 + (p''q'')^{-\frac{3}{4}} q^{(4)} p'' \bigg], \end{split}$$

i.e.,

$$8H = \left(-\frac{7}{4}q'''^2 + q''q'^4\right)q''^{\frac{-11}{4}}p''^{\frac{1}{4}} + \left(-\frac{7}{4}p'''^2 + p''p'^4\right)p''^{\frac{-11}{4}}q''^{\frac{1}{4}}.$$

Let p''(x)=f(x), q''(y)=g(y). Then

$$8H = \left(-\frac{7}{4}f'^2 + ff''\right)f^{-\frac{11}{4}}g^{\frac{1}{4}} + \left(-\frac{7}{4}g'^2 + gg''\right)g^{-\frac{11}{4}}f^{\frac{1}{4}}$$
$$= Q(x)g^{\frac{1}{4}} + R(y)f^{\frac{1}{4}}, \tag{3.1}$$

where

$$Q(x) = \left(-\frac{7}{4}f'^2 + ff''\right)f^{-\frac{11}{4}}, \quad R(y) = \left(-\frac{7}{4}g'^2 + gg''\right)g^{-\frac{11}{4}}.$$

In order to prove our Theorem we need the following Lemma:

Lemma. If H = constant and $f'g' \neq 0$, then $H \equiv 0$.

proof. Since H=constant differentiating (3.1) with respect to x and y we get

$$0 = Q'g^{\frac{1}{4}} + \frac{1}{4}Rf^{-\frac{3}{4}}f', \tag{3.2}$$

and

$$0 = \frac{1}{4} Q g^{-\frac{3}{4}} g' + R' f^{\frac{1}{4}}. \tag{3.3}$$

From (3.2) and (3.3) we get

$$\frac{Q'}{f^{-\frac{3}{4}}f'} = -\frac{R}{4g^{\frac{1}{4}}} = \lambda = constant, \tag{3.4}$$

and

$$\frac{R'}{g^{-\frac{3}{4}}g'} = -\frac{Q}{4f^{\frac{1}{4}}} = \mu = constant. \tag{3.5}$$

From (3.4) and (3.5) we get

$$Q' = \lambda f^{-\frac{3}{4}} f'$$

$$R = -4\lambda g^{\frac{1}{4}}$$

$$R' = -\lambda g^{-\frac{3}{4}} g'$$
(3.6)

and

$$R' = \mu g^{-\frac{3}{4}} g'$$

$$Q = -4 \mu f^{\frac{1}{4}}$$

$$Q' = -\mu f^{-\frac{3}{4}} f'.$$
(3.7)

From (3.6) and (3.7) we get

$$\lambda = -\mu$$

since $f \neq 0$ and $f' \neq 0$. Then we have

$$R = -4\lambda g^{\frac{1}{4}}$$

$$Q = 4\lambda f^{\frac{1}{4}}.$$
(3.8)

Substituting (3.8) into (3.1) we get

$$8H = 4\lambda f^{\frac{1}{4}}g^{\frac{1}{4}} - 4\lambda f^{\frac{1}{4}}g^{\frac{1}{4}} = 0.$$

This completes the proof of the Lemma.

When f'(x)=0 and g'(y)=0, we can easily get that

54 Huafei Sun

$$p(x) = ax^{2} + bx + c$$

$$q(y) = dy^{2} + ey + f,$$
(3.9)

where a, b, c, d, e, f and are constnt. The solution (3.9) is included in the results of [1].

The remainder is to treat the cases that f'(x)=0, $g'(y)\neq 0$. We see that $f(x)=q''(x)=C_1$ =constant and Q(x)=0. Thus from (3.1) we have

$$C = 8HC_1^{-\frac{1}{4}} = 8Hf^{-\frac{1}{4}} = \left(-\frac{7}{4}g'^2 + gg''\right)g^{-\frac{11}{4}},$$

namely

$$-\frac{7}{4}g'^2 + gg'' = Cg^{\frac{11}{4}}. (3.10)$$

Setting

$$g' = \frac{dg}{dy} = s,$$

then we have

$$g'' = \frac{ds}{dq}s = \frac{1}{2}\frac{ds^2}{dq}$$

Thus from (3.10) we have

$$\frac{ds^2}{dg} - \frac{7}{2} \frac{1}{g} s^2 = 2Cg^{\frac{7}{4}}. (3.11)$$

The equation (3.11) has the solution

$$s^2 = g^{\frac{7}{2}} \left(-\frac{8}{3} C g^{-\frac{3}{4}} + C_2 \right),$$

i.e.,

$$\frac{dg}{dv} = \pm g^{\frac{7}{4}} (ag^{-\frac{3}{4}} + b)^{\frac{1}{2}},\tag{3.12}$$

where $a = -\frac{8}{3}C$, $b = C_2$ are constant. Let $g^{-\frac{3}{4}} = m$. We get from (3.12) that $dm = \pm \frac{3}{4}(am + b)^{\frac{1}{2}}dy$, and

$$\int \frac{dm}{(am+b)^{\frac{1}{2}}} = \pm \frac{3}{4}y + C_3, \tag{3.13}$$

C₃ being a constant.

From which we get

$$g^{-\frac{3}{4}} = m = \frac{9a}{64} \left(y \pm \frac{4}{3} C_3 \right)^2 - \frac{b}{a}$$

i.e.,

$$q''(y) = g(y) = m^{-\frac{3}{4}} = \left[-3C_1^{-\frac{1}{4}}H\left(y \pm \frac{4}{3}C_3\right)^2 + \frac{3C_1^{\frac{1}{4}}C_2}{64H} \right]^{-\frac{4}{3}}.$$

Setting $A_1 = -3C_1^{-\frac{1}{4}}$, $A_2 = \frac{4}{3}C_3$, $A_3 = \frac{3C_1^{\frac{1}{4}}C_2}{64H}$, from which we get

$$q''(y) = [A_1 H(y \pm A_2)^2 + A_3]^{-\frac{4}{3}}$$

$$= A_1^{-\frac{4}{3}} \left[H(y \pm A_2)^2 + \frac{A_3}{A_1} \right]^{-\frac{4}{3}}.$$
(3.14)

From (3.14) we get

$$q(y) = \int_{y_0}^{y} \left\{ \int_{t_0}^{t} A_1^{-\frac{4}{3}} \left[H(s \pm A_2)^2 + \frac{A_3}{A_1} \right]^{-\frac{4}{3}} ds \right\} dt$$
$$= A_1^{-\frac{4}{3}} \int_{y_0}^{y} \left\{ \int_{y_0}^{v} \left(Hs^2 + \frac{A_3}{A_1} \right)^{-\frac{4}{3}} ds \right\} dv.$$

Therefore when f'(x)=0, $g'(y)\neq 0$, we obtain the solution of equation (3.1):

$$p(x) = \frac{1}{2}C_1x^2 + bx + c,$$

$$q(y) = (-3)^{-\frac{4}{3}}C_1^{\frac{1}{3}} \int_{y_0}^{y} \left\{ \int_{v_0}^{v} \left(Hs^2 + \frac{A_3}{A_1} \right)^{-\frac{4}{3}} ds \right\} dv,$$
(3.15)

and so

$$z = \frac{1}{2}C_1x^2 + ax + b + 3^{-\frac{4}{3}}C_1^{\frac{1}{3}}\int_{y_0}^{y} \left\{ \int_{y_0}^{v} (Hs^2 + c)^{-\frac{4}{3}} ds \right\} dv, \tag{3.16}$$

where a, b, $c = \frac{A_3}{A_1}$ are constant.

Therefore under equiaffine transformation

$$\overline{x} = x$$
, $\overline{y} = y$, $\overline{z} = z - ax - b$,

from (3.16) we get

$$z = \frac{1}{2}Ax^2 + 3^{\frac{4}{3}}A^{\frac{1}{3}} \int_{y_0}^{y} \left\{ \int_{v_0}^{v} (Hs^2 + c)^{-\frac{4}{3}} ds \right\} dv, \tag{3.17}$$

where $A = C_1$ and C is a constant.

For the case of p''(x)q''(y) < 0, without loss of the generality, we may assume that p''(x) < 0 and q''(y) > 0. Thus by setting $p_1(x) = -p(x) > 0$ and $q_1 = q(y)$ we see that $p_1''(x)q_1''(y) > 0$. Using the same method as above we can get

$$z = -\frac{1}{2}Ax^2 + 3^{-\frac{4}{3}}A^{\frac{1}{3}} \int_{y_0}^{y} \left\{ \int_{v_0}^{v} (Hs^2 + c)^{-\frac{4}{3}} ds \right\} dv.$$

Thus we completes the proof of Theorem.

Now we consider a special case. Taking C=0 from (3.17) we can get

$$z = \frac{1}{2}Ax^2 + \frac{9}{10}A^{\frac{1}{3}}(3H)^{-\frac{4}{3}}y^{-\frac{2}{3}} + P_1y + P_2, \tag{3.18}$$

where P_1 and P_2 are constant. By an equiaffine transformation

$$\overline{x} = x$$
, $\overline{y} = y$, $\overline{z} = z - P_1 y - P_2$

we get from (3.18) that

$$z = \frac{1}{2}Ax^2 + \frac{9}{10}A^{\frac{1}{3}}(3H)^{-\frac{4}{3}}y^{-\frac{2}{3}}$$

and a surface

$$\left(x, y, \frac{1}{2}Ax^2 + \frac{9}{10}A^{\frac{1}{3}}(3H)^{-\frac{4}{3}}y^{-\frac{2}{3}}\right)$$

References

- [1] F. Manhart, Die affinminimalrückungfächen, Arch. Math. 44 (1985), 547-556.
- [2] W. Blaschke, Vorlesungen über Differentialgeometrie II, Berlin (1923).
- [3] W. Yang and J. Nie, On affine minimal rotation surfaces in A³, J. of Math. (PCR) 7 (1987), 205-210.
- [4] M. A. Magid, Timelike Thomsen surfaces, Results in Mathematics 20 (1991), 691-697.
- [5] K. Nomizu and T.Sasaki, Affine differential geometry, Cambridge University Press, Cambridge, New York (1994).
- [6] A.-M. Li, U. Simon and G. Zhao. Global affine differential geometry of hypersurfaces, W. de Gruyer, Berlin and New York (1993).

Huafei Sun Department of Mathematics Kumamoto University Kumamoto 860-8555 Japan