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1. Introduction

When comparing the performance of estimators, the Pitman’s measure of closeness (PMC)
is a useful criterion, to which considerable attention has been devoted. See Rao et al. [3] and
reference therein. Ghosh and Sen [2] found an interesting role of median unbiasedness (MU)
in the context of PMC, that is, a MU estimator is the Pitman-closest within an appropriate class
of estimators with respect to the squared error loss.

Datta [1] applied the concepts of PMC and MU to a prediction and obtained a analogous
result under the squared error loss. See also Takada [5].

The purpose of this paper is to show that the result of Datta {1] hold under not only
squared error loss but also LINEX loss. The LINEX loss was proposed by Varian [6] for
problems in which it is appropriate to consider asymmetric loss functions. Zellner [8] showed
that the sample mean is inadmissible for estimating the mean of a univariate normal distribu-
tion with respect to the LINEX loss. See also Safie and Noorballochi [4]. Xiao [7] consid-
ered the LINEX loss in a prediction problem.

In Section 2 a MU predictor is shown to be the Pitman-closest within an appropriate family
of predictors not only for the squared error loss but also for the LINEX loss. In Section 3 some
examples are given.

2. Pitman-closest predictor

Suppose that X is an observable random vector, ¥ an unknown random variable and that
the joint distribution of X and Y depends on unknown parameter 4. After observing X, we
want to predict the value of Y.

Let L(d, y) be the loss of predicting Y=y by d. For two predictors & and &, & is said
to be better than & under PMC with respect to L if for all 4
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P{L(8(X), V)< L(5(X), Y)}z%.

Let C be a family of predictors. Then §€ C is said to be the Pitman-closest in C with respect
to L if J is better than any other ¢’€ C under PMC with respect to L. A predictor & is said
to be MU of Y if for all 4

P{o(X)< Y)=Pol8(X)2 Y}

In order to discuss the role of a MU predictor, we consider two loss functions. Oneis Li(d,
y)=(d —y)* (squared error loss) and the other is

LAd, y)=expla(d—y)]—ald—y)—1

(LINEX loss) with @#0. Let 64 be a MU predictor of ¥ and T a statistic based on X. We
consider such a family of predictors that

C={(8; §(X)=8u(X)+Z(T)},

where Z=Z(T) is any function of T. It follows from Theorem 1 of Datta [1] that & is
Pitman-closest in the family C with respect to the squared error loss. The following theorem
shows that 8 is also Pitman-closest in the same family with respect to the LINEX loss.
Although the first part of theorem is an univariate version of Theorem 1 of Datta [1], the proof
is added for the sake of completeness.

Theorem. Suppose that Y — 6u is independent of T. Then Su is Pitman-closest in the family
C with respect to the squared error and LINEX losses.

Proof. Let =08x+Z be any predictor in C. First we consider the squared error loss L.
Then

Po{Li(0u, YIS LS, Y =Po{Z2+2Z(6u— Y)20}
2 P{Z(0u—Y) =0}
=P{du— Y =0,Z>0}
+ Po{0u— Y <0, Z< 0}
+ Po(Z=0). 2.1)

Since Z is independent of dxw— Y and &y is MU,

Po{du— Y20, Z>0}2—%—P,(Z >0) 2.2
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and
Pulou—Y'<0, Z<0) 24P Z<0).
Substituting (2.2) and (2.3) into (2.1), we have
PALA3w, YIS Li(8, Y))24{PoZ >0)+ PAZ <O} + PAZ=0)
=1
Hence the first part of the theorem is proved.

Next we consider the LINEX loss L,. Then

Po{Lo(8u, Y)< L8, Y)}
= Po{expla(dn— Y)(exp(aZ)—1)—aZ =0}
=Pola(6u— Y)= W, aZ >0}
+Pola(du—Y)< W, aZ <0}
+ PaZ=0)

where

_ aZ
W=log ( exp(aZ)—1 )
Noting that W is less than zero if Z >0, and is larger than zero if @Z <0, we have
Pola(8u—Y)=2 W, aZ >0}=Eo{Luz>0 P(a(du— Y)= W|2Z)}

Z%Pa(aZ >0)

and
Pla(8u— Y)< W, aZ <0}=Eo{Laz<o Pla(bu— V)< W|Z)}

Z%Pa(aZ<0)
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2.3)

2.4)

(2.5)

(2.6)

where Ix denotes the indicator function of the set A. Substituting (2.5) and (2.6) into (2.4), we

have
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Pl L(6u, Y)<LAS, V)

2—%—{Pg(aZ >0)+ PaZ <0)} + P aZ =0)
1
27.

Hence the proof is completed.

3. Examples

In this section we consider two examples to apply Theorem in Section 2.

Example 3.1. Let (X, .., X», Y) have a multivariate normal distribution such that Xj, ...,
Xn are i.i.d. according to N(g, ¢%), the distribution of Y is also N(x, 0%) and the covariance
between Y anans is paz(p’<%). Based on X=(X,, ..., X»), we want to predict Y.

Let 7=%§1X;. Then it is easy to see that the distribution of X — Y is normal with mean
zero. Hence X is a MU predictor of Y. Let T=(X,—X,.., Xa—X) and @ denote the
unknown parameters among g, ¢ and p. Since

cov(X—Y, Xi—X)=E{(X - Y)(X;—X)}=0,
T is independent of X—Y. So we can apply Theorem to the family of predictors such that
C={8; 6(X)=X+2Z(T)}

and conclude that X is the Pitman-closest in the family C with respect to the squared error and
LINEX losses irrespective of which parameters of g, ¢% p are unknown.

Under the squared error loss, X has the minimum risk among the predictorsin C. In fact,
since X— Y is independent of Z, for any 8€C

Ef{8(X)-Y)V=E{X-Y+2Z)
=Eo(—X— Y)2+E022
>E(X—-Y)

However, X is inadmissible within C under the LINEX loss.
First suppose that =y is the only unknown parameter. Let

81(X)=—)?+%(2p—"—:1)aa’,

which belongs to the family C. It is easy to see that
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EdLA:(X)), Y}= “22"2 l+%—2p)

and

EofL(X, Y)}=exp{#(1+%—2p)}—1. 3.1)

Since e*—1>z(x+0), the risk function of & is less than that of X. See Xiao [7].
Next suppose that §=(g, ¢°) is unknown but p is known. Let

(X=X +1(20-21L)az,

where 6z=ﬁzn‘s(X;—Y)2. Note that &; is contained in the family C. A straightforward
calculation shows that

Eo{ La(84X), Y)}=(1 +2—y“—)'%e"+ u—1, (32)

where u=azT°2(1 +%—2p) and y=n—1. Comparing (3.1) with (3.2), we can get

EO{Lz(a(X)l Y)}<E0{L2(7’ Y)}
For details, see Zellner [8] (p. 448). Therefore the risk function of & is less than that of X.
Example 3.2. Let (A, Xi), ..., (An, X&) be 7.7.d. random pairs where A; is distributed accord-
ing to N(x, r?) and the conditional distribution of X given A: is N(A;, 6%). Suppose p=0%/7*is

known. Based on X=(X,, ..., Xx), we want to predict Y=2,.

If all parameters were known, we would use the Bayes estimator

85(X)=Bu+(1-B) X, 3.3)

where B=?%2-=T_%. Since x is unknown but B is known, we consider the following
empirical Bayes estimator instead of Js

8s(X)=BX+(1—-B)X, (3.9

where Y=%$Xi.
It is easy to see that the distribution of dz— Y is normal with mean zero. So 8¢ is a MU
predictor of Y. Noting that E« Y| X)=4s, it follows from (3.3) and (3.4) that
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co(Y =8¢, Xi— X)=Eo{(Y — 8: X X~ X))}
=Eo{(Bu+(1—B)Xn—8:)(X:— X))}
=BEs{(u— X)X~ X)}
=0.

Hence T=(X,—X, .., X,—X) is independent of Y —8s. So applying Theorem to the family
of predictors

C={8; 8(X)=8:(X)+2Z(T)},

we conclude that &¢ is the Pitman-closest in the family C with respect to the squared error and
LINEX losses. In particular, since X and X, are included in C, 8¢ turns to be better than X
and X, under PMC. '

Under the squared error loss, ¢ has the minimum risk among the predictorsin C. In fact,
since 8:— Y is independent of Z, for any 8€C

Ef8—Y)V=Eo:—Y+Z)
=Eo0c~ Y)Y+ EoZ*
2E(0:—Y)

However, 6¢ is inadmissible within C under the LINEX loss.
First suppose that §=g is the only unknown parameter. Let

81(X)=B}_(+(1—B)Xn—”—gz(l_ n;1 B)’

which belongs to the family C. It is easy to see that

EofLA8:(X), Y)} =#(1—”—;l3)

and

EolLo(86(X), Y)}=exp{#(1—"—;1—3)}—1. (3.5)

Since e¢*—1>x(x+0), the risk function of 6, is less than that of &z.
Next suppose that 8=(, %) is unknown. Let

8(X)=BX+(1-B) X, ~25 1—”—;13)52,
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where = nl—l Z}:(Xs—_)?)z. Note that & is contained in the family C. A straightforward

calculation shows that

EdLA(8(X), Y)} =(1 +%u)_%e“+ u—1 3.6)

where # =fT02(1 - n; 1 B) and v=xn—1. Comparing (3.5) with (3.6), we can get

EofLA8XX), Y} < Eof{LA(0:(X), Y)}.

See (3.2). Therefore the risk function of &: is less than that of k.
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