Median unbiasedness and Pitman's measure of closeness in a prediction problem

Yushan Xiao and Yoshikazu Takada

(Received December 22, 1999)

1. Introduction

When comparing the performance of estimators, the Pitman's measure of closeness (PMC) is a useful criterion, to which considerable attention has been devoted. See Rao et al. [3] and reference therein. Ghosh and Sen [2] found an interesting role of median unbiasedness (MU) in the context of PMC, that is, a MU estimator is the Pitman-closest within an appropriate class of estimators with respect to the squared error loss.

Datta [1] applied the concepts of PMC and MU to a prediction and obtained a analogous result under the squared error loss. See also Takada [5].

The purpose of this paper is to show that the result of Datta [1] hold under not only squared error loss but also LINEX loss. The LINEX loss was proposed by Varian [6] for problems in which it is appropriate to consider asymmetric loss functions. Zellner [8] showed that the sample mean is inadmissible for estimating the mean of a univariate normal distribution with respect to the LINEX loss. See also Safie and Noorballochi [4]. Xiao [7] considered the LINEX loss in a prediction problem.

In Section 2 a MU predictor is shown to be the Pitman-closest within an appropriate family of predictors not only for the squared error loss but also for the LINEX loss. In Section 3 some examples are given.

2. Pitman-closest predictor

Suppose that X is an observable random vector, Y an unknown random variable and that the joint distribution of X and Y depends on unknown parameter θ . After observing X, we want to predict the value of Y.

Let L(d, y) be the loss of predicting Y = y by d. For two predictors δ_1 and δ_2 , δ_1 is said to be better than δ_2 under PMC with respect to L if for all θ

$$P_{\theta}\{L(\delta_1(X), Y) \leq L(\delta_2(X), Y)\} \geq \frac{1}{2}.$$

Let C be a family of predictors. Then $\delta \in C$ is said to be the Pitman-closest in C with respect to L if δ is better than any other $\delta' \in C$ under PMC with respect to L. A predictor δ is said to be MU of Y if for all θ

$$P_{\theta}\{\delta(X) \leq Y\} = P_{\theta}\{\delta(X) \geq Y\}.$$

In order to discuss the role of a MU predictor, we consider two loss functions. One is $L_1(d, y) = (d-y)^2$ (squared error loss) and the other is

$$L_2(d, y) = \exp[\alpha(d-y)] - \alpha(d-y) - 1$$

(LINEX loss) with $\alpha \neq 0$. Let δ_M be a MU predictor of Y and T a statistic based on X. We consider such a family of predictors that

$$C = {\delta; \delta(X) = \delta_M(X) + Z(T)}.$$

where Z=Z(T) is any function of T. It follows from Theorem 1 of Datta [1] that δ_M is Pitman-closest in the family C with respect to the squared error loss. The following theorem shows that δ_M is also Pitman-closest in the same family with respect to the LINEX loss. Although the first part of theorem is an univariate version of Theorem 1 of Datta [1], the proof is added for the sake of completeness.

Theorem. Suppose that $Y - \delta_M$ is independent of T. Then δ_M is Pitman-closest in the family C with respect to the squared error and LINEX losses.

Proof. Let $\delta = \delta_M + Z$ be any predictor in C. First we consider the squared error loss L_1 . Then

$$P_{\theta}\{L_{1}(\delta_{M}, Y) \leq L_{1}(\delta, Y)\} = P_{\theta}\{Z^{2} + 2Z(\delta_{M} - Y) \geq 0\}$$

$$\geq P_{\theta}\{Z(\delta_{M} - Y) \geq 0\}$$

$$= P_{\theta}\{\delta_{M} - Y \geq 0, Z > 0\}$$

$$+ P_{\theta}\{\delta_{M} - Y \leq 0, Z < 0\}$$

$$+ P_{\theta}(Z = 0). \tag{2.1}$$

Since Z is independent of $\delta_M - Y$ and δ_M is MU,

$$P_{\theta}\{\delta_{M} - Y \ge 0, Z > 0\} \ge \frac{1}{2} P_{\theta}(Z > 0)$$
 (2.2)

and

$$P_{\theta}\{\delta_{M} - Y \le 0, Z < 0\} \ge \frac{1}{2} P_{\theta}(Z < 0).$$
 (2.3)

Substituting (2.2) and (2.3) into (2.1), we have

$$P_{\theta}\{L_{1}(\delta_{M}, Y) \leq L_{1}(\delta, Y)\} \geq \frac{1}{2}\{P_{\theta}(Z > 0) + P_{\theta}(Z < 0)\} + P_{\theta}(Z = 0)$$
$$\geq \frac{1}{2}.$$

Hence the first part of the theorem is proved.

Next we consider the LINEX loss L_2 . Then

$$P_{\theta}\{L_{2}(\delta_{M}, Y) \leq L_{2}(\delta, Y)\}$$

$$=P_{\theta}\{\exp[\alpha(\delta_{M} - Y)](\exp(\alpha Z) - 1) - \alpha Z \geq 0\}$$

$$=P_{\theta}\{\alpha(\delta_{M} - Y) \geq W, \alpha Z > 0\}$$

$$+P_{\theta}\{\alpha(\delta_{M} - Y) \leq W, \alpha Z < 0\}$$

$$+P_{\theta}(\alpha Z = 0)$$
(2.4)

where

$$W = \log \left(\frac{\alpha Z}{\exp(\alpha Z) - 1} \right).$$

Noting that W is less than zero if $\alpha Z > 0$, and is larger than zero if $\alpha Z < 0$, we have

$$P_{\theta}\{\alpha(\delta_{M} - Y) \ge W, \alpha Z > 0\} = E_{\theta}\{I_{(\alpha Z > 0)}P_{\theta}(\alpha(\delta_{M} - Y) \ge W \mid Z)\}$$

$$\ge \frac{1}{2}P_{\theta}(\alpha Z > 0)$$
(2.5)

and

$$P_{\theta}\{\alpha(\delta_{M} - Y) \leq W, \alpha Z < 0\} = E_{\theta}\{I_{(\alpha Z < 0)}P_{\theta}(\alpha(\delta_{M} - Y) \leq W \mid Z)\}$$

$$\geq \frac{1}{2}P_{\theta}(\alpha Z < 0) \tag{2.6}$$

where I_A denotes the indicator function of the set A. Substituting (2.5) and (2.6) into (2.4), we have

$$P_{\theta}\{L_{2}(\delta_{M}, Y) \leq L_{2}(\delta, Y)\}$$

$$\geq \frac{1}{2}\{P_{\theta}(\alpha Z > 0) + P_{\theta}(\alpha Z < 0)\} + P_{\theta}(\alpha Z = 0)$$

$$\geq \frac{1}{2}.$$

Hence the proof is completed.

3. Examples

In this section we consider two examples to apply Theorem in Section 2.

Example 3.1. Let $(X_1, ..., X_n, Y)$ have a multivariate normal distribution such that $X_1, ..., X_n$ are i.i.d. according to $N(\mu, \sigma^2)$, the distribution of Y is also $N(\mu, \sigma^2)$ and the covariance between Y and X_i is $\rho \sigma^2 \left(\rho^2 < \frac{1}{n}\right)$. Based on $X = (X_1, ..., X_n)$, we want to predict Y.

Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then it is easy to see that the distribution of $\overline{X} - Y$ is normal with mean

Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then it is easy to see that the distribution of $\overline{X} - Y$ is normal with mean zero. Hence \overline{X} is a MU predictor of Y. Let $T = (X_1 - \overline{X}, ..., X_n - \overline{X})$ and θ denote the unknown parameters among μ , σ^2 and ρ . Since

$$cov(\overline{X}-Y, X_i-\overline{X})=E_{\theta}\{(\overline{X}-Y)(X_i-\overline{X})\}=0,$$

T is independent of $\overline{X} - Y$. So we can apply Theorem to the family of predictors such that

$$C = {\delta; \delta(X) = \overline{X} + Z(T)}$$

and conclude that \overline{X} is the Pitman-closest in the family C with respect to the squared error and LINEX losses irrespective of which parameters of μ , σ^2 , ρ are unknown.

Under the squared error loss, \overline{X} has the minimum risk among the predictors in C. In fact, since $\overline{X} - Y$ is independent of Z, for any $\delta \in C$

$$E_{\theta}(\delta(X) - Y)^{2} = E_{\theta}(\overline{X} - Y + Z)^{2}$$

$$= E_{\theta}(\overline{X} - Y)^{2} + E_{\theta}Z^{2}$$

$$\geq E_{\theta}(\overline{X} - Y)^{2}.$$

However, \overline{X} is inadmissible within C under the LINEX loss.

First suppose that $\theta = \mu$ is the only unknown parameter. Let

$$\delta_{i}(X) = \overline{X} + \frac{1}{2} \left(2\rho - \frac{n+1}{n} \right) \alpha \sigma^{2},$$

which belongs to the family C. It is easy to see that

$$E_{\theta}\{L_{2}(\delta_{1}(X)), Y\} = \frac{\alpha^{2}\sigma^{2}}{2}\left(1 + \frac{1}{n} - 2\rho\right)$$

and

$$E_{\theta}\left\{L_{2}(\overline{X}, Y)\right\} = \exp\left\{\frac{\alpha^{2}\sigma^{2}}{2}\left(1 + \frac{1}{n} - 2\rho\right)\right\} - 1. \tag{3.1}$$

Since $e^x-1>x(x\neq 0)$, the risk function of δ_1 is less than that of \overline{X} . See Xiao [7].

Next suppose that $\theta = (\mu, \sigma^2)$ is unknown but ρ is known. Let

$$\delta_2(X) = \overline{X} + \frac{1}{2} \left(2\rho - \frac{n+1}{n} \right) \alpha \hat{\sigma}^2,$$

where $\bar{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$. Note that δ_2 is contained in the family C. A straightforward calculation shows that

$$E_{\theta}\{L_{2}(\delta_{2}(X), Y)\} = \left(1 + \frac{2u}{\nu}\right)^{-\frac{\nu}{2}} e^{u} + u - 1, \tag{3.2}$$

where $u = \frac{\alpha^2 \sigma^2}{2} \left(1 + \frac{1}{n} - 2\rho\right)$ and $\nu = n - 1$. Comparing (3.1) with (3.2), we can get

$$E_{\theta}\{L_2(\delta(X), Y)\} < E_{\theta}\{L_2(\overline{X}, Y)\}$$

For details, see Zellner [8] (p. 448). Therefore the risk function of δ_2 is less than that of \overline{X} .

Example 3.2. Let (λ_1, X_1) , ..., (λ_n, X_n) be *i.i.d.* random pairs where λ_i is distributed according to $N(\mu, \tau^2)$ and the conditional distribution of X_i given λ_i is $N(\lambda_i, \sigma^2)$. Suppose $\rho = \sigma^2/\tau^2$ is known. Based on $X = (X_1, ..., X_n)$, we want to predict $Y = \lambda_n$.

If all parameters were known, we would use the Bayes estimator

$$\delta_B(X) = B\mu + (1 - B)X_n \tag{3.3}$$

where $B = \frac{\sigma^2}{\sigma^2 + \tau^2} = \frac{\rho}{1 + \rho}$. Since μ is unknown but B is known, we consider the following empirical Bayes estimator instead of δ_B

$$\delta_{\mathcal{E}}(X) = B\overline{X} + (1 - B)X_n \tag{3.4}$$

where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

It is easy to see that the distribution of $\delta_E - Y$ is normal with mean zero. So δ_E is a MU predictor of Y. Noting that $E_{\theta}(Y|X) = \delta_B$, it follows from (3.3) and (3.4) that

$$cov(Y - \delta_{E}, X_{i} - \overline{X}) = E_{\theta}\{(Y - \delta_{E})(X_{i} - \overline{X})\}$$

$$= E_{\theta}\{(B\mu + (1 - B)X_{n} - \delta_{E})(X_{i} - \overline{X})\}$$

$$= BE_{\theta}\{(\mu - \overline{X})(X_{i} - \overline{X})\}$$

$$= 0.$$

Hence $T = (X_1 - \overline{X}, ..., X_n - \overline{X})$ is independent of $Y - \delta_E$. So applying Theorem to the family of predictors

$$C = \{\delta; \delta(X) = \delta_{\mathcal{E}}(X) + Z(T)\},\$$

we conclude that δ_E is the Pitman-closest in the family C with respect to the squared error and LINEX losses. In particular, since \overline{X} and X_n are included in C, δ_E turns to be better than \overline{X} and X_n under PMC.

Under the squared error loss, δ_E has the minimum risk among the predictors in C. In fact, since $\delta_E - Y$ is independent of Z, for any $\delta \in C$

$$E_{\theta}(\delta - Y)^{2} = E_{\theta}(\delta_{E} - Y + Z)^{2}$$

$$= E_{\theta}(\delta_{E} - Y)^{2} + E_{\theta}Z^{2}$$

$$\geq E_{\theta}(\delta_{E} - Y)^{2}.$$

However, δ_E is inadmissible within C under the LINEX loss.

First suppose that $\theta = \mu$ is the only unknown parameter. Let

$$\delta_1(X) = B\overline{X} + (1-B)X_n - \frac{\alpha\sigma^2}{2} \left(1 - \frac{n-1}{n}B\right),$$

which belongs to the family C. It is easy to see that

$$E_{\theta}\{L_{2}(\delta_{1}(X), Y)\} = \frac{\alpha^{2}\sigma^{2}}{2}\left(1 - \frac{n-1}{n}B\right)$$

and

$$E_{\theta}\{L_{2}(\delta_{\varepsilon}(X), Y)\} = \exp\left\{\frac{\alpha^{2}\sigma^{2}}{2}\left(1 - \frac{n-1}{n}B\right)\right\} - 1. \tag{3.5}$$

Since $e^x-1>x(x\neq 0)$, the risk function of δ_1 is less than that of δ_E .

Next suppose that $\theta = (\mu, \tau^2)$ is unknown. Let

$$\delta_2(X) = B\overline{X} + (1-B)X_n - \frac{\alpha B}{2} \left(1 - \frac{n-1}{n}B\right)\hat{\sigma}^2,$$

where $\bar{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Note that δ_2 is contained in the family C. A straightforward calculation shows that

$$E_{\theta}\{L_{2}(\delta_{2}(X), Y)\} = \left(1 + \frac{2}{\nu}u\right)^{-\frac{\nu}{2}}e^{u} + u - 1$$
(3.6)

where $u = \frac{\alpha^2 \sigma^2}{2} \left(1 - \frac{n-1}{n} B \right)$ and $\nu = n-1$. Comparing (3.5) with (3.6), we can get

$$E_{\theta}\{L_2(\delta_2(X), Y)\} < E_{\theta}\{L_2(\delta_E(X), Y)\}.$$

See (3.2). Therefore the risk function of δ_2 is less than that of δ_E .

References

- [1] Datta, G. S., Pitman closeness for hierarchical Bayes predictors in mixed linear models, Pitman's measure of closeness, Comm. Statist.-Theory Methods, 20 (1991), 3713-3727.
- [2] Ghosh, M. and P. K. Sen, Median unbiasedness and Pitman closeness, J. Amer. Statist. Assoc., 84 (1989), 1089-1091.
- [3] Rao, C. R., J. P. Keating and R. L. Mason, The Pitman nearness criterion and its determination, Comm. Statist.-Theory Methods, 15 (1986), 3173-3191.
- [4] Shafie, K. and Noorbaloochi, S., Asymmetric unbiased estimation in location families, Statistics & Decisions, 13 (1995), 307-314.
- [5] Takada, Y., Median unbiasedness in an invariant prediction problem, Statistics & Probability Letter, 12 (1991), 281-283.
- [6] Varian, H. R., A Bayesian approach to real estate assessment, Studies in Bayesian Econometrics and Statistics in honor of Leonard J. Savage, (eds. S. E. Fienberg and A. Zellner), 195-208 (1975), North Holland, Amsterdam.
- [7] Xiao, Y. S., LINEX unbiasedness in a prediction problem, to appear in Ann. Inst. statist. Math. (1999).
- [8] Zellner, A., Bayesian estimation and prediction using asymmetric loss functions, J. Amer. Statist. Assoc., 81 (1986), 446-451.