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1. Introduction

In the previous paper [1], we derived the formula
01(N3, 5, N§, 5)=cos 7(6—¢)

for correlation coefficients between normally scattered functions N&, s(¢) and N % &(1), where 0
<a#+pB<1, —0<f, (<o, and [ is an interval.
In this paper, we prove the following formula

ei1(NS, s N§, a)=%(f~/—2 log u a'u)2 cos n(8—1%)
=(.785 cos 7(8—¢)

when ¢, 8, 7 are mutually different.

Additionally we prove formulae in all other cases, which were announced in [2], and
published in the internet homepage [3].

From there formulae, we can control covariant matrices of 2- or 3.dimensional normally
scattered functions [1], which may be useful for studying 2- or 3-dimensional Brownian motion
in the future. Brownian motion was found in the early 18" century, and its mathematical
theory was studied by P. Levy and N. Wiener, and the theory of stochastic integrals was
completed by K. Ito, which derived integral formulae for Brownian motions and was applied to
the theory of Black-Sholes model of mathematical finance. Computational models were based
on random numbers, which are difficult to treat theoretically. These theories are based on
stochastic processes and are difficult to understand, but using scattered functions we can study
Brownian motions on the frame of integrals of simple real functions.

Numbers used in this paper and the previous paper [1] are rational numbers in computers.
Computer experiments were done by 64 bits floating point numbers. We cannot reach to the
exact mathematical theory, which is the future problem.
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2. Numerical experiments of o;(IV5 4, N& 5)

We divide the square [0, 1]x[0, 1] in (8, &)-plane into 50 %50 equally spaced meshes, and
calculate correlation coefficients p for 10,000 samples at each mesh point. We draw the
perspective view of 51X 51 points (6, &, p) in [0,1]x[0, 1]x[—1, 1].

Figure 1 is for a case when =6 and a, 3, y are mutually different.

From our careful examination, we conclude that the following formula is valid.
or(NG, 5 N}, 5)=0.785 cos 7(6—¢)

For other cases, graphs of experimental results are figures such as Figure 2,

and we conclude that the following formula is valid.
o1(NG, 5 N, 5=

To show typical cases, we draw points (N¢, 4(2), N%, 5(£)) for 10,000 numbers of ¢ and the
calculated correlation coefficient p in the following figures 3~14,

3. Integral formulae for the composition of a scattered function and a
continuous function

Let S(¢) be a scattered function with the density function olae).

Let a Riemannian sum be

e
g O

Figure 1: Graph when 8=¢ Figure 2: Graph in other cases
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4

Figure 3: (N2, 04(£), Nis, 0s(1))

4

Figure 5: (N8a 0.4(£), N33, 04(2)) Figure 6: (NS2 04(2), N&3, 04(1))

2 S(EN b= ten),

where a=hHh< h<hL<--<tw=b and L1 =<&=<
When we calculate this Riemannian sum for many divisions, and calculate density distribu-
tions of these values, their mean approach to a fixed value, and their variances approach to 0.

We call this fixed value as the stochastic Riemannian integral of S(¢#) and write this value as
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4 p=-1
by
4 -4 i
Figure 7: (N8 0.4(£), N8 04(2) Figure 8: (N0, 0.4(t), N2, 0.4(#))
4 ©=0.7855 . 00 4 0 =0634

Figure 9: (N3, 04(2), Nis, 0.4(£)) Figure 10: (V3,, 04(£), N33, 04(2))

["sat.
This can be verified using stochastic variables [3].

We will use the following two theorems to prove our main theorem.

Theorem 1. Let S(¢) be a scattered function with the density function o(2e), and F(u) be
a bounded continuous function. Then the following formula is valid.
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4
4 -4
Figure 11: (N82, 0.4(£), N3, 0.4(2)) Figure 12: (N82, 04(2), N8Z 0.4(£))
4 p=-0785 4 p=0792
44 4
Figure 13: (N34 04(t), Nbas, 0.4(1)) Figure 14 : (V. 0.4(£), Ni.s, 04(1))

[ rsyar=(b=a) [ _fuo(u)du

Proof. Let R(u):'[u o(2¢)du be the distribution function of S(#), then values of this function
increase monotonously from 0 to 1.

Let a Riemannian sum be
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n
,‘Zjlf (SCEN(te— te-r),

where a=tH< Hh< << t,=5 and 1 <& <ty
We change the order of S(&:) in the increasing order, and let 7,=S(&) such that

=L < <L - < 00,
J
Let Zj=a+”§l(tk(m)—tk(m)-l), 7=0,1,2, -+, n, then we have

A=< << < 2,=h,

Let u,-=R“‘( ‘Z’:Z) 7=0,1,2, ---, n, then we have
—< << 1<+ < Yy < 00,
The length of each interval is calculated as follows.

e — brepn-1= 25— 251

=355
=(b—a)(R(us)— R(u;-1))
=(b— a)/:: o(u)du

~(b— a)ou;)u;— Uj-1)

Then the Riemannian sum can be approximated by
(b—a)g;f(w)a(u;)(u,-—u;—-x).

Because f(¢) is continuous, the values f(7;) and f(u;) are almost equal as the number of
division increases.

Because f(¢) is bounded and the integral of o(u) on (—oo, ) is equal to 1, the above sum
approaches to the right side of the integral formula.

From this theorem we can calculate integral formulae in [1]. The boundeness condition
of £(¢) is not satisfied in some examples, but the convergence of the infinite integrals is clear

if functions are given explicitly.

Theorem 2. Let S(¢) be a scattered function with the density function o(z), and T'(¢) be
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a scattered function with the density function r(x). Let f(x) and g(«) be bounded continuous
functions. If the values of S(£) and T'(¢) are independent as stochastic variables, then we have
the following integral formula.

[ ASENA T dr=(6-a) [_fwouddu [ glu)e(a)au

Moreover, if R(¢#) is a scattered function with the density function v(u) and A(t) is a
bounded continuous function and the values of S and T and R are mutually independent, we
have the following similar formula.

[ HSOVK TR dt=(b=a) [ fw)ouddu | ol e(u)due [ _hu)ta)d

Proof. Let ,‘ZZElf(S(Ek))g( T(£:))(te— t-1) be a Riemannian sum for the left integral of the
above formula. Let y,=S(&;) and 2= T(&;), then y; distribute on y-axis with the density
function o(%), and z; distribute independently on z-axis with the density function z(u).
Divide the square [0, 11x[0, 1] into # regions with the area proportional to f—Z«-1, and
transform them to plane regions in R? using distribution functions, then the Rimannian sum
approaches to a double integral in R%
Then by arguing in y-2 plane as in theorem 1, we can prove the above theorem.

The boundedness condition of 7(#) is not satisfied in the following examples, but conver-
gence of the infinite integrals is clear if functions are given explicitly.

Example 1. For uniformly scattered functions U.(¢) with the density function o(u)=

1, for 0su<l
[1], let us calculate
0, elsewhere

[ *(Uu(£)—=05)( Us(t)—05)de

where 0<a, 8<1.
(1) If a=4, then by theorem 1,

j;b( Uﬂ(f)—°-5)zdt=(b—a)f(u—o.5)=du= b1_2a’

(2) If a8, then by theorem 2,

j; (UL~ 05)(Unt)—08)dt =(b—a) [ (u—05)du £ (u—05)du=0
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When we calculate this integral using numbers with finite precision, there arise some
problem, which will be discussed in section 5.

4. The main theorem

Theorem 3. For 0<a, 8, 7, §<1 and —o0< 8, £<oo, the correlation coefficients p
between N, 5(¢) and N%, () are given as follows.
(1) If a=y=+8=24, then

o1(N3, 5, N&, p)=cos n(6—¢).
(2) if =0 and e+, B+7 and y#a, then
1 2
o:1(NS, 5, N¥, 3)=%(£ V=2Tlog u du) cos n(6—¢)
(3) For other cases, if @#+8, 8+46 and 8+, then

01(N%, o, N, £)=0

Proof. (1) is proved in [1].
(2) The numerator of p is calculated as follows.

SN oONg, )t

=_ja“’,/—log Ud(t)V/'~log Ur(t)%{cos 24 U)+ 0+ &) —cos 2(8—¢)}dt

Using Theorem 2, the first term is equal to

1
(b—a)‘f\/—log u du'[\/—log u du%/o cos 7(du+ 0+ &)du=0.
The remaining term can be calculated similarly and the result is
—_ 1 2
SV kONE (0 =25 [ /=2 Togw au) cos (6.

The denominator is equal to #—a as is calculated in [1].
(3) The numerator is
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[N (NS, o)l

-_-‘f;bw/:log U() Y/ —Tog ULD) cos n(2Us(t)+6) cos x(2Us(¢)+ {)at

Using Theorem 2, if @, 8, 7, ¢ are mutually different, the above integral is equal to

=-f@g u dufmog u du'/o‘l cos 7:(2u+a9)a,’u/;l cos 7(2u+ &)du=0.
If a=7,
=—£(—109 u)az’u£l cos 7r(2u+0)a’ujo'l cos 7(2u+ ¢)du=0.
If e=3,
=—j‘;|-f—l—og_u—duj: cos rt(2u+0)du£l‘/fﬁg7ms 2@u+ ) du=0.

If =17, then we can calculate similarly, and this completes the proof.

1 2
We calculated %( '/; v—2log u du) by numerical integration and its value is approximate-
ly equal to 0.785.

5. The evaluation of accuracy

To check the orthogonality of Ua(¢)—0.5 and Uss(¢)—0.5, we draw a graph of Riemannian
sum of (Ua(£)—0.5)(Uss(t)—0.5) as a function of . The number of divided points is 7,000,000
in Figure 15 and calculated numbers are represented by 64 bits.

From this experiment, we should keep | @— 8120.2 to guarantee the independence of Ua(?)
—0.5 and Us(#)—0.5.

To overcome this restriction, we should use numbers of longer precision.

For numbers of finite precision, formulae of the main theorem in cases (1), (2) and (3)
changes continuously as ¥ approaches to a. The main theorem 3 is described for numbers of
infinite precision, and three cases are separated discontinuously, whose behaviour may be
important in the future study such as phase transition.
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Figure 15: graph of alpha-Riemannian sum
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