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Abstract

Recently, there are many works on codes over finite rings (cf. [ConSl 93], [Shi 98],
etc.). In this paper, we consider a Singleton bound for codes over Z;. Let C be a linear
code of length » with minimum distance d(C) over Z.. We have a Singleton bound as
follows: d(C)<n—rank(C)+1.

1. Imntroduction

The Singleton bound is the simplest bound for linear codes over finite fields. Thus we are
interested in such a kind of Singleton bound for linear codes over a finite (non-commutative)
rings, for example, the residue rings Z,=2/4Z, Z,, a finite matrix ring M=(F,), a finite group
algebra F,G, and so on. In this paper, we show a Singleton bound for linear codes over a
residue ring Z/IZ, where / is an integer greater than 2.

Theorem For a linear code C of length # with minimum distance d(C) over Z,,
d(C)<n—rank(C)+1.

In particular, this theorem gives the ordinary Singleton bound for linear codes over finite
fields. This theorem is proved by the Z.-version of an exact sequence (Proposition 1 in Section
3).

2. Z;-modules

In this section, we shall summarize the properties of finitely generated Z:;-modules which
we need later. The proofs are all omitted because all statements are well-known or are easily
proved from others.

(A) A Zrmodule can be identified with an abelian group of exponent divisible by /; in
particular, an indecomposable Z:-module has the form Z,/fZ,=Z/fZ for a positive integer f
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divisible by /. We have some fundamental results on the structure of Z,-modules following
directly from the fundamental theorem of finitely generated abelian groups.

(i) If V is a free Z,module of rank #z and C is its submodule, then there exists a basis {v1,
2, ..., Un} and integers 1< e | e;|...| er</{ such that {ei2y, e:vs, ..., ervr} is a basis of C. In this
case, we have

vic= é ZleiZ ©(Z/1Z)"",
Cc= ;; Z/(lfe)Z.

(ii) Any finitely generated Z,-module M is isomorphic to
ZHZ:® Zi[.Z,:® - & Zi[fZ, 1)
where £, ..., /» are positive integers such that

Al -1 fal 2.

Furthermore, the &ype (£, £, ..., f») is uniquely decided by M up to the /s such that f;=1.

(B) Let M be a finitely generated Z;-module.

(i) The rank of M, denoted by rank(}/), is the minimum number of generators of M ; the free
rank f-rank(M) denotes the maximum of the ranks of Z,-free submodules of M. If the invar-
iant of M is (A, ..., fa), then

rank(M)=#{i| fi#1},
frank(M)=#il fi=1}.
| M|=fisfor=fo.

(ii) For a prime p, the p-7rank rank,(M) of the Z;-module M is the rank of the p-torsion part
Mp of M. Thus if fil £2]-++| fx is the type of M, then

rank(M)=#{i| ;=0 (mod p)}.

(C) We denote by Tor%(A, B) the group of m-th torsions ([Wi 94]). (i) Since

s iur s pr
v Zy— Bi——B— Z;— 0

is a projective resolution of the Z,-module Z,=2Z,/fZ., where f is a divisor of /, we have the
following :
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B/fB (m=0)
Tor#(Z;, B)=1,B/(lif)B  (m=0dd>0), )
urBlfB (m=even>0
where ;B : ={x< B| fx=0).
(ii) If B is finitely generated, then
(T Bt=1uns., ®
| Tor%1(Z,, B)|=|Tor’(Z,, B)| (m=1). 4)

(ili) Let p” be the largest power of p dividing / and B a finitely generated Z,-module with
p-torsion part By isomorphic to

B= @ zip"z= § (22",

where y; is the number of #’s such that A;=;. Then we have

| Tord(Z/p°Z, B) |\ _ _ &
logp(m) = A‘”_s(/]i r+s)= EJI—GH—, 5)

(D) For any Z,-module M, we have the dual Z;-module M* by
*: =Homz(M, Z1)

with Z,-action defined by aA : m— ad(m) for all e€Z;,, A& M*. The dual module M* is isomor-
phic to the character group of M as a group. Each Z,-homomorphism f: M- N induces a
Z-homomorphism

SEIN* o M*; uo pof,

and so we have a duality functor %* =Homz(—, Z;) on Z;-modules.
(i) Note that if M is finitely generated, then there exists a (non-natural) isomorphism:

M*=M. 6)
(ii) The functor * is an exact contravariant functor, and so if
2 g
00— L— M— N—70

is an exact sequence of Z;-modules, then
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o ’e
00— N*— M*— [*—( @

is also an exact sequence.
(E) Suppose the free module V : =(Zy)" is equipped with a non-degenerate symmetric inner
product <,>. For a submodule C of V, let C* be the orthogonal complement of M :

Cr:={veV|<u, v>=0 for all uC}
Then there is a Z;-homomorphism
A:V-C* @®
;o (D u—lu, v)).
(i) The map A is surjective and induces an isomorphism :
Vv/Ct=C*. )

In particular, when C=V, the map A : V- V* is an isomorphism.
(ii) For any submodule C, D of V,

CH=C,(C+D)Y=C*nD ', (CND)*=C*+D* (10)

(ili) Let C be a submodule of V of type (#, ..., fz). Then type of C*is (i{fn, ..., iif2, llfi). In
particular,

rank(C)+f-rank(C*)=n. (11)

3. Linear codes over Z,.

In this section we prove “the basic exact sequence” for linear codes over the ring Z;. Let
V:=(Z.)" be the free Z,rmodule of rank #», and let N :={1,2,.., n}. Then the (Hamming)
support supp(v), the (Hamming) weight wt(v), the (Hamming) distance d(u, v) for u=C(u, +,
un), v=(wn, -, tn)E V are, respectively, defined as follows:

supp(v) : ={iEN|v:*0},
wt(v) : =|supp(v)|=#iEN|v:+0),
d(u, v): =wt{u—v)=#{ieN|u+v).

Furthermore, the inner product of vectors #=(u, -**, ), v=(w, -+, vn)E V is, as usual, defined
by
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{u, v>: =‘_§va.- (mod 7).

A linear code C over Z, is a Z;-submodule of V=(Z,)"; the integer # is called length of
C. The minimum (Hamming) distance d(C) of C is defined by
d(C) : =Min{wt(«)|0+u< C).

A generator matrix of C is an » X » matrix over Z; whose row vectors are minimal generators
of C, where r=rank(C). The dual code C* is the orthogonal complement to C with respect
the above inner product:

Ct:={veV|<u, v>=0 for all uEC).
Then we have
C*=V/C.
Let CSE V: =2/ be a linear code over Z.. For a subset M of N=({1,2, ..., n}, we define

V(M) : ={vE V|supp(v)S M)}.
C(M): =CNV(M)={ucsC|supp(u)= M}.

Then V(M) and C(M) are submodules of V' ; in fact, for any v, v'E V(M), we have that if (v
+v'):#0, then v:#+0 or v';#0, and so iEM, that is, supp(v+v)SM. The map cut: C— V(M)
is defined by

cut : (u:)ien— (:)iecn.

Proposition 1 (the basic exact sequences) For a linear code CS V=(Z.,)" and a subset M <
N={1,2, .., n}, the following sequences are evact :

0— CHM) — V(M) —— C* =\ C(N— M) —0,

0— CH{N—M)—— C:—= V(M) —— C(M)" —0.

Proof. Interchanging C with C* and applying the duality functor * =Homz{(—, Z.), the
exactness of the second sequence follows from the one of the fist one. The proof of the
exactness of the first sequence is similar to the one of binary case. (1) The map inc is clearly
injective. (2) If v C*(M), then 7(u)=<v, u>=0 for all »€C, that is, #=0, and so vE
Ker(A). Conversely, if vKer(A), then <v, #>=0 for all x€C, and so vEC+N V(M)=
C(M), proving the exactness at V(). (3) If vE V(M), then #(u)=<v, u>=0for all u€ C(N
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—M), and so 7€ Ker(res). Conversely, let \€Ker(res). Since A : V- C" is surjective, there
exists v€ V such that A=7. Then <v, #>=0 for all ¥ C(N—M), and so

vECN—-MY=(CNV(N-M)*=C*+ V(N-M)*
=C*+ V(M),

and so v=uv,+ 12 for some 1, €C* and v.€ V(M). Since #1=0 on C, we have
A= =@HEIm(A).

(4) Finally, the map res is surjective by the exactness of the duality functor * =Hom(—, Z;).
The proposition is proved. u]

4. A Singleton bound.

Theorem 2 For a linear code C over Z: of length n with minimum distance d(C),

d(C)<n—rank(C)+1.

Proof. Take an arbitrary subset M of N=(1,2, ..., »} such that

so that C(M)*=0. Thus the second exact sequence of Proposition 1 implies the following short
exact sequence:

0— C*N—-M)— C+— V(M)—>0.
Since V(M )=(Z,)™' is a projective module, this short exact sequence is split, that is,
Ct=CHN-M)® V(M).
Thus
f-rank(C*) = f-rank( V(M))=|M|=d(C)-1.

Hence the theorem follows from the formula f-rank(C*)+rank(C)=x. O

Here are some examples of linear codes over Z; meeting the Singleton bound (Theorem 2),
that is, MDS codes over Z; with respect to the bound. So the bound is the best.

Example 1. Let C be the linear code over Z, with the generator matrix
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1 7 7 1 3 13 3 11
G={0 8 0 4 6 6 4 6
0 0 8 10 6 10 8 4

Then =8, rank(C)=3 and 4(C)=6.

Example 2. Let C be the linear code over Z with the generator matrix

1 11 11 1 3 17 21 15 17
G={0 12 0 8 14 18 20 20 10|
0 0 12 14 6 10 4 10 6

Then %=9, rank(C)=3 and d(C)=7.

Example 3. Let C be the linear code over Z;; with the generator matrix

1 11 1 1 3 17 21 15 21 17
G=|0 12 0 8 14 18 20 20 18 10|
0 0 12 14 6 10 4 10 6 6

Then =10, rank(C)=3 and 4(C)=8.

Example 4. Let C be the linear code over Zz; with the generator matrix

1 111m1um2 7 1 13 9 219
G=[0 12 0 0 4 4 14 4 10 2 6
0 0 0 12 4 10 20 2 12 18 2

Then n=11, rank(C)=4 and 4(C)=8.

Example 5. Let C be the linear code over Z; with the generator matrix

1 13 13 1 3 19 23 15 21 15 23 7

G=|0 14 0 10 18 24 2 4 4 2 24 12)

0 0 14 16 6 10 2 8 2 10 6 20

Then n=12, rank(C)=3 and 4(C)=10.

27
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Example 6. Let C be the linear code over Z with the generator matrix

11111111 1 1 1 1 1
G=[0 2 0 20 2 14 18 12 22 22 12 18 14|
0 0 2 22 14 12 18 20 18 12 2 14 22

Then %=13, rank(C)=3 and 4(C)=11.

Example 7. Let C be the linear code over Zs with the generator matrix

1 13 13 13 25 9 3 18 17 9 7 23 17 15
0 14 0 0 4 2 10 18 16 20 20 6 20 20
0 0 14 0 20 6 20 20 16 18 10 2 4 6
0 0 0 14 4 10 20 22 4 6 16 22 12 24

Then n=14, rank(C)=4 and d(C)=11.

Remark 1. Observing the proof of the theorem, we notice that the minimum distance d(C) can
be replaced by

Min{|M|IM SN, C(M)=0}.

Remark 2. In [Shi 98], Shiromoto has proved another Singleton type bound by using the first
exact sequence of Proposition for linear codes over finite commutative Frobenius rings. But
the result does not contain our maim result in this paper. Indeed, for a linear code of length
n over ZfIZ, let M be a subset of N with |[M|=n—d(C)+1, so that C(N—M)*=0, and so we
have a short exact sequence

0— CM)— V(M)— C*— 0. (12)

Thus we have
O =| (i) |=| CHM)| - | Cl=| C| (13)
& d(C)<n—Ilog.C|+1, (14)

but this inequality is weaker than the Singleton bound proved in the main theorem, because
of log;| C|<rank(C).

Remark 3. The long exact sequence for the Tor-functor TorZ(Z,, —), where f is a divisor of
I, on the short exact sequence (12) gives an isomorphism and an exact sequence as follows:
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Tor(ZlfZ, C*)=Tori(ZIfZ, CXM)) (m=1),
0— Torf(Z/fZ, C*)— Tord(Z{fZ, C*(M))
— Tord(Z/fZ, V(M)) — Tord(Z[fZ, C*)— 0.

Using this, we have some inequalities like the Singleton bounds for codes. But unfortunately,
they are all proved by the main theorem and we do not have any new inequalities.
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