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Abstract

Let C(Q) be the set of rational points on the elliptic curve C of the form y*=x°—pgzx.
The rank of C(Q) as a Z-module is less than or equal to 4 provided that p and ¢ are
distinct odd primes. We will construct some elliptic curves of the form with rank
exactly 4.

§0. Introduction

The book [1] gives an elementary treatment of the algorithm to calculate the rank of
elliptic curves of the form y*=x%—kx. Concerning with the construction of elliptic curves with
higher rank, Menstre [2], Nagao [3] and Quer [4] gave some examples. In this paper we deal
with elliptic curves C of the form y*=x*—pgr where p and g are distinct odd primes. The
rank 7 of the set C(Q) of the rational points on C is less than or equal to 4. We will construct
some families of the elliptic curves of the type of rank exactly 4.

§1. Definitions and fundamental formula

Let C denote the elliptic curve y*=x°— kx and C’ be the corresponding elliptic curve y*=
x*+4kx. We denote the rational points of C and C’ by C(Q) and C’(Q) respectively. Put
Q**={u?: u= Q*} and we define the map a:C (Q)- Q*/Q** and « : C(Q)- Q@*/Q** by
a(x,y)=x (ifx=+0), 2(0,0)=—k, a(0)=1, d(x,y) =x (ifx+0), «(0,0) =4k, o’(0)=1.

Then the map @ and o« are group homomorphisms by [1] and the rank » of C(Q) can be
calculated by [1] 3.6 as

27 =#a(C(Q))- 2 (C(Q))

where # A denotes the cardinal number of the set A.

§2. Family of elliptic curves y°=x?— pgx with rank 4

Lemma 2.1 Let p and q be distinct odd primes. Let C be defined by y*=x*—pgx and C’ by
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y*=x*+4pgx. Then the following holds.

(@) a(C(@)C{u modQ**: u==%£1, £p, ¢ or £pg}
(b) Z(C(Q){u mod@**: u=1,2,p,2p, q,2q, pg or 2pg} and
(¢) The rank of C(@Q) is at most 4

Proof. (a) Every point of C(Q) has the form (m/e? n/e®) such that both m/e? and n/e® are
irreducible fractions (see [1] chap 3 section 6). Thus the equation y*=x°—pgx implies #?=
m(m*—pge*). The greatest common divisor d=gcd(m, m*— pge?) divides pge*. Since z=
m/fe® is an irreducible fraction, we see gcd(m, e)=1 and hence & divides pg. Let a prime /
divide 7 and not divide pg. Then / doesn’t divide e because of gcd(m, e)=1. Hence / doesn’t
divide m?—pge’.

On the other hand / divides #° because #°=m(m*—pge*). Hence ! divides #® with an even
power and / divides m also with an even power because / does not divide #>—pge®. Namely
if a prime / divides m and does not divide pg, then it divides m with an even power. Hence
we see that a{(m/e?, nfe®)=m==1, £p, ¢ or +pg mod Q**

(b) By a similar argument we can prove that if a prime / divides » and does not divide
4pg, then it divides m with an even power. Therefore o(m/e? nfe®)=m==1, tp, +q, +pq,
+2, £2p, £2¢ or *2pg mod Q*2. We can prove m=0 from the fact #*=m(m?+4pge?).
Hence o'(m/e?, nje®)=m=1, p, q, pq, 2, 2p, 24, or 2pg mod Q*2

(c) By (a), (b) and (1.1) we have 2" =#a(C(Q))-#2'(C(Q))<64=2° Hence r=4

Proposition 2.2 Suppose that four natural numbers A, B, C, D, and two primes p and q satisfy
the equation pg=A*+B*=2C*—D'=s'—4t', p=5°—2¢* and q=s*+2¢*. Then the following
holds.

(@) The point (q,2qt) is on the curve y*=x°—pgx such that a{q,2qt)=gq.

() The point (2q,44qs) is on the curve y*=x*+4pqx such that a’(2q,4qs)=2q.

{c) The point (pg/A?, pgBJA®) is on the curve y*=x*—pqx such that a{pg/A? pgBlA®)=pq.
(d) The point (2D% 4DC) is on the curve y*=x*+4pgx such that o« (2D% 4DC)=2.

Proof. Clear

Proposition 2.3 Under the same assumption as in Proposition 2.2, the following holds. In
particular, the rank r of C(Q) is 4

(@) o(C(@)={u mod Q**:u==1, £p, =q, =pgq)
b «(C(Q))={u mod Q**:u=1,2,p,2p,4q,2q,0pg 2pq)
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Proof. (a) (D) We see that ¢g=a(q, 2qt)Ea(C(Q)) and pg=apg/A% paB/A®)Ea(C(Q))
by Proposition 2.2 (a) and (c) and that—pg=2(0,0)Ea(C(Q)). The three elements ¢, pg and
—pg can generate the right-hand side of (a), which provides the inclusion (D). The inclusion
(<) is proved by Proposition 2.1 (a).

(b) (D) We see that 2¢=a(2q, 4¢s)Ea’(C'(Q)) and 2=a'{(2D?,4DCY<E o/ (C(Q)) by Proposi-
tion 2.2 (b) and (d) and that pg=4pg=a’{0,0)E(C’(Q)). The three elements 24, 2 and pg can
generate the right-hand side of (b), which implies the inclusion (D). The inclusion (C) is
proved by Proposition 2.1 (b)

§ 3. Some concrete examples

We start from the following identities
(u+ ) +(10?Y=2(*+ 30" — (s — v)* (31
and
(B =2 + (WS KPP = (B + 24%) — 4 (2Ri°)". (3.2)

If we put A=u+v="nr'—-2k*, B=40*=4k°k?, C=u*+31%, D=u—v, s=h'+2k, t=2hi"p
=s?—2¢* and g=s%+2¢2 then these A, B, C, D, s, ¢, p, q satisfy the assumption in Proposition
22. By a short calculation we can see that v=#k, u=h'—2k'— B*k, C=(h*—2k'— B*k)?
+34°% and D=h*—2k'-2/°k.

Example 3.1 (1) If =1 and k=2, then s=1'+2+2=33 and ¢=2+23=16, p=332—2-16°=577
and ¢g=33°+2-16°=1601. Both p and g are primes. Therefore y>=x*—577-1601x has the
rank 4.

(2) If #=3 and £=2 then s=3'+2-2'=113, {=2-3+2°=48 and p=113*—2-482=8161, ¢=113*+
2-48°=17377. Both p and g are primes. Therefore y*=x"—8161-17377x has the rank 4.

(3) If 2=5 and k=2, then s=657, t=80, p=418849 and ¢=444449. Both p and ¢ are primes
Therefore y?=x°—418849-444449x has the rank 4.

(4) The following list gives all prime pairs (p, ¢) with 1= /=11 and 1< £=<9 so that y*=x°—pgx
has the rank 4.
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(h, k) (s, 8) (,q)

(1,2 (33,16) (577, 1601)

(3,2) (113, 48) (8161, 17377)

(3,8) (8273, 3072) (49568161, 87316897)
(5,2) (657, 80) (418849, 444449)

(7,3) (2563, 378) (6283201, 6854737)
9,4) (7073, 1152) (47373121, 52681573)
(11,1) (14643, 22) (214416481, 214418417)
(11,3) (14803, 594) (218423137, 219834481)

To find more examples we use the following identity together with (3.1).
(81 — Y + (64 1P K2 =(8h* + &*) — 42 hi)". (3.3)

If we put A=u+v=8r"—Fk*, B=4v*=641°, C=1*+30% D=u—v, s=8h*+k*, t=2hi?,
p=s*—2¢* and g=5+2¢* then these A, B, C, D, s, ¢, p, g satisfy the equation (2.4). By a short
calculation, we have v=44%, u=8h*—k*—4h*k, C=8h* —*—4 13 k)*+481%%* and D=841'— i*
— 84k,

Example 3.2 (1) If A=1 and £=1, then s=81*+14=9, t=2:1+13=2, p=9%—2-2?=73 and ¢=9*
+2-22=89. Both p and ¢ are primes. Therefore y*=x°—7389x has the rank 4.

(2) The following list gives all prime pairs (p, g) with 1=%4<10 and 1=/£<11 so that y*=z°
—pgzx is of rank 4.

(h, k) (s, ) (p, )

1,1 9,2) (73, 89)

1,7 (2409, 686 ) (4862089, 6744473)
4,7 (4449, 2744) (4734592, 34852673)
5,3 (5081, 270) (25670761, 25962361)

§ 4. Some comments

In the example 3.2, if =2 and k=1, then s=129, =4, p=16609=17+997 and ¢=16673.
Note that ¢ is a prime but p is not a prime. In this case the elliptic curve does not have the
form of y*=x°—pgx with primes p, g. But we can prove the rank =4 in the same way as in
Propositions 2.2 and 2.3.
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Remark. Professor Masao Koike at Kyushu University gave the following interesting exam-
ple in the appendix of [2]. Let A, B, C, D be integers satisfying the relation A*+ B*=2C*
+2D* and put h=—(A*+ B+ C*—2A*'B*— A*'C*)/2°3'. Then the elliptic curve E,:y*=x?
—hx has the following rational points;

Ri=(AB*/2°3%, AB(A*+ B*—C")[2'3%),
R.=(A%C?*/2*%*, AC(A*+ C*— B")/2'3),
R:s=(B*C?/2%3, BC(B*+ C'— A%)[2'3),
R.=(D*B%/2238*, DB(D*+ B*— C*)/2'3%) and
Rs=(D*C?*/2*3*, DC(D*+ C*— BY)[2'3).

For (A4, B, C, D)=(21, 20,7, 19), we get #=4+25-11-89 and the rank of this curve is exactly 4.
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