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Abstract

The order of every finite group G can be expressed as a product of coprime positive
integers m,...,m, such that z(m;) is a connected component of the prime graph of G. The
integers m,,...,m, are called the order components of G. It is known that some non-abelian
simple groups are uniquely determined by their order components. As the main result of this
paper, we show that groups 2E4(g) are also uniquely determined by their order components. As
corollaries of this result, the validity of a conjecture of J. G. Thompson and a conjecture of
W. Shi and J. Bi both on 2E4(g) is obtained.

1. Introduction

If » is an integer, then z(n) is the set of prime divisors of » and if G is a finite group then
#(G) is defined to be z(|Gl). The prime graph T(G) of a group G is a graph whose vertex set
is z(G), and two distinct primes p and ¢ are linked by an edge if and only if G contains an
element of order pg. Let z;, i=1,2,..., {(['(G)) be the connected components of I'(G). For |G|
even, z; will be the connected component containing 2. Then |G| can be expressed as a product
of some positive integers m;, i=1,2,..., {T'(G)) with z(m;)==;. The integers m,’s are called the
order components of G. The set of order components of G will be denoted by OC(G). If the
order of G is even, we will assume that m, is the even order component and m,,..., Myney Will
be the odd order components of G. The order components of non-abelian simple groups
having at least three prime graph components are obtained by G. Y. Chen (8, Tables 1, 2, 3].
Similarly the order components of non-abelian simple groups with two order components can
be obtained by using the tables in [10, 14, 15, 22]. The following groups are uniquely deter-
mined by their order components: G,(q) where g=0 (mod 3) [2], Sporadic simple groups [3],
Suzuki-Ree groups [6], E(q) [7], PSL.(q) [8], PSL:(q) where g is an odd prime power [12],
PSL,(q) where ¢=2" [13] and F,(q) where g is even [11]. In this paper, we prove that 2Es(q)
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are also uniquely determined by their order components, that is we have:

The Main Theorem. Let G be a finite group and M=*E«q). Then OC(G)=0C(M) if and
only if G=M.

2. Preliminary results

In order to prove the main theorem, first we bring some lemmas.

Definition 2.1. ([9]) A finite group G is called a 2-Frobenius group if it has a normal series
1<4H 4K <G, where K and G/H are Frobenius groups with kernels H and K/H, respec-
tively.

Lemma 2.2. ([22, Theorem A] ) If G is a finite group with its prime graph having more than
one component, then G is one of the following groups :

(a) a Frobenius or 2-Frobenius group ;

(b) a simple group ;

(c) an extension of a m-group by a simple group ;

(d) an extension of a simple group by a m-solvable group ;

(e) an extension of a m-group by a simple group by a m-group.

Lemma 2.3. ([22, Lemma 3 ]) Suppose that G is a non-solvable group and not a Frobenius
group. If G is a finite group with more than one prime graph component and has a normal
series 1 A{H K G such that H and G/K are m-groups and K/H is simple, then H is a
nilpotent group.

The next lemma follows from Theorem 2 in [1]:

Lemma 24. ([1]) Let G be a Frobenius group of even order and H, K be Frobenius
complement and Frobenius kernel of G, respectively. Then HT'(G)=2, and the prime graph
components of G are »(H), n(K) and G has one of the following structures :

(a) 2 € n(K) and all Sylow subgroups of H are cyclic.

(b) 2€ n(H), K is an abelian group, H is a solvable group, the Sylow subgroups of odd
order of H are cyclic groups and the 2-Sylow subgroups of H are cyclic or generalized
quaternion groups.

{c) 2¢€ n(H), K is an abelian group and there exists Ho< H such that |H:Ho|<2, Ho=Z %
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SL(2, 5), (12}, 2. 3. 5)=1 and the Sylow subgroups of Z are cyclic.

The next lemma follows from Theorem 2 in [1] and Lemma 2. 3:
Lemma 2.5. ([11) Let G be a 2-Frobenius group of even order. Then t(I'(G))=2 and G has
a normal series 1 AH K LG such that

(a) m=n(G/K) U n(H) and n(K/H)=rn;

(b) G/K and K/H are cyclic, |G/ K| divides |Aut (K/H)|, IG/K|,|IK/H|)=1 and |G/K|<
|K/H];

(c) H is nilpotent and G is a solvable group.

Lemma 2.6. ([5, Lemma 8]) Let G be a finite group with t(I'(G))=2 and let N be a normal
subgroup of G. If N is a ni~group for some prime graph component of G and m,,m,,..., m,
are some order components of G but not n;-numbers, then m, m, ..m, is a divisor of |N|—1.

Lemma 2.7. ([4, Lemma 1.4]) Suppose G and M are two finite groups satisfying #(I"(M))=
2, N(G)=N(M), where N(G)={n|G has a conjugacy class of size n}, and Z(G)=1. Then |G|
=|M|.

The next lemma follows from Lemma 1.5 in [4].
Lemma 2.8. Let G and G, be finite groups satisfying |Gi|=|Go| and N(G\)=N(G.). Then
HI(G))=t(I'(G2)) and OC(G)=0C(G,).

Lemma 2.9. Let G be a finite group and M is a non-abelian simple group with t(I'M))=2
satisfying OC(G)=O0C(M), then:

(1) Let |M|=m\ mz, OC(M)={m,mz}, and z(m;)=n, for i=1 or 2. Then |G|=m mz and one
of the following holds:

(a) G is a Frobenius or 2-Frobenius group ;
(b) G has a normal series 1 AH K G such that G/K is a m-group, H
is a nilpotent m-group, and K/H is a non-abelian simple group. Moreover
OC(K/H)={m'\,mz,...,m's,ma}, |K/ H|=m\15... ' smz and m's1'z...ms|m, where n(m;)=1x;,
1<j<s. Note that #/,1<;j<s are the connected componenis of "'(K/H).
) IG/K]||| Out (K/H)|.

Proof. (1) follows from the above lemmas. Since #(I'(G))=2, we have HI'(G/H))=2.
Otherwise #(I'(G/H))=1 and hence HI'(G))=1, since H is a m-group, a contradiction.
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Moreover we have Z(G/H)=1. For any zH € G/H and xH ¢ K/H, xH induces an automor-
phism of K/H and this automorphism is trivial if and only if H € Z(G/H). Therefore G/K
<Qut (K/H) for Z(G/H)=1 and (2) follows. O

Lemma 2.10. Let M=2E«(q). Suppose D(q)=(q*—q*+1)/(3,q+1). Then:

() If pe a(M), then |Sp|<q* where Sp€ Sylpy(M);
) If ¢>2, pe m(M), p°l|M|and p°—1=0(mod D(q)), then p°=q' or ¢*°;
© If ¢>2, pe m(M), p°lIM|and p°+1=0(mod D(q)) then p°=¢q° or ¢*.

Proof. (a) Observe that |[M|=¢% (g—1)* (¢+1)° (g +q+1) (¢*—q+1)* (¢*—¢*+1) (¢*+1) (¢*
+1)% (¢*—g*+q*—q+1) —‘1(‘;:(—1”_:—'{'% Now let p be a prime number, such that p°||M|. Since ¢
is coprime with respect to other factors of | M|, one of the possibilities of »” is p%|¢®. Also we
have (g+1, =12, (g+1, *+g+1)=1, (g+1, °—q+1)I3, (g+1, ¢*+1)[2, (¢ +1, ¢*—¢*+1)=
1, (g+1, ¢*+1)|2 and (g+1, ¢*—¢*+a*— g+1)|5, therefore another possibility of p* is p*|5%3°
x2(qg+1)%. By using this method we can see that p° divides g%, 2°x3%(g —1)*, 5X3*x 2"(¢+1)f,
IX2NP+1)?, 3(g*—q+1)°, 3'(a*+q+1)% 2%(g*+1), 3¥q*—q*+1) or 5%¢*—g°+4*—q+1).
Hence (a) follows.
(b) Let pe m(M), p°lIM] and p*—1=0(mod D{(g)). Obviously p°>D(q). Now we consider two
cases:
Case 1. 3¥q+1. Hence D(q)=¢°—q*+1. If p* does not divide ¢*, then we must consider
every possibility of p° which presented in the proof of part (a). Since they are similar, for
convenience we consider only a few of them.

First note that if ¢=<19 then numerical calculations show that (b) holds. So let ¢>19.

If °3%(g®+q+1)? then for ¢ <13 numerical calculations show that there exist no p° such
that p°|3%(¢*+ ¢ +1)% and p*—1=0(mod D(q)). If ¢=>13 then 3"(¢*+q+1)*<D(qg), but p*—1=
0(mod D(q)) and so D(q)< p* which is impossible.

If 75X 3B x2(g+1)° then p° divides 5(g+1)°, 3%(g+1)° or 2°(g+1)°. If p°|5(¢+1)° then p*

J—‘L':—IL for some s>0. Also ﬁg—:—ll 1=¢.D(q), for some t>0 So tD(q)<M,

which implies that D(q)<M But for ¢>9 we have 101 < D(q), and hence st<10.
Since p® is a power of a prime number s can be equal to 1 or 5. But then ﬂgf—lt—1= t.D(q)
is not satisfied for st <10, which is a contradiction. If p°|3*(¢ +1)® we can proceed similarly and
get a contradiction. We must note that by using a Mathematical software, for example Maple,
easily we can get a contradiction. In fact if p°|3%(¢+1)° then p*=3*g+1)%/s for some s>0.
Also p*°—1=1¢.D(q), which implies that ¢.D(gq)< p° and hence D(q)<-3ﬂ-‘137+l£. But for ¢=>19
we have Eiqé;—l):< D(gq) which implies that st <60. Hence p* 38(";" 1 and 33(”: 0=
#(¢°—¢*+1) where st<60. Now by a simple program in Maple we can see that there is no p”
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which satisfies these equations. If p%|2°(g+1)° then we proceed similarly.

This method can be used for another cases and hence we have p°|g¢*.
If p® divides ¢*, then g=p" for some n>0. Also since p°>D(q), we have ¢*|p°. Let p"|q° and
p"+1=0(mod D(g)). In this case p"+1=5.D(q)=s(¢°*—¢*+1) where 1<s<4%+1, and hence
@’|s—1. Therefore s=1 or s=¢*+1. Obviously s#1 and hence p"=¢".

Now if p*—1=s5.D(q) then g%s+1, similarly. If p°<q°then 1<s5<¢*+1 and ¢°|s+1, which
implies that s=¢*~1, but then p*—1=¢"—-24¢°%+24°—1 which is impossible. Therefore p*>¢°
and hence p*=¢°.p"™ where m>0. Now we have

s.D(q)=p"—1=p"D(g)g*+1)—p"—1,

which implies that p”+1=0(mod D(g)). If we suppose p°< ¢'® then p™=¢° and hence p*=¢"®.
Now let ¢°<p” and p”+1=0(mod D(q)). Then similarly we have p”=gp* where p*<g's.
Hence

s'D(q)=p"+1=p*"D(g)@*+1)—p*+1,

which implies that p*=¢'® and hence p’=¢%. By using this fact,if p*> ¢'® then similarly we can
see that p®=q%.

Case 2. 1f 3|g+1 then similarly we prove that (b) holds.

(c) Similar arguments show that (c) holds.

Lemma 2.11. Let G be a finite group and M=E«q). If OC(G)=0C(M) then G is neither
a Frobenius group nor a 2-Frobenius group.

Proof. G is not a Frobenius group otherwise by Lemma 2.4 OC(G)={|H|,| K|} where K and
H are Frobenius kernel and Frobenius complement of G, respectively. Since |H||(|K|—1), we
have |H|<|K|. Therefore 2/|H|, and hence 2||K|. Therefore |H| (1(63;14:;%’”{' IIIC-;III'
Since 2(¢+1)°>1, there exists a prime p such that p:IZ’(q+l)" If P is a p-Sylow subgroup
of K then since K is nilpotent, P <] G and hence g(3_q+_1T|(|P| 1), by Lemma 2.6, which

implies that p°=¢" or ¢*, by Lemma 2.10(b). But ¢"®/2(¢+1)® and it is a contradiction.

Therefore G is not a Frobenius group.

LetG be a 2-Frobenius group. By Lemma 2.5 there is a normal series I < H A K 4G such
that IK/HI—{;—‘I_F—I)l <3%q¢*—q+1)’ and |G/K|<|K/H|. Thus there exists a prime p such
that p|3%(g*—g+1)*and pl|H]. If Pisa p—Sylow subgroup of H, since H is nilpotent, P must
be a normal subgroup of K with PS H and |K|= g(—q—T-IH |. Therefore, ﬂs—qﬁl—l(lPl 1),
by Lemma 2.6,and hence p*—1=0(mod D(q)), so ¢"|| P|, by Lemma 2.10(b), which is impossible

since ¢'%f3%(g—q+1)%. O
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Lemma 2.12. Let G be a finite group and M=2E«(q). If OC(G)=0C(M), then G has a
normal series 1 {H K <G such that H and G/K are m-groups and K/H is a simple
group. Movreover, the odd order component of M is equal to some of those of K/H, in
particular, t(I'(K/H))=2.

Proof. The first part of the lemma follows from the above lemmas since the prime graph of
M has two prime graph components. For primes p and g, if K/H has an element of order pgq,
then G has one. Hence, by the definition of prime graph component, the odd order component
of G must be an odd order component of K/H. [J

3. Some related results

As an application of the main theorem we have:
Remark 3. 1. It is a well known conjecture of J. G. Thompson that if G is a finite group with
Z(G)=1 and M is a non-abelian simple group satisfying N(G)=N(M), then G M.

We can give a positive answer to this conjecture by our characterization of the groups
under discussion.

Corollary 3.2. Let G be a finite group with Z(G)=1 and M=*Eeq). If N(G)=N(M), then
G=M.

Proof. By Lemmas 2.7 and 2.8, if G and M are two finite groups satisfying the conditions of
Corollary 3.2, then OC(G)=0C(M). So the main theorem implies this corollary. [J

Remark 3.3. Wujie Shi and Bi Jianxing in [19] put forward the following conjecture :
Conjecture. Let G be a group and M a finite simple group. Then GZM if and only if
(i) |G|=]M|, and
(ii) me(G)=n.(M), where m(G) denotes the set of orders of elements in G.

This conjecture is valid for sporadic simple groups [16] , alternating groups [20] , and
some simple groups of Lie type [17,18,19] . As a consequence of the main theorem, we prove
the validity of this conjecture for the groups under discussion.

Corollary 3.4. Let G be a finite group and M="E(q). If |Gl=|M| and 7(G)=nM), then
G=M.

Proof. By assumption we must have OC(G)=O0C(M), then the corollary follows by the main
theorem. (J

4. Proof of The Main Theorem

By Lemma 2. 12, G has a normal series 1 <H <K <G such that H and G/K are m-groups,
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K/H is a non-abelian simple group, {(I'(K/H))=2 and the odd order component of M is an
odd order component of K/H.

For the proof of the main theorem first suppose g=2. In this case ¢(I'(*E«(q)))=4. So t(I'(K/
H))=4, by Lemma 2. 12, and so K/H must be one of the following groups:

My, /i, Ji, ON, Ly, F’, F\, Ey(g), A:(4), *Bi(g) where g=2""'>2, 2E;(2).

The odd order components of 2E4(2) are 13, 17, 19 and so K/H can be equal to ?B,(q), 2Es(2) or
Eq(q).

If K/H=*Bxq) where g=2?"*'>2, then ¢g-1 must be equal to 13, 17 or 19 which is impossible.
If K/H=FEs(q) then since the odd order components of Es(q) are greater than 13 it is a
contradiction. So K/H=?E«2). Now we proceed similar to step 13 of the proof.

Now we suppose ¢>2 and hence {(I"((Es(g)))=2. In this case we proceed the proof in the
following steps:

Step 1. Let K/H=A, where n=p, p+1, p+2 and p=5 is a prime number. Then if gcd(3,q
+1)=1and D(q)=¢°—4*+1=p then p—2=¢°—¢°—1. But by a simple calculation we can see
that (¢*—¢°—1, ¢*+1)I5, (¢°—4¢*—1, ¢*—¢*+1)I5, (¢*—g°—1, ¢*—g*+4*—q+ D11, (¢*—¢°—1,
q*+1)|3, and ¢°— ¢*—1 is coprime with respect to other factors of |G|. Also (3, ¢*+1)=1 which
implies that (¢°—¢*—1, ¢*+1)=1. Therefore (p—2, |G])|5**X 11, and so p-2 must be equal to 1,
5, 25, 125, 11, 55, 275, 1375. But p is a prime number and p=D(q). Also D(3)=703, D(7)=
117307 and therefore it is impossible. Similarly if D(q)=p—2 we get a contradiction. If
ged(3, g+1)=3 then we consider (¢°—¢*—5)/3 and proceed similarly to get a contradiction.
For simplicity suppose X={q'®, ¢*°} and Y={¢°, ¢%}.

Step 2. If K/H=A.(q’) then we distinguish the following 6 cases :

2.1. K/H=Ap-(q) where (¢,¢")#(3, 2),(3, 4). Then ¢’ —1=0(mod D(g)) which implies
that ¢’ € X. Now since these cases are similar, through the proof of the main theorem we
consider the hardest case i.e. ¢'® and the other case is easier than it. If ¢"”=¢" then if p">5
then ¢’##~Y2> 4% g0 K /H has a Sylow subgroup of size greater than ¢%, and it is a contradic-
tion by Lemma 2.10(a). Since p’ is an odd prime number, we must check cases p’'=3, 5.

If p’=3 then ¢’=¢° and (q'—{l)lz:;,?—l) = (qa+f;(43”lq+1). Hence (¢°-1)(3, ¢°—1)=(¢°
—1)(¢°+1)(3, ¢+1) which is impossible. Similarly for p’=5 we get a contradiction.

2.2. K/H=Ay(q') where (¢—1)I(¢+1). Then if p’>5,K/H has a Sylow subgroup of size
greater than ¢*, and it is a contradiction by Lemma 2. 10(a). Otherwise p'=3, 5 and ¢’ —1|p

+1 and q’¥ =4 which is impossible.

2.3. K/Hz=A/(q’), where 4/(g’+1). If D(q)=—q,2_—1 then q' € X.

If ¢’=¢q" then tg;,—qq:i;)l qiz_l, and ¢'=¢" and hence (3, ¢+1)(¢*+1)(¢°—1)=2, which is
impossible.

If D(g)=gq  then q,+1=gi—q3(-:;-,(11-_|’-_(13),q+1) and (¢'+1)||Gl. Now we get a contradiction
similarly to step 1.
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24. K/H=A(q’) where 4|(¢’—1). The possibility D{(q)=q’ was discussed in 2.3. If D(q)=
—q’;—l then ¢’ Y. If ¢'=¢° then —qo—;—l=D(q) which is impossible.

2.5. K/H=A\(q) where d|q’. If D(g) equalsto ¢’—1, then ¢’€ X. If ¢’=¢" or ¢*° then D(g)
=¢"®—1or ¢**—1 which is a contradiction.

If D(g)=q’+1 then g’ Y. If ¢’=¢° or ¢7 then D(q)=¢°+1 or ¢”+1 which is impossible.
2.6. K/H=Ax2) or Ax(4) then D(q) must be equal to 3, 5, 7, 9 which is impossible.

Step 8. If K/H=%A,(q’) then we consider 3 cases:

3.1. K/H=?Ap-(q)

Then ¢’ +1=0(mod D(q)), and so ¢’*' € Y, by Lemma 2.10(c). Since the proofs are similar, we
do only one of them. If ¢’”’=4¢° then for p">11 we have ¢’**"~"2> g% and so K/ H has a Sylow
subgroup of size greater than ¢, which is a contradiction, by Lemma 2.10(a). Since p’ is an odd
prime number, we must check cases p'= 3, 5, 7.

If p=3 then ¢'=¢°. Let g=p". Then

| K/ HI=FAdp")| =P A 50)| =la*(a*+ 1)(g*~ 1) 2 htr

and |G|=|H|.|K/H||G/K|, therefore |H|.|G/K|=¢"(g"—1)(g®—1)g"+1)(¢*—1). But |G/
K||Out(K/ H)|=|0utCAp*"))| <12n (21), which implies that |H]#1 and so we can consider a
p-Sylow subgroup of H, say P. Since H is nilpotent, P < G and hence D(q)|(|P|—1). So we
can choose P such that D(g)f(|P|—1), and so it is a contradiction.

If p’=5, then ¢*=4¢° and (¢’ +1)(5,¢’+1)=(g°+1)(3,¢+1), which is impossible. Similarly for
p’=7 we get a contradiction.

3.2. K/H=%Ap{(q) where (¢’+1)|(p+1) and (#',¢")#(3,3),(5,2). Then if p’>7, K/H hasa
Sylow subgroup of size greater than g* which is a contradiction, by Lemma 2.10(a). Otherwise
p’=3,5, 7 and ¢’+1{p'+1 which is impossible.

3.3. K/H=%As2), 2As(3) or 2As(2). Then D(g) must be equal to 5, 7, 11 which is impossible.
Step 4. If K/H=D/q’) where (r,q")=(p.a')(¢' =5,¢4'=2,3,5) or (7,4 )=(p'+1,¢')(¢’=2,3) then
q¢’” € X and since p’=5, we can get a contradiction.

Step 5. K/H#Br(qg’) and C(q’). For example if K/H = B(q’) then we consider 2 cases:
5.1. K/H=B/q’) where y=2'>4 and ¢’ is odd. Then q"+1=0 (mod D(q)). By Lemma 2.
10(c), q € Y, which is a contradiction since —‘fzil*D(q).

5.2. K/H=By3). Then 3*¢ X, which is impossible since p is an odd prime number.

Step 6. If K/H= *D.(q") then we consider 3 cases:

6.1. K/H=?D,(q’) where r=2'>2. Then q*€Y. For example if q"=q’ then (921"1 =
—”?%q;f%, which is impossible.

6.2. If K/H=2D.(2) where y=2'+125 or Dy(3) where p=2¢+1, t =2 or ?D,,,(2) or ?D(3) where
r=2'+1=p,t =2 then we proceed similar to 6.1.
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6.3. If K/H=%Dy(3) where 5<p+2"+1 then 3” € Y which is impossible since p is an odd prime
number.

Step 7. If K/H=?By(q’) where ¢'=2%*'>2, then

If D(g)=¢’—1 then ¢’ € X which is impossible since ¢’*—1+D(q).

If D(¢)=¢'+v2¢"+1. Then ¢”?+1=0(mod D(q)). Therefor ¢’>¢ Y which is a contradiction.
Step 8. K/H#Gxq’) and *Du(q).

For example if K/H = G,(q’) then we consider 3 cases:

8.1. K/H=G,(q) where 2<q’=1(mod 3). Then D(q)=¢?—¢ +1 and hence ¢”*+1=0(mod
D(g)) so g€ Y. Hence g=¢*or ¢°. So q*—1=¢g’—1 or ¢°—1, but ¢°—1/|G|.

8.2. K/H=G:yq') where2<q'=—1(mod 3). Then ¢?¢ X. If ¢°=¢" then ¢’=¢°. Butthen
g+ q°+1=-%;’——‘;’+—4i)1—, which is impossible.

8.3. K/H=G:xq") where 3|¢g". We proceed similar to 8.1 and 8.2.

Step 9. If K/H=E%«2) or E«(3) or 2E«(2) or *Fi(2)’ then D(g) must be equal to 13, 17, 19, 73,
127, 757, 1093 which have no solution in Z.

Step 10. If K/H=F(q’) then we consider 2 cases.

10.1. If D(g)=g"—q"?+1 then we proceed similar to step 8.

10.2. If D(g)=gq"+1, then ¢" € Y which is impossible, by Lemma 2.10(a).

Step 11. K/H #%Fy(q’) where ¢’=22"*1>2, 2Gx(q’) where ¢'=3*"*' and Es(q’).

For example if K/H =?Gx(q’) where ¢'=3%"*! then D(¢)=¢'++/3¢’+1. So g€ Y but D(q)+
FCE3E+1

Step 12. If K/H is a sporadic simple group then D(gq) must be equal to 5, 7,11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 59, 67, 71 which have no solution in Z.

Step 13. If K/H=%E4(q’), then easily we conclude that q=¢’, so K/H=2Es(g). Then |G|=
FE«(q)|=|K/H|=|K|/|H| which implies that |H|=1 and |K|=|G|=["E«g)l. Therefore, K=
Es(q) and hence G=2E¢(q).

Step 14. If K/H = Es(q’), then since all odd order components are less than or equal to ¢”°, we
have ¢<q” or ¢'°<¢’®, which is a contradicton by Lemma 2.10(a).

The proof of the main theorem is now completed.
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