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Abstract

The initial boundary value problem of parabolic Monge-Ampére equation we are dealing
with is ~u, det Diu=fin Q: =0 X (0, T], #=0 on 3-Q where QCR" is a bounded convex set,
f is a nonnegative bounded measurable function defined on Q. The existence and uniqueness
of generalized solution of the above problem is proved through geometric method.

1. Introduction

In 1958, A. D. Aleksandrov [1] gave the definition of the generalized solution of Monge-Ampere
equation det Diu=/f in Q, u= 9o on 90, where D3u is the Hessian matrix of a function #, by
means of the gradient mapping of a convex function, and obtained its existence and unique-
ness:

Definition A. Let Q be a bounded strictly convex domain in R”, % be a convex function
defined on Q, V« denote the gradient mapping of #: Vu(y)={p€ R"u(x)=ul(y)+pz—y), Vz
€0}. uissaid to be a generalized solution of det Diu=f in Q, if [Va(U)|= f l/(x)dx, V Borel
set UCQ, where | + | is the Lebesgue measure.

Theorem A. If f is a nonnegative bounded measurable function and ¢ € C(3RQ), then there
exists a unique generalized solution of det Diu=f in Q which satisfies ulso=o.

Later, in 1976, N. V. Krylov [5] introduced three kinds of parabolic analogues of Monge
-Ampere equation :

det(D.nz,u - 80“!) = fn(x»t)’

det(Diu)=[(f(z, t) + uc).]",
—wdet(Diu)=f"*\(x, t).

* Mathematics Subject Classification (1991). 35K20, 35K55, 35Q99.
tKeywords. generalized solution, Legendre transformation, convex-monotone function, existence, uniqueness.



28 Li Chen

Monge-Ampere equation detD%u=f played an important role in the proof of Aleksandrov
maximum principle for second-order elliptic equations. In 1985, [4], Kaising Tso’s proof of
Aleksandrov-Bakel’'man type maximum principle for second-order parabolic equations indi-
cates that — u.detD%u=f is the appropriate analogue of Monge-Ampeére equation in a sense.
It also relates to a kind of curvature flow problem —u:—(l—ffﬁl?—uz'%gr=f whose generalized
solutions would be discussed in our following papers.

In this paper, we consider the following initial boundary value problem
—udetD:u=f(x,t) in @ (1.1

u=0 on 0,Q 1.2)

Our definition of the generalized solution is from paper [8] which belongs to Rouhuai Wang
and Guanglie Wang :

The Legendre transformation generated by u(x, ¢)is: Lu: (2, )€ @ — (p, )€ R"XR, p
eVulz, 1), h=p+ x—ulz, t), where u(zx, t) € C(Q) is a convex-monotone function, i.e. # is
convex in x and non-increasing in ¢.

Definition 1.1. A convex-monotone function z € C(Q) is said to be a generalized solution
of (1.1), if the Radon measure in @ defined by

0l E)=|L.E)| for any Borel set E of @

is absolutely continuous and its Radon-Nikedym derivative is equal to f in Q, where | - | denotes
the n+1-dimensional Lebesgue measure. € C(Q) is said to be a generalized solution of (1.
1), (1.2) if it is a generalized solution of (1.1) and =0 on 3,Q.

The result we obtained in this paper is:

Theorem 1.1. Let QCR” be a bounded convex set and f be a nonnegative bounded
measurable function defined on Q. Then there exists a unique generalized solution of problem
(1.1), (1.2).

There are also other definitions of generalized solution of problem (1.1), (1.2). N. V.
Krylov in his paper [5] gave a kind of generalized solution obtained from a sequence of convex
functions defined on Q. In a sense, it is an approximate generalized solution which is not
completely compared to the elliptic case. In 1992, J. L. Spiliotis [9] proved the existence of
another kind of generalized solution of (1.1), (1.2) with probability method on condition that Q
CR" is a uniformly convex open set, 3Q € C?, f€ C(@x[0, )), f = 0 and f = 0 on (9Q X
[0,00)U@X [T, ), Dof, Duef € C@ %[0, 00)). In [9], the author specifically pointed out that
he hadn’t have the uniqueness and regularity of it. Compare our result, Theorem 1.1, with J.
L. Spiliotis’. The former is better, not only because of its weaker hypothesis, but also better

results, existence and uniqueness. The main reason is in the definition of the generalized
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solution. In a sense, in J. L. Spiliotis’ definition, variables x and ¢ were separated, and in the
definition of [8], Legendre transformation treats x and £ as a unity. So in our opinion, [8]’s
definition is better. Under the assumption of regular data, paper [7] had already get the
regularity of [8]’s generalized solution. We will get the W%! regularity of it under weaker
conditions in our succeeding paper.

The paper is arranged in the following way : In § 2, we prove the comparison principle and
uniqueness of a generalized solution by geometric method involving ideas by K. S. Tso [4]. §
3 is devoted to the Holder continuity of generalized solution in ¢, which plays a main role in §
4, in the proof of the existence result. Our proof is parallel to the elliptic case which was given
by I. Ya. BakeI'man [2]. The idea is an approximation by convex-monotone polyhedron. It
is worth pointing out that the construction of convex-monotone polyhedron and its property
after Legendre transformation are carefully scrutinized.

2. Comparison principle and uniqueness

The Geometric Property of Legendre transformation :

For convex-monotone function # € C(Q), let Lu: @ 3(x, ) — (b1, 1), pr€ Vulxy, 4),
=p * x1—u(x, ), be the Legendre transformation generated by ». If # < 4, it holds that, for
Vzxeq,

u(x, )= ulz, h)=p+ (x—x21)+ ulzy, 4)
=pcx—(pr* ;i—ulxy, 4))
=pcx—h

and so — A is the intercept of the supporting hyperplane of «(z, #) at x..

The following proposition is obvious, so we omit the proof of it.

Lemma 2.1. u is a convex-monotone function, x0€ Q, po€ R*, @(x, t)=ulz, £)+po° (x
—xo), #(x—x0, t)=ulz, t), then V¥ Borel set ECQ, we have

La(E)=LuAE)+(po, po* 20}, 0w E)=wuE),
0u(E)=wu(E —(xo, 0)),

where E—(xo, 0) is the parallel transform.
We give an important lemma which will be the comparison principle and uniqueness.
Lemma 2.2. 1w, u. are convex-monotone function and w,, uz€ C(Q), if there is an open
set GCQ such that wy>uz in G, tx=wu> on IG\(t=T)}, denote Ty=inf {¢|(z, t)€ G}, To=sup
{tI(x, t)e G). Then Yboe(T\, Tb), we have

Lui(G N {t < L)CLu(G N {t < 1)),



30 Li Chen

and

0u(G N {t € LN<wul(G N {t < t)).

Proof. For all (py, 1) € Lu(G N {t < &)), there exists (x1, 4) € G N {t < &) such that
p € Vulzy, b), hi=p * xi—wlxi, b). From wy=uz on 3GN{¢<#} and wlxn, h)<wlm, 1),
hyperplane H=p, « x— h must contact #zin G N{¢ < 4}CGN{t <to}. Let (%, %) be the point
that makes #, the minimum in the contact set. Then H(z, ) in the supporting plane of convex
function ux(x, t), namely, p1 € Vus(xz, £2). By the geometric property of Legendre transforma-
tion, we have Lu,(xz, t)=(p1, k1), i.e. (P, m) € Lu(GN{t<h}).

Next we prove: wu,(GN{t<t)) < wu(GN{t<h)).

V(x0, t) € GN{t=1t}, V 1o € Voo, bo), let Giaz, t)=uxzx , £)—po * (x—0), 0z, H)=12(x,
) —po+ (x—2x0). By lemma 2.1, it suffices to prove that

wi(GN{t< L)< w3 (GN{t< k).
Let st(x— xo, £)= %oz, t), #0:(x — 20, t)=1:(x, t) and, also by lemma 2.1, it suffices to prove that
0u(GN{t <t} — (20, 0))< wu{ GN{t < to}— (o, 0)).
From the above transformations, i, # are convex-monotone functions defined on @ —(ao, 0),
and @0, &)= inf s, #2<i# in G—(x, 0), then 7 > 0s.t.
GN{t <t} —(x0, 0)
il.l(.r, t)Z ﬁz(o. t0)+2”y (xl t)e Gn{tst‘)}_(x% 0)

Let @z, )=z, t)— @0, to)— 7, =Mz, t)—#(0, b)—7. Then we have %0, L)=—7,
and @(z, t)= @0, f)+27p=7 in GCN{t <t} — (0, 0).
Let 0={(y, $)|7(y, s)<0, s<t}C GN{¢ <t} —(a0, 0), and then we have

w(x, £)>a@ly, s)+n, (v, s)€ O (x, t)e GN{t<t}— (0, 0).

Let A={(p, h): |1>|371'7G-, L3Xp, h) € 0}, where de=sup{lz—y|: (x, ¢), (v, t) € G}.
Now we claim that ACLz.(GN {¢<t}— (20, O\L3,{GN{t <t} —(x0, 0)) and|A|>0.
In fact, V (p, k)€ A, 3(y, s) € Os. t. La(y, s)=(p, h), and (p, h) € Lu.(GN{t <t} — (o,

0)). Note that, for a hyperplane H=p-x—#h,

H=p-z—h=p-(z—9)+ly, )<z —ul+ aly, 5)
<p+aly, s)<alx, t), (x, t)e GN{t<t)—(xo, 0),

which indicates that H locates strictly lower than # in GN{¢<t}—(x0, 0). By the geometric
property of Legendre transformation, we have (p, 4) ¢ Lz,(GN{¢<t}—(xo, 0)).
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Next, we show that |A]|>0. Consider a set D={(p, &) : Ipls-{-;’;, dc|p|< k< n} and, for V(p,
h)€ D, let a hyperplane H=p-x—#%. Then we have

70, b)=—n<—h=H(0, t), %z, t)=0>H on JO\{t=1t)},

so H must contact with #: in O. Let (x;, s1) be the point that makes s, the minimum in the
contact set. Then H(z, s1) is the supporting plane of convex function #.(x, si), namely, p €
Viax, s1). Thus La(x, s1) = (p, k), ie. (b, h) € Lz (0) and so, D C A. Noting that

|D| = an,'?(r; — vde)r™'dr = olln(n+1)1"'9p"*'de* > 0,

we get |A] > 0.
Theorem 2.1. (Comparison principle) If u, v € C(Q) are generalized solutions of

—u. det D*u=f in Q
{u=0 on 3Q
and
—v det D*v=g in Q@
{v=0 on 9p,Q
separalely, f, g, are nonnegative measurable functions and f = g in Q, then u < v in Q.
Proof. If there exists a point (xo, %) € @ such that z(xo, &) > v(xo, b), since u = v =

0 on %@ and %, v € C(Q), there must exist an open set G C @ such that (xo, &) € G, u(x,
t) > v(x, t)in Gand « = v on dG\{t=T). Then, by lemma 2.2,

/cn(ls lo|fdrdt=wU(G n {t < to})< wo(Gn {t < to})=./cnus lo)gdrdt,
which is impossible by f=g¢ in Q.
The uniqueness of generalized solution can be easily obtained from the comparison
principle.
Theorem 2.2. If wy, uz€ C(Q) are generalized solution of problem (1.1) (1.2), then my=u.
in Q.

3. Holder continuity of generalized solutions

In this section we will prove the Hslder continuity in ¢ of the generalized solution to problem
(1.1), (1.2), which is the substantial ingredient in the proof of existence of the generalized
solution. Here in the next theorem we only require that f € L? with p > 1.
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Theorem 3.1. If u is the generalized solution of (1.1), (1.2) and f(x, t) € L?(Q) for some
p>1, then

lu(z, t)—u(x, )<Clh—tf=*, x € Q, 4 t € [0, T].

where C = C(n, d, [|flee), q is the dual exponent of p and d is the diameter of Q.

Proof. Vxo € Q, V#, & € [0, T), 4t < &, let I,(x) be the supporting hyperplane of u(x,
t) at zo. Then Vzx € @, IL(x) < u(x, t). Specially, we have u(xo, t2) < IT{x0). Let #(x,
=ulz, t)—I(x), Pn,.={(z, t) € QX(t,t)|lu<IT) and then #Z<0 in Pa,. Let M=
Sup|7z|= @ (x*, t*). Make another transformation, @(x—x*, t) = #(z, ¢). It can be proved
that

D={(p, - lol<LL, dipl< <)
c A= 0 o=, L3, e Po—(2*, 0D La(Pr— (2", O).

The latter inclusion relation is obvious. It remains to prove DCA. V(p, #) € D, consider a
hyperplane H=p-x—h,

#(0, t*)y=—M< —h=H(0, t*)
#(x, 1)=0>H(x, t), on 9P, —(x*, 0))

where 9»(Pn,—(x*, 0)) is the parabolic boundary of Pgs,—(x*, 0). So H must contact with# in
Pn—(2* 0). Let (y, ) be the point that makes r the minimun in the contact set, then H(z,
7) is the supporting hyperplane of convex function #(x, 7). Thus

La(y, r)=(p, B e A.

By lemma 2.1, we have

2|D|= On M"“d_",
1/l.‘u(9X(l|,l:l)dpdh2»/L‘n(PIn)dpdhZv/’l-iﬂi’nl—(-l",o)) n n+l

that is,
1
sup(Il(z)—u(x. £)=M S(J-%f'-n(n-l' d ")m,
where
anlS,meu..undpdh: oo 2

By the Holder inequality, we have

EPTC S S
[, o o fdzdt < WAl — 8, + o =1
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Then

sup(/h(z) — ulz, &) < C(nFIFrdrrrmtm|ty— bl

Thus we complete the proof.

4. Existence

In this section, we turn to prove the existence of generalized solution by approximation. To
get the uniform convergence, we have to suppose f has compact support in x at first. Then
construct another approximation problem to remove our requirement on f.

Theorem 4.1. Let Q be a bounded convex set in R” and f be a nonnegative bounded measurable
Junction with support Q=CQ'X(0, T] for a compact subset Q' of Q with d(Q', Q) = 6. Then (1.
1), (1.2) admit a unique generalized solution and

lu(xy, t)—u(ae, HSLlxi—22, =, 2:€Q

lu(z, b)—ulz, t)|<Clt—t=, 4, ke(0, T),

where L=L(n, 8, diamQ, sup f), C=C(n, diamQ, sup f) are positive constants.
We need some preparations to prove Theorem 4.1.
Construction of the convex-monotone polyhedron defined on @ :

Stepl. Let Xx€Q,1sk</, Y:€9Q, 1<i{<m, be points in & which satisfy that {Xx}{CQ’
are interior points of the convex polyhedron PCQ whose vertices are { Y;}7. Thus Px(0, T)
is a convex cylinder in R**!, which is denoted by Pr. Let {£}{ satisfy 0=t<H<--< t=T.
We give the following notations, By=(Y;, &), BY=(Xs, to=0) € 8pPr, As=(Xa, t;) € Pr, j >0.

Step 2. We dissect Pr into simplex in the following way.

First, dissect each section of Pr, PX{¢t}, j=0, 1,--, h, in the same manner so that the
vertices of each n-simplex{a$, ai,--, al}, r=1,-, M, are subset of {(Y;, £)}:™1 U {(Xx, t:)}et1.
Second, between each pair of hyperplane {¢=1;_.}, {{ =4}, connect points (Xx, #-1), (Xx, ¢;), and
(Y, t;-1), (Y3, &) with segments. Now we obtain that PXx[0, T] has been divided into some
columns {ai, af,-+, af} X[4-1, t;), r=1,--, M. Third, dissect each column (without appending
new vertices), {af, af,"*:, ai}X{#-1, ¢}, on the manner that all the segments in {#-1, &} with
vertices Bij are on the boundary of Pr. Up to now, we have obtained a finite (7 +1)-simplex
{83, b, -, b3}, y=1,-, N. Through the above process, we obtain a dissection of Pr with
vertices {(Y;, 4)}, ((Xa, £)).

Step 3. The convex-monotone polyhedron Zon Pr is that Z € C(Pr), convex in x, Z(xo, t)
strictly decreasing in ¢ for x0 € P, affine on each {43, b,+-, b5+1} C Pr. Namely, the projections
of the vertices of Z on hyperplane {Z =0} are {( Y, &), (X&, £)}).(Here we use the same notation
Z to represent the convex-monotone polyhedron and the function determined it.)
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Consequently, after Legendre transformation generated by Z, according to the dissection,
Pr has the following properties :

L ILAA)=0, k=1, I, j=1,, h.

2. If {ao, ai}C{t =1} for some j=1,--, h, where {ao, a1} is a 1-dimensional face of {3, b{,---,
bia}, y=1,, N, then |Lz:({a0, @1})|=0.

If {co, 1} P % (4;-), t;) for some j=1,---, k, where {co, 1} is a 1-dimensional face of {53, 5],
v, bla), y=1,-, N and co€ {t=1#;-1), a1 € {t=1;}, then |Lz{co, c1})| needn’t to be 0 and V(A,,
A2)C{co, o1} with A € {t=1¢"}, Az€ {t=1¢%, t'<? we have

ILe(An AN = =1L, D

3.1f {ds, &+, di}, i=2,-+, n+1, is an i-dimensional face of {64, b],--, b%+1), y=1,--, N, then
|Lz({do, dl,"’, di})|=0- Notice that {do, d),"', d(n+1)} is {bl, b{,"', b;’:-ﬂ}.

In fact we can prove them in the following.

1. Let L(Aw)=E. Since pe VZ(Ax), h=p Xr—Z(Aw) holds for any (p, #) € Lz(Ax), we
have that E is a bounded subset of some z-dimensional hyprplane. So |Lz(Ax)|=0.

2. By [8] Prop.1.1, note that V' (p, &) € Lz({ao, a1}), 3 (1, 1), (x2, 1) € {ao, a1} such that VZ(x,
5)=VZ(xs, t;)=p and p * 21— Z(xs, t;)=p 22— Z (a2, 1;). Thus |L2({ao, @:})|=0.

V(p', ") e L:(A1), H (x)=p'-x— k' is the supporting plane of Z at A,. By the fact that Z
is affine on each simplex, we can suppose Z(Az)—Z(A,)=gq(t*—¢'), where q is a constant
depending on {co, c1}. Then

H¥(x)=p'" 2 —h'+Z(A)—-Z(A)=p"2—h'+q(t—1)

is the supporting plane of Z at A,, that is to say VZ(A4,)=VZ(A4.), (p', i —q(t?—t')) € Lz(Az)
and % is affine in £ € (-1, £;). So we have

LA, ADI= [

d
(PN (P} h)eLz((A1,A2))} La((A1,A20)n{p1}

t2_ tl
=f d dh
(prI{pLh)eL{co,c1D)} Lztico,capnipn t;— tj-l

tz_tl
= L—1 ILz({Co, Cn))l.
JT 4=l

3. Since {XxH{CQ' and Z is convex in x, we have Vpe VZ(Pr), |p|< C(supl|Z|, §). When ¢
>2, since Z is affine on{db, di, ", di}, we have HVZ({d, d,--, di}))=0. Noting that V(p, k)
€ L:({do, dv++, d}), |hl=|p-x~Z(x, 1)|<C(p, suplZ])=C(sup|Z], 8), we have |L({do, dy,-,
dh)|=0.

Construction of the approximation problem :
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By the above process, we get [ (a finite integer) “good” sets s, 8=1,--*, I, whose image
by Legendre transformation might have positive measure, with H"*'(/;)=0, V8¢€[1, I], ar;d ls
Nlp=0. So F{Us}st CR™! satisfies: 5sC U and UsC P X[t;-1, £5] for some j, |Us| + 0, ’L=J|U,
=Px[0, T), and V8, 8 €{1, I], Us and Us have no common interior.

Here we point out that from the construction of {Us), {/), any subset of @ can be
approximated by {Up} if the density of {X.}, { Y3}, {#;} is sufficiently large.

Let O’g=/‘;‘fdl‘dt>0, B=1,--, I. Since f has support Q' X(0, T), we have

So=73 [ fdvdi= [ fazt :=F
%= 2, e T
To prove Theorem 4.1, we first get the existence of convex-monotone polyhedron.

Theorem 4.2. There exists a convex-monotone polyhedron Z(x, t) with vertices Z(Axi), j ¥
0, Z(By) and Z(BY) such that

Z(By)=Z(B")=0,
ILZ(BU Uﬁ)|=|LZ( U I#)l= 2 O3, k=l;“.» 11 j=lr"" hr
Sy BEary Bean

where ayC[1, I) contains those B such that [sCPX(t-, t;) with A as ifs vertices, and the
Jollowing estimates hold

IZ(.rx, )—Z(x, DI lel—l‘zl,

1Z(x, h)—Z(x, LN<Clt — tlH,

where L depends on n,8, diamQ, sup f, and C on n, diam§, sup f.

Proof. Let S be a set of convex-monotone polyhedrons such that each Z € S satisfies the
followings :

1) The vertices of Z are Z(Axs)jso, Z(By), Z(B{).

2) IL(Y) UDI=IL2( ) )<, 0 k=1, [, j=1,+, h.

3) Z(By)=Z(B{™=0.

V X €{XH, VHE([0, T), let Zlz, &) be a cone whose interior vertices is a single point
ZXw)=—c1ts and Zoz, t)=0 on IP. Then, if & is sufficiently small, we have Z€&S,
namely, S+0.

V Z,E S, convex in z and decreasing in ¢, we can prove

1
—({;n(n+1)d")"*'szso, @.1)
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where o is the volume of unit sphere and 4 is the diameter of P. In fact, the convex

-monotonicity of Z contributes the latter inequality of (4.1). To prove the former inequality,
suppose M =SEP|Z |[=—2Z(xo, ts). Let Z(x—mxo, t)=Z(x, t). It can be proved that

D={(o, 1) : Inl<24, dlpl<h<m)
cA={(p, b} : |p|$—‘%4, L3'(p, h)€ Pr—(zo, 0)}C Lz (Pr—(z0, 0)).

Since the latter inclusion relation is obvious, we only need to prove DCA. V(p, B)ED,
consider a hyperplane H=p * x—h,

Z, ty=—M<—h=H(0, ¢),
Z(.Z, t)=0>H(zx, t), on d:(Pr—(x0, 0)).

So H must contact with Z in Pr—(xo, 0). Let (v, ) be the point that makes r the minimum
in the contact set, then H(zx, r) is the supporting hyperplane of convex function Z(x, r). Thus

Lz (y, 1)=(p, HIEA.
By Lemma 2.1, we have

— — ___ On " j-n
F= L,(P,)dpdh_./;:(Py-(:p.o))dpdhlel— nin+liM -,

which means we have completed the proof of (4.1). Noting that {X,}CQ’, we have
|Z(z, 8) — Z(22, )| < Limi—zdl,
where L=6"[(6£nn(n+1)d")ﬁ].

Another a prior estimate for Z is the Holder continuity in ¢ which can be proved similarly
to the proof of Theorem 3.1. The estimate is that 3 C(n,d,sup f)>0 such that

1Z(z, 8)—-Z(z, )<Cla—tl V4, €0, T. “2)

However, note that the function we considered here is the convex monotone polyhedron. The
Legendre transformation determined by which is something special (see Properties 1-3 in the
beginning of the Construction of the convex monotone polyhedron defined on '@). For the
completeness, we prove (4.2) below. V4, £€[0, T], 41<t, VxE P, by the convexity of Z in
x,ApEVZ(x0, #1) sit.

H=2Z(xo, 1)+p * (x—20)<0 on oP.

Let Z(x, t)=2Z(xz, t)—Z(xo, h)—p * (x—x0o) and again use the method of [4] Prop.2.1. Now
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Pizoen={(z, t)YEPX(t, k])|Z <0} is the domain. Let (x), ) be the point that Z(z, #) achieve
its minimum in {{=%}. We have

—Z—(Io, ll)—f(xl' tz)g(mn(,’_’_l)dn)nil

where

|Diel < .lz(fx(n.u])dpdh: Ly (““h"”dpdh-

Suppose (4, £)C(¢;, ). By properties 1-3, we have

/l; (Px(ty, t:l)dpdh

= dpdh+ dpdh
.L (Px(t1, ty+1)) pd Lz (Px(tyy+ 1,3, +2) pd

ot [ dpdh+ [ dpdh
Lz (Px{ti3=2,t53-1]) Lz (Px(tj3—1,t2])
— t +1 tl f /
=1 h
tii— iy Jia (Px(u..u,+1))dpdh+ Ls (Px(:,,+1.¢,,+z])dpdh

+.“+'/L‘: (me.—z.urmdp ht t,,—t,,- j; (Px(tsz-1, u,)) pdh

< supf « d" * (b= h+be— b o+ = tpm1)

= supf + d"+ |—t|.
Then

Z (%, t)— Z (21, £)< C(n)(sup f)wridasi|— b,
From the fact that Z is decreasing in ¢
0< Z (0, 1) — Z (20, )= Z (0, )= Z (0, )+ Z (21, t2)— Z (0, 1)
< Z (20, 1)~ Z (21, £)<C+lty—tlm,

Consequently, (4.2) has been proved by the fact Z(x1, &)=miny=e, Z (z, ).

V{Z,}t€S, by Ascoli-Arzela lemma, there exists a subsequence {Z;) such that Z;s uniform-
ly converge to ZES in C (Pr). Thus, S is a compact set of C(Pr). Let V(Z) be the volume
of Z, (its lower base is Z, its upper base is Z=0). V(Z) is a continuous function on ZES, so
there exists a Z €S such that

V(Z)= Vo=sup V(Z)< +oo.

Now we claim that Z is the convex monotone po]yhedroh' which solved theorem 4.2.
Otherwise, we have |L;(,EL2 1,)|sﬁ€za: 0z, k=1,-, [, j=1,--, k, and there exist an Ax.;, s.t.
L7 ks
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IL;(’Eypﬂ lﬂ)l < ﬂeazhlh 0’.

Note that Zis strictly decreasing in ¢ and displace Z (Xk,, #.) in a distance of suffciently small
& by the new convex-monotone polyhedron Ze.. By the special construction of Z., Z. is
different from Z only at ax,,. Obviously, Ze, converges uniformly to Z as e - 0. By [8]
Prop. 1.2, we have wz.,— w7, so that

Lz U BI< 2 0B, k=1, 1, j=1, -, k.
Beax, gean,

In particular, the above inequality holds with ax.s.

On the other hand, V(Zeo)> V(Z) and Z&,E S, which is impossible. Thus the assertion
on Z is true.

Proof of Theorem 4.1. Increase the density of the net of points { Y3}, {Xi}, {#} such that
{X,}CQ'. By theorem 4.2, we have a sequence of convex-monotone polyhedrons {ua} C C(Q)
(here the sequence needn’t to be unique because we haven’t obtained the uniqueness of convex-
monotone polyhedron in therem 4.2) which is uniformly Lipschitz continuous in z,

M(xl, t)—ugl.(xz, t)l ->C(6, n, d, sup f),

and is uniformly Holder continuous in ¢,

leem(z, 8)— un(z, )| < C(n, d, sup f).
|ti— tole

Thus, by Ascoli-Arzela lemma, there exists a subsequence {«a} (still denoted by {%a}) uniformly
converging to some 2 C (). By (8] Prop. 1.2, we have wu,~ wu in Q.

On the other hand, wun (,\) 75)=Ssear, 0= f U wfdzdt: =um(,\) 17), with JUF=Q.
It remains to prove there exxsts a subsequence {u=} (still denoted by {ﬂm}) which converges to
a Radon measure ¢ defined by p(E)=/fdxdt, ¥V Borel ECQ. For each compact KCQ, Vm
eN 3{A%.), (AfL)C{AR), k=1-+1j=1h, such that U URCKC \J Uf and

1€Uag,, 2€aT, ;s
| az\ U Um|"0 (m— o).

AU ?, ™

Therefore ‘v’ e > 0, we have

lim sup #=(K)<lim sup Iim( g, Ub"';)
_lmﬂl sﬁupheuam’ / fdrdt < p(K)+e.

Similarly, for each relatively compact open set GCQ, Vm, 3 {Alx), (ATu}C{AR), k=1, {,
=1, h, such that U U,,CGC U Uk andl U Ua.\ U Up,l"O (m— ).

fsevap,,, Aicvag,,, Aacuag,,
Thus,
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lim inf #a(G) 2 lim inf pa(, U~ UF)

s€VaRy;,

= lim inf Muza:m e Sdxdt 2 p(G)—e.

By the arbitrariness of ¢, we have un—pg. Owing to wu,= tin, we get wy=1p.

The initial boundary value condition #=0 on 3@ can be obtained directly from the
construction of g and the fact that um uniformly converges to u in @. Hence, u is the
generalized solution of (1.1), (1.2).

The uniqueness can be proved by Theorem 2.2.

Proof of Theorem 1.1

Theorem 2.2 ensures the uniqueness. Here we only need to prove the existence. The idea
is an approximation by a generalized solution obtained from Theorem 4.1. Let

f,.={ f+% in Qu=Qnx(0, T],
0 in Q\Q'R’

where Qn={z€Q|d(x, 80)2%}. The f» is a nonnegative bounded measurable function of @
with support Qn % {0, TJ.
Consider the approximation problem

{ —(ttm)edet(Diun)=fmn in Q,
4.3

un=0 on dpQ.

By Theorem 4.1, there exists a sequence of unique generalized solutions z» which has a uniform
bound |u=|< C(n, d, sup f), and

|z, )= unlz, £)|<Clti— b7, zEQ, 4, LE[O, T], (4.4)

where C depends on #n, d and sup f.

On the other hand, V compact set KCQ, un has a uniform Lipschitz constant in x
(depending on K), a uniformly Hdlder module in . By Ascoli-Arzela lemma, there exists a
subsequence of {#n}, still denoted by {um}, which uniformly converges to z in K x(0, 7). Then
by [8] Prop. 1.2,

/; gdwyn— /; gdw., ¥V g€ Co @), suppgC K.
We also have

Jf9d0u= [ ofadzdt~ [ ofdzat, ¥ g€ CQ).

So, we have proved that « is the generalized solution of equation (1.1).
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Now we turn to prove the boundary condition, i.e. ¥V {(xo, b)E 3,Q, we have ( li‘r)n(ing.r )u(x, t)
Xyt )={Zo,to
=(. By (4.4), we have

lu(z, b)—ulz, L)< Cla— b7, VzEQ, 4, E[0, T (4.5)
Then (ligl ‘Lrg)u(a:, t)El‘iH)]u(.’l'o, 0), VxEQ.
So we only need to prove (litr)r}(in‘f )u(z, 1)=0, z,€N.

YV 2009, let u{xo, h)=(}ir)l}(i2£)u(.z, t). By (4.5), we have (:l’i‘r)r_)'(iafo)u(x, t)=li1;1 prf u (z,
b).
We first prove that when 1.€9Q, u(xo, ¢) € ¢ ([0, T]). Infact, V4, £€[0, T), (< 1),

u(o, t;)=li£r1 Jrinf u(z, t|)=li1;rl Jrinf lim unlz, 4),

s0 I Im— To s.t. 2u(T0, t.)=l'i_r_2 un(zm, t). Because u(xo, tz)=1ir;11i:1f }nxm ux(x, £2), I{xm,}{xm}
s.t.

3.‘,'31 Un, (Tm,, 1) exists and=u(xo, ).
Here we denote {zm,} by {zm). Then Ve>0, IM >0 such that, Vm>M, we have

0 < u(xo, t2)— ulxo, t) S tn(xm, k)— ulxo, h)+e

< um(l'm, tz)_um(xn, tl)+|um(1m, tl)—u(l’o, tl)l+€

< Clh— tfesi+ |um(zm, 6)—ulzo, )|+ e
Let m — oo and note that £>0 in arbitrary, so that

0< u(xo, t2)— ulxo, H)<Clti— fz"‘+'1
If 250 on 30 %[0, T, then I(xo, )EIX[0, T] s.t. u(xo, £)<0. If =0 then
0> u(o, to)=1im u(zx, t)=0,

which is impossible. Therefore 3 7>0s.t. #(xo, 1)<0, t€E[to—n, £][0, T]). We can suppose
u(xo, to— 1) > ux0, k). Otherwise, u(xo, fo— t0)=1u(xo, £). Then In>0st. ulxo, 1)<0, tE
{tr—o—n, &), and thus we can suppose #(zo, b—%o—11)>u(xo, k). Then after finite times
there are two cases happen, one is 37t>0 s.t. #(xo, £)<0, tE[—1, k) and u(xe, to— 1) > u(x0,
&), the other is #(xo, 0)<0 which will not happen as we have proved.

By similar method used in [6] by Pogorelov, V t*€[#%—r, &), for sufficiently large M >0,
30CcO st

|Vulx, tNem>M, .’L‘Eﬁ,
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where |+|(n) denotes the #-dimensional Lebesgue measure. Fix f€[t—n, &), let V(x, {) be a
cone whose vertices are u(x, 7), and V (x, £)=0 on Q. So V(z, ¢) is continuous by the
continuity of u(zo, £) in ¢, and V(z, ¢)>u(z, ¢), so that Lv (QX[t—1, L]C Lu(@X[h—1, &)).
We have 3(CQ sit.

fo fazdt = |L8x[to—1, 6D =L@ [to—7, t])|
= C(ulxs, to— 1)— uxo, bo))* M,

which is impossible since M can be arbitrary large and f is bounded. Thus we have completed
the proof.
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