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Abstract

In this paper we prove that if G is a finite group, M =2Dp41(2),p+2"—1, G and M have the
same order components, then G=M
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1. Introduction

If G is a finite group, we define the prime graph I'(G) as following : its vertices are the
primes dividing the order of G, and two vertices p and ¢ are joined by an edge, if and only if
there is an element in G of ‘'order pg. We demote the set of all the connected components of
graph I'(G) by T(G)={x{G), for i=1, 2--#(G)}, where #(G) is the number of connected
components of T'(G), and if G is of even order we always assume 2 in z,. We also demote the
set of all the primes dividing nby z(#) where n is a natural number, obviously |G| can
be expressed as a product of m, ma, -+, mec), where m; is a positive integer with z(m;)=ux;.
All m;, are called the order components of G. Let OC{(G)={mu, ms, -mec)} be the set of order
components of G. The order components of non-abelian simple groups having at least two
prime graph components have been abtained in [2]

Some simple groups are characterized by their order components, such as a finite simple
group with at least three prime graph components [1], sporadic simple groups [2], Suzuki-Ree
groups [3], G;(g)[4], E(q)5], PSL.(q)(6], *Du(a)7], PSUs(g)[10], PSU(3, g) for ¢ > 5[11], 2D,
(9)[12], 2E5(9)[13], Es(g)[14]. In this paper we continue this work and will prove the following
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theorem :
Theorem. Let M =2D,,(2), p£2™—1. If afinite group G has the same order components
of M, then G=M.

2. Preliminary Results

Lemmal. If G is a 2-Frobenius group of even order, then G=ABC, where AB and BC are
Frobenius groups with kernels A and B, complements B and C respectively. Moreover

) H{(G)=2, n(B)=m and n(A)Uz(C)=m.

(2) B and C are cyclic groups satisfying that |C[||Aut(B)|.

(3) oCc(G)={A| - |C|, |Bl}, and A is nilpotent.

Lemma 2. [[2] Lemma 6] If H(G) = 2, H is a m subgroup of G, and H <G, then II5%mi(|
H|-1). ’

The folloing lemma is a corollary of Theorem A of [15].

Lemma 3. If G is a simple group with t(G)=2, then one of the following holds :

(1) G is a Frobenius group or 2-Frobenius group ;

(2) G has a normal series 1 A HAK G such that H is a nilpotent =, group, K/H is a non
—abelian simple group, any odd order component of G is equal to one of those of K/H, G/K
is a m group, and |G/K||Out (K/H)|.

Lemma 4. [[16) Remark] The equation p™—q"=1 holds iff 3*—2°=1, where p, q are primes
and m, n>1.

Lemma 5. [17] Let p be a prime and n be a natural number, n22. Then there exists a prime
divisor r of p"—1 which does not divide p™—1 for any natural number m<n. except n==6, p
=92 and n=2, p+1 is a power of 2. Such r is called a primitive prime divisor of p"—1.

Of course a primitive prime divisor of p”"—1 can't divide p"+1 or p™—1 for 1<m<2xn.

Lemma 6. [[9] Theorem 1] If a={(q™'+ 1)1 7-(q*—1) where q is a power of a prime, then
there is a positive integer f dividing a such that (f, a/f)=1. Let f=Tp{", then one of the
Jollowing holds :

(1) If 10<#r<17, then p.f"'<—n%l_711y and f>q'"™V;

(2) If n=18, then p‘:‘<—n’g;—:—1ﬁ and f >,
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Lemma 7. [[18] Lemma 1] Let n26 be a positive integer, then there exists at least s(n) prime

numbers p; such that n-zl-l <pi<m, where 1<i<s(n) and s(n) is one of the following :

s(n)=6 n=49

s(n) =5 42<n<47
s(n) =4 38<n<41
s(n)=3 18<n<37
s(n) =2 14<n<L17
s(n)=1 6<12<13

Lemma 8. Let p be an odd prime, e the exponent of 4 modulo p. Suppose that 4°=1+p7k,
where p is co-prime to k. If t is a natural number satisfying t=p°u, (p, u)=1 then p™s |4*
-1.

u — pou *u)! r r e
Proof. Because 4% —1=(1+p" « k)** —I—Zialzﬁsﬁ%m(p k), so pTre[4e—1.

Lemma9. Let a=I1%4(2%—1). If p is an odd prime number and pla then a,<2°". Further-
more, if P25 then ap<2%", where a, is the exponent of the power with base the prime p in the
standard decomposition of a.

Proof. Let e be the exponent of 4 modulo p and 4¢=1+p"%, pfk. Assume that b=(4°¢
—1)(4**—1)---(4**—1), where w=[n:1]. Then

ap=by= prw+2mlwlﬂl < pmi-w/w—l).

Since ']l 4¢—1, which implies that p [[(2¢—1) or »" [(2¢+1), so
apy< (ze + I)w(23+ l)wl(P—1)=(Ze+ l)wpI(P-l)S (3¢+ 1)1.5w< 2

Clearly if p=5 then a,>2?",

3. Proof of the Theorem

Proof. If M=2D,,,(2) where p+2™—1, then the unique odd order component of M is m,
=2—1. We will prove the Theorem step by step.

Step 1. G can’t be a Frobenius group or 2-Frobenius group.

(1) If G is a Frobenius group with Frobenius kernel H and Frobenius complement K, let
|H|=m, |K|=m,. Since p=5, there exists a primitive prime divisor 7 of 2%#*V—1 and S € Syl;
(G), then ISr|,(2"+'+1) and 5:<G. By Lemma 2, |S,/=1(mod ), which is impossible.
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(2) If G is a 2-Frobenius group, then there is a normal series 1 HJ K< G such that His
a nilpotent m group, |K/H|=m,, IG/KI‘(IK/HI—1)=2"—2. So (27*1+1) ||H|. Similarly to
(1), it's impossible.

From (1), (2) and Lemma 3 we know there is a normal series 1H K< G such that H
is a nilpotent m group, K/H is a non-abelian simple group and m, € OC(K/H ), G/K isa m
group and IG/KI| |0ut(K/H)\.

Step 2. K/H % E(2), E(3), A;(2), A:(4), 2As(2), 2E(2), 2Fi(2) or one of the sporadic
simple groups.

Because p =5, we have that J;, ON, Ly, B or HN has an order component of type 2°—1,
p+27—1, which implies p=5 and M =2D),(5). But the order of any one of J,, ON, Ly, B or HN
can’t divide ?’Ds(5). This concludes Step 2.

Step 3. K/H#A,.

Otherwise, |Az_,| I 14, | [2D,.1(2)]. By p=5, there exist at least three prime numbers p;
satisfying 2°'<p;<2°—1 by Lemma 7, which of course divide |A,|. But there exist at most
two prime divisors of [2Dy.(2)| between 2! and 2°—1, a contradiction.

Step 4. K/H #A,(q) or 2A,(q).

(1) If K/H=A\(q), 4/(g+1), then 2°—1=g¢ or (g—1)/2. Furthermore, 2°—¢=1 or ad¥l
=1, which contradicts to Lemma 4.

2) If K/H =A(q), 4/(g—1), then 2°—1=gq or (g+1)/2. Similarly to (1), we have that 2°
—1+gq.

If 22—1=(g+1)/2 then ¢=2%*'—3 and |K/H|<2*#*". Assume g=7’. Of course 7 can’t be
2 or 3, so 7 =5, But 5#>2#*1—3. Hence |G/K|<2*' as |G/K]| | |Out(K/H)|=2f. Ifp+1=
10, by Lemma 6, then there exists a positive integer f satisfying:

F=TIp¥, $#<2°~1, £ IGl, (FIGI/N)=1 and [ >¢***®.

Hence (f, |H|)#1, let Sy € Syly(G) and p’ be a prime satisfying p'I(J, |H|). Now we have
that Sy<IG and Sy is a m group, which contradicts to Lemma 2. which is impossible for p'>
5. By trivial calculation we can show that p’ can’t be 2, 3, or 5.

Similarly, we can show that K/H #A(q), 2|q.
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(4) If K/H=A,(q), g—1| p'—1, then 22—1=(g”—1)/(q—1). Thus g*=2*.
If p">7 then g##+12>23>+1 which implies ¢ is a power of 2 by Lemma 9. Suppose ¢=
27 then (27 —1)/(27—1)=2°—1, hence 2""'=27#—2"—2°+2, 50 =1 and p=p". Thus

P(O+D2TT P+ (i
I6/K| - |1 =EZ 2 THEIETD),

But there exists a primitive prime divisor of 2#*'—1 that can’t divide 2°+V [T2+}(2¢+1) by
Lemma 5, a contradiction. By trivial calculation we can show that P’ can’t be 2, 3 or 5.

(5) If K/H =Ap-.(q) then (¢” —1)/(g—1)(", g—1). The step is divided into several sub-
steps:

(i) If p’>11 then similarly to (4) we have that ¢ is a power of 2. Suppose g=27 then we
have ¢°|2” since p"211. Furthermore, ¢”=(2°¢ —2°—¢)(#, g—1)+(p’, g—1)+1. Hence—q(p,
a—1)+(#, g—1)+1=0(mod ¢°), which means g=2 and p'=p. Thus |G/K| « |H|=2##+>2[]22}
(2+1). On the other hand because of |G/K |||Out(A,-l(2))|=2, so (2"”+1)| |H|. Similarly to
sub-step (1) in Step 1, we can get a contradiction.

(ii) If p’=7 then g#2 or 3,s0 ¢"—1>3 - 2—3. Furthermore, g?' =23+, Similarly to (i),
we can get a contradiction.

(iii) If p'=5 and (5, ¢—1)=1 then ¢*+¢*+¢*+¢=2°—2. Similarly to (i), we have g can't
be a power of 2. So g isodd. Suppose g=2k+1. Hence 0=(2k+1)*+(2k+1)*+(2&+1)*+2
k+1=2P—2=2(mod 4), which is a contradiction. Similarly when p’=5 and (5, g—1)=5 we can
get a contradiction too.

(iv) If p’=3 then 7=1 33_'1 = =2?—1. Hence ¢°—1<3(¢—1)(2*—1) and ¢*+¢+1<3(2°
—1). On the other hand |AxX(q)l=¢%(g*—1)(¢*—1)<(g*—1)® since ¢=2. So |A.(g)|<(g—1)
(3(2*—1))*<(3(2#—1))** since (g—1)*< g*+g+1. Furthermore, |4,(g)] <25+V, Similarly to (2)
we can prove that p can’t be greater than 17. By trivial calculation, a contradiction appears.

Similarly we can prove that K/H £2A.(q).
Step 5. K/H #B,(q) or Cu\(q).

(1) If K/H=C,(q), n=p’ is a prime and ¢=2, then 2°—1=2”—1, which implies p=p'.

And because of |G/K| | |Out(K/H)|=|0ut(C,(2))|=1. So |H|=m%-[=2” « (2#14+1). Simi-

larly to Step 1(1), we can get a contradiction.
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(2) If K/H =Cx(q), n=p’ is prime and g=3 then 2°—1=(3" —1)/2. Furthermore, 2#*' —3¥
=1, which contradicts to Lemma 4.
(3) If K/H=C,(q), 2<n=2" then 2’"+_1 =2?—1. By trivial calculation we have ¢
can’t be a power of 2 or 3. Therefore g"=2°*'—3. If n=4 then g =(2r =3P > (2P —3)*.
Hence g™ >2%#*Y, which contradicts to Lemma 9. If n=2 then ¢°=2"*'—3. Thus g?—1=2"
—4. Furthermore, 0=(g+1) - (g—1)=2°*'—4=4(mod 8), which is impossible.

Similarly we can prove that K/H #B,(q).
Step 6. K/H #D.(q).

(1) If K/H =Dy(5), p’=5, then (5*—1)/4=2°—1. Thus 5¥=272—3>2"!. Hence 571
>24#+) which contradicts to Lemma 9.

(2) Similarly to sub-step (2) in Step 5, we can show that KX/H can’t be Dy(3) or Dy, (3).

Step 7. K/H £E\(q), Fi(q), G(q), *Es(q), *Fi(q) or *Gx(q)-

If K/H=E(q) then (¢°+4*+1)/(3, g—1)=2°—1 and so that ¢°>2**'. Thus g8 > 24P+,
which implies ¢ is a power of 2 by Lemma 9. If ¢=27 then similarly to sub-sub-step (i) in
sub-step (5) of Step, we can get a contradiction.

By the same reasoning, we can show that K/H can’t be E(q) or F.(q), Gq), 2Es(q), 2Fi(g) or
2Gi(q).

Step 8. K/H #2B\(q), g=2**".
If K/H =B,(q), g=2%**' then 2?—1=g+,/2¢ +1 or ¢—1. In the case of ¥—1=q+/2q

+1, one has that 0=g?*+' £ g**1=2¢—2=2(mod 4), a contradiction. So ¢ —1=2*—1. Hence ¢

=2° and

pr-p(9P Pl p-1(o2i _
(/K] - || =22 D@ DI =1)

By the reasoning to Step 4(4) we can get a contradiction.

Step 9. From Step 1 to Step 8 and Lemma 3 we have that K /H is one of 2D,(q).
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(1) If K/H =2D,(3), n=2%+1 isn't a prime, then (37! +1)/2=2°—1, so 3"'+3=2°*, which
is impossible.

(2) If K/H =2D,(3), 5<p'#2*+1, then (37 +1)/4=27—1. Hence 37 >2°+!.
Furthermore, 3779 >24#+1 which contradicts to Lemma 6.

(3) If K/H =*D,(q), 4<n=2"then (¢"+1)/(2, g—1)=2—1. It’s easy to see that g can’t be
a power of 2, which we have ¢"=21—3 from. If n>>4 then g™"V>2%**D which contradicts
to Lemma 9. If #=4 then ¢™"~">22#+1) which implies ¢ is a power of 3 by Lemma 9, similarly
to (1), a contradiction.

(4) If K/H =Dy,,(2), p’=2%—1, k=2 then 2°—1=27+1 or 2?+1+1, which is impossible.
Similarly to (1) and (2) we have that K/H #£2D,(3), p'=2%+1, k=2.

Now we have that K/H =2D,,,(2), p’#2"—1. Thus 2 —1=2°—1. It follows that p=p",
G/K=1 and H=1, which means G=M. This is the end of the proof.
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