$^{2}D_{p+1}(2)(5 \le p \ne 2^{m}-1)$ Can be Characterized by Its Order Components

Huaguo Shi Guiyun Chen* School of Mathematics and Finance, Southwest China Normal University, 400715, Chongqing, P. R. China

(Received August 31, 2004)

Abstract

In this paper we prove that if G is a finite group, $M={}^2D_{p+1}(2), p\neq 2^m-1$, G and M have the same order components, then $G\cong M$

AMS Subject Classification: 20D05, 20D60

Key words: finite groups, prime graphs, order components

1. Introduction

If G is a finite group, we define the prime graph $\Gamma(G)$ as following: its vertices are the primes dividing the order of G, and two vertices p and q are joined by an edge, if and only if there is an element in G of order pq. We demote the set of all the connected components of graph $\Gamma(G)$ by $T(G)=\{\pi_i(G), \ for \ i=1, \ 2\cdots t(G)\}$, where t(G) is the number of connected components of $\Gamma(G)$, and if G is of even order we always assume 2 in π_1 . We also demote the set of all the primes dividing n by $\pi(n)$ where n is a natural number, obviously |G| can be expressed as a product of m_i , $m_2, \cdots, m_{t(G)}$, where m_i is a positive integer with $\pi(m_i)=\pi_i$. All m_i , are called the order components of G. Let $OC(G)=\{m_1, m_2, \cdots m_{t(G)}\}$ be the set of order components of G. The order components of non-abelian simple groups having at least two prime graph components have been abtained in [2]

Some simple groups are characterized by their order components, such as a finite simple group with at least three prime graph components [1], sporadic simple groups [2], Suzuki-Ree groups [3], $G_2(q)[4]$, $E_8(q)[5]$, $PSL_2(q)[6]$, $^3D_4(q)[7]$, $PSU_5(q)[10]$, PSU(3, q) for q > 5[11], $^2D_4(q)[12]$, $^2E_6(q)[13]$, $E_6(q)[14]$. In this paper we continue this work and will prove the following

^{*}This work is supported by NSFC. Excellant Teachers Supporting Project and keystone Project of Minstry of Education of China

theorem:

Theorem. Let $M = {}^{2}D_{p+1}(2)$, $p \neq 2^{m} - 1$. If a finite group G has the same order components of M, then $G \cong M$.

2. Preliminary Results

Lemma 1. If G is a 2-Frobenius group of even order, then G=ABC, where AB and BC are Frobenius groups with kernels A and B, complements B and C respectively. Moreover

- (1) $t(\Gamma(G))=2$, $\pi(B)=\pi_2$ and $\pi(A)\cup\pi(C)=\pi_1$.
- (2) B and C are cyclic groups satisfying that |C| |Aut(B)|.
- (3) $OC(G) = \{|A| \cdot |C|, |B|\}$, and A is nilpotent.

Lemma 2. [[2] Lemma 6] If $t(G) \ge 2$, H is a π_i subgroup of G, and $H \triangleleft G$, then $\prod_{j=1}^{\{G\}} m_i | (|H|-1)$.

The folloing lemma is a corollary of Theorem A of [15].

Lemma 3. If G is a simple group with $t(G) \ge 2$, then one of the following holds:

- (1) G is a Frobenius group or 2-Frobenius group;
- (2) G has a normal series $1 \leq H \leq K \leq G$ such that H is a nilpotent π_1 group, K/H is a non-abelian simple group, any odd order component of G is equal to one of those of K/H, G/K is a π_1 group, and |G/K||Out(K/H)|.

Lemma 4. [[16] Remark] The equation $p^m-q^n=1$ holds iff $3^2-2^3=1$, where p, q are primes and m, n>1.

Lemma 5. [17] Let p be a prime and n be a natural number, $n \ge 2$. Then there exists a prime divisor r of p^n-1 which does not divide p^m-1 for any natural number m < n. except n=6, p=2 and n=2, p+1 is a power of 2. Such p=2 such p=2 is called a primitive prime divisor of p^n-1 .

Of course a primitive prime divisor of p^n-1 can't divide p^n+1 or p^m-1 for $1 \le m < 2n$.

Lemma 6. [[9] Theorem 1] If $a=(q^{n+1}+1)\prod_{i=1}^n(q^{2i}-1)$ where q is a power of a prime, then there is a positive integer f dividing a such that (f, a/f)=1. Let $f=\prod p_i^{ai}$, then one of the following holds:

- (1) If $10 \le n \le 17$, then $p_i^{ai} < \frac{q^n 1}{n(q 1)}$ and $f > q^{4(n+1)}$;
- (2) If $n \ge 18$, then $p_i^{ai} < \frac{q^n 1}{n(q 1)}$ and $f > q^{6(n+1)}$.

Lemma 7. [[18] Lemma 1] Let $n \ge 6$ be a positive integer, then there exists at least s(n) prime numbers p_i such that $\frac{n+1}{2} < p_i < n$, where $1 \le i \le s(n)$ and s(n) is one of the following:

s(n)=6	n≥49
s(n)=5	$42 \le n \le 47$
s(n)=4	$38 \le n \le 41$
s(n)=3	$18 \le n \le 37$
s(n)=2	$14 \le n \le 17$
s(n)=1	$6 \le n \le 13$

Lemma 8. Let p be an odd prime, e the exponent of 4 modulo p. Suppose that $4^e=1+p^rk$, where p is co-prime to k. If t is a natural number satisfying $t=p^su$, (p, u)=1 then $p^{r+s} \parallel 4^{et}-1$.

Proof. Because
$$4^{et} - 1 = (1 + p^r \cdot k)^{p^s u} - 1 = \sum_{i=1}^{p^s u} \frac{(p^s u)!}{(p^s u - i)! \, i!} (p^r k)^i$$
, so $p^{r+s} ||4^{et} - 1|$.

Lemma 9. Let $a = \prod_{i=1}^{n} (2^{2i} - 1)$. If p is an odd prime number and p|a then $a_p < 2^{3n}$. Furthermore, if $p \ge 5$ then $a_p < 2^{2n}$, where a_p is the exponent of the power with base the prime p in the standard decomposition of a.

Proof. Let e be the exponent of 4 modulo p and $4^e=1+p^rk$, p/k. Assume that $b=(4^e-1)(4^{2e}-1)\cdots(4^{we}-1)$, where $w=[\frac{n+1}{e}]$. Then

$$a_p = b_p = p^{rw + \sum_{j=1}^{r} \{w/p^j\}} \le p^{rw + w/(p-1)}$$

Since $p^r \| 4^e - 1$, which implies that $p^r \| (2^e - 1)$ or $p^r \| (2^e + 1)$, so

$$a_p < (2^e + 1)^w (2^e + 1)^{w/(p-1)} = (2^e + 1)^{wp/(p-1)} \le (3^e + 1)^{1.5w} < 2^{3n}$$

Clearly if $p \ge 5$ then $a_p > 2^{2n}$.

3. Proof of the Theorem

Proof. If $M={}^{2}D_{p+1}(2)$ where $p\neq 2^{m}-1$, then the unique odd order component of M is $m_{2}=2^{p}-1$. We will prove the Theorem step by step.

Step 1. G can't be a Frobenius group or 2-Frobenius group.

(1) If G is a Frobenius group with Frobenius kernel H and Frobenius complement K, let $|H|=m_1$, $|K|=m_2$. Since $p\geq 5$, there exists a primitive prime divisor r of $2^{2(p+1)}-1$ and $S_r \in Syl_r$ (G), then $|S_r| (2^{p+1}+1)$ and $S_r \subseteq G$. By Lemma 2, $|S_r| \equiv 1 \pmod{m_2}$, which is impossible.

- (2) If G is a 2-Frobenius group, then there is a normal series $1 \le H \le K \le G$ such that H is a nilpotent π_1 group, $|K/H| = m_2$, $|G/K| |(|K/H| 1) = 2^p 2$. So $(2^{p+1} + 1) ||H|$. Similarly to (1), it's impossible.
- From (1), (2) and Lemma 3 we know there is a normal series $1 \le H \le K \le G$ such that H is a nilpotent π_1 group, K/H is a non-abelian simple group and $m_2 \in OC(K/H)$, G/K is a π_1 group and |G/K| |Out(K/H)|.
- Step 2. $K/H \not\cong E_7(2)$, $E_7(3)$, $A_2(2)$, $A_2(4)$, ${}^2A_5(2)$, ${}^2E_6(2)$, ${}^2F_4(2)'$ or one of the sporadic simple groups.

Because $p \ge 5$, we have that J_4 , ON, Ly, B or HN has an order component of type 2^p-1 , $p \ne 2^m-1$, which implies p=5 and $M \cong {}^2D_6(5)$. But the order of any one of J_4 , ON, Ly, B or HN can't divide $|{}^2D_6(5)|$. This concludes Step 2.

Step 3. $K/H \not\equiv A_n$.

Otherwise, $|A_{2^p-1}| | |A_n| | |^2 D_{p+1}(2)|$. By $p \ge 5$, there exist at least three prime numbers p_i satisfying $2^{p-1} < p_i < 2^p - 1$ by Lemma 7, which of course divide $|A_n|$. But there exist at most two prime divisors of $|^2 D_{p+1}(2)|$ between 2^{p-1} and $2^p - 1$, a contradiction.

Step 4. $K/H \not\equiv A_n(q)$ or $^2A_n(q)$.

- (1) If $K/H \cong A_1(q)$, 4|(q+1), then $2^p-1=q$ or (q-1)/2. Furthermore, $2^p-q=1$ or $2^{p+1}-q=1$, which contradicts to Lemma 4.
- (2) If $K/H \cong A_1(q)$, 4|(q-1), then $2^p-1=q$ or (q+1)/2. Similarly to (1), we have that $2^p-1\neq q$.

If $2^p-1=(q+1)/2$ then $q=2^{p+1}-3$ and $|K/H|<2^{3(p+1)}$. Assume $q=r^f$. Of course r can't be 2 or 3, so $r\geq 5$, But $5^{2p}>2^{p+1}-3$. Hence $|G/K|<2^{p+1}$ as $|G/K| \mid |Out(K/H)|=2f$. If $p+1\geq 10$, by Lemma 6, then there exists a positive integer f satisfying:

$$f = \prod p_i^{ai}, p_i^{ai} < 2^p - 1, f | |G|, (f, |G|/f) = 1 \text{ and } f > q^{4(p+1)}$$

Hence $(f, |H|) \neq 1$, let $S_p \in Syl_p(G)$ and p' be a prime satisfying p'|(f, |H|). Now we have that $S_p \leq G$ and S_p is a π_1 group, which contradicts to Lemma 2. which is impossible for p' > 1. By trivial calculation we can show that p' can't be 2, 3, or 5.

Similarly, we can show that $K/H \not\cong A_1(q)$, 2|q.

(4) If $K/H \cong A_p(q)$, $q-1 \mid p'-1$, then $2^p-1=(q^p-1)/(q-1)$. Thus $q^p \ge 2^p$.

If p' > 7 then $q^{p'(p'+1)/2} > 2^{3(p+1)}$, which implies q is a power of 2 by Lemma 9. Suppose $q = 2^r$ then $(2^{rp'}-1)/(2^r-1)=2^p-1$, hence $2^{rp'}=2^{r+p}-2^r-2^p+2$, so r=1 and p=p'. Thus

$$|G/K| \cdot |H| = \frac{2^{p(p+1)/2} \prod_{i=1}^{p+1} (2^i + 1)}{2^{p+1} - 1}.$$

But there exists a primitive prime divisor of $2^{p+1}-1$ that can't divide $2^{p(p+1)} \prod_{i=1}^{p+1} (2^i+1)$ by Lemma 5, a contradiction. By trivial calculation we can show that p' can't be 2, 3 or 5.

- (5) If $K/H \cong A_{p'-1}(q)$ then $(q^{p'}-1)/(q-1)(p', q-1)$. The step is divided into several substeps:
- (i) If $p' \ge 11$ then similarly to (4) we have that q is a power of 2. Suppose $q = 2^r$ then we have $q^3|2^p$ since $p' \ge 11$. Furthermore, $q^p = (2^pq 2^p q)(p', q 1) + (p', q 1) + 1$. Hence $-q(p', q 1) + (p', q 1) + 1 \equiv 0 \pmod{q^3}$, which means q = 2 and p' = p. Thus $|G/K| \cdot |H| = 2^{p(p+3)/2} \prod_{i=1}^{p+1} (2^i + 1)$. On the other hand because of $|G/K| ||Out(A_{p-1}(2))| = 2$, so $(2^{p+1} + 1) ||H|$. Similarly to sub-step (1) in Step 1, we can get a contradiction.
- (ii) If p'=7 then $q \neq 2$ or 3, so $q^7-1 \geq 3 \cdot 2^p-3$. Furthermore, $q^{21} \geq 2^{3(p+1)}$. Similarly to (i), we can get a contradiction.
- (iii) If p'=5 and (5, q-1)=1 then $q^4+q^3+q^2+q=2^p-2$. Similarly to (i), we have q can't be a power of 2. So q is odd. Suppose q=2k+1. Hence $0\equiv (2k+1)^4+(2k+1)^3+(2k+1)^2+2k+1=2^p-2\equiv 2 \pmod 4$, which is a contradiction. Similarly when p'=5 and (5, q-1)=5 we can get a contradiction too.
- (iv) If p'=3 then $\frac{q^3-1}{(q-1)(3,\ q-1)}=2^p-1$. Hence $q^3-1\le 3(q-1)(2^p-1)$ and $q^2+q+1\le 3(2^p-1)$. On the other hand $|A_2(q)|=q^3(q^2-1)(q^3-1)\le (q^3-1)^3$ since $q\ge 2$. So $|A_2(q)|\le (q-1)^3(3(2^p-1))^3<(3(2^p-1))^4$. Since $(q-1)^2< q^2+q+1$. Furthermore, $|A_2(q)|< 2^{5(p+1)}$. Similarly to (2) we can prove that p can't be greater than 17. By trivial calculation, a contradiction appears.

Similarly we can prove that $K/H \not\cong {}^2A_n(q)$.

Step 5. $K/H \not\cong B_n(q)$ or $C_n(q)$.

(1) If $K/H \cong C_n(q)$, n=p' is a prime and q=2, then $2^p-1=2^{p'}-1$, which implies p=p'. And because of $|G/K| \mid |Out(K/H)| = |Out(C_p(2))| = 1$. So $|H| = \frac{|G|}{|K/H|} = 2^p \cdot (2^{p+1} + 1)$. Similarly to Step 1(1), we can get a contradiction.

- (2) If $K/H \cong C_n(q)$, n=p' is prime and q=3 then $2^p-1=(3^p-1)/2$. Furthermore, $2^{p+1}-3^p=1$, which contradicts to Lemma 4.
- (3) If $K/H \cong C_n(q)$, $2 \le n = 2^{nr}$ then $\frac{q^n + 1}{(2, q 1)} = 2^p 1$. By trivial calculation we have q can't be a power of 2 or 3. Therefore $q^n = 2^{p+1} 3$. If $n \ge 4$ then $q^{n^2} = (2^{p+1} 3)^n \ge (2^{p+1} 3)^4$. Hence $q^{n^2} > 2^{2(p+1)}$, which contradicts to Lemma 9. If n = 2 then $q^2 = 2^{p+1} 3$. Thus $q^2 1 = 2^{p+1} 4$. Furthermore, $0 = (q+1) \cdot (q-1) = 2^{p+1} 4 = 4 \pmod{8}$, which is impossible.

Similarly we can prove that $K/H \not\cong B_n(q)$.

Step 6. $K/H \not\cong D_n(q)$.

- (1) If $K/H \cong D_p(5)$, $p' \ge 5$, then $(5^p 1)/4 = 2^p 1$. Thus $5^p = 2^{p+2} 3 > 2^{p+1}$. Hence $5^{p'(p'-1)} > 2^{4(p+1)}$, which contradicts to Lemma 9.
 - (2) Similarly to sub-step (2) in Step 5, we can show that K/H can't be $D_p(3)$ or $D_{p+1}(3)$.
 - Step 7. $K/H \not\cong E_n(q)$, $F_4(q)$, $G_2(q)$, ${}^2E_6(q)$, ${}^2F_4(q)$ or ${}^2G_2(q)$.

If $K/H \cong E_6(q)$ then $(q^6+q^3+1)/(3, q-1)=2^p-1$ and so that $q^9>2^{p+1}$. Thus $q^{36}>2^{4(p+1)}$, which implies q is a power of 2 by Lemma 9. If $q=2^r$ then similarly to sub-sub-step (i) in sub-step (5) of Step, we can get a contradiction.

By the same reasoning, we can show that K/H can't be $E_8(q)$ or $F_4(q)$, $G_2(q)$, ${}^2E_6(q)$, ${}^2F_4(q)$ or ${}^2G_2(q)$.

Step 8. $K/H \not\cong {}^{2}B_{2}(q), q=2^{2k+1}$.

If $K/H \cong {}^2B_2(q)$, $q = 2^{2k+1}$ then $2^p - 1 = q \pm \sqrt{2q} + 1$ or q - 1. In the case of $2^p - 1 = q \pm \sqrt{2q} + 1$, one has that $0 \equiv q^{2k+1} \pm q^{k+1} = 2^p - 2 \equiv 2 \pmod{4}$, a contradiction. So $q - 1 = 2^p - 1$. Hence $q = 2^p$ and

$$|G/K| \cdot |H| = \frac{2^{p^2-p}(2^p+1)(2^{p+1}+1)\prod_{i=1}^{p-1}(2^{2i}-1)}{2^{2p}+1}.$$

By the reasoning to Step 4(4) we can get a contradiction.

Step 9. From Step 1 to Step 8 and Lemma 3 we have that K/H is one of ${}^{2}D_{n}(q)$.

- (1) If $K/H \cong {}^{2}D_{n}(3)$, $n=2^{n}+1$ isn't a prime, then $(3^{n-1}+1)/2=2^{p}-1$, so $3^{n-1}+3=2^{p+1}$, which is impossible.
- (2) If $K/H \cong {}^2D_{p'}(3)$, $5 < p' \neq 2^k + 1$, then $(3^p + 1)/4 = 2^p 1$. Hence $3^p > 2^{p+1}$. Furthermore, $3^{p(p'-1)} > 2^{4(p+1)}$, which contradicts to Lemma 6.
- (3) If $K/H \cong {}^2D_n(q)$, $4 \le n = 2^k$ then $(q^n + 1)/(2, q 1) = 2^p 1$. It's easy to see that q can't be a power of 2, which we have $q^n = 2^{p+1} 3$ from. If n > 4 then $q^{n(n-1)} > 2^{3(p+1)}$, which contradicts to Lemma 9. If n = 4 then $q^{n(n-1)} > 2^{2(p+1)}$, which implies q is a power of 3 by Lemma 9, similarly to (1), a contradiction.
- (4) If $K/H \cong {}^2D_{p'+1}(2)$, $p'=2^k-1$, $k \ge 2$ then $2^p-1=2^{p'}+1$ or $2^{p'+1}+1$, which is impossible. Similarly to (1) and (2) we have that $K/H \not\cong {}^2D_p(3)$, $p'=2^k+1$, $k \ge 2$.

Now we have that $K/H \cong {}^2D_{p'+1}(2)$, $p' \neq 2^m - 1$. Thus $2^p - 1 = 2^p - 1$. It follows that p = p', G/K = 1 and H = 1, which means $G \cong M$. This is the end of the proof.

References

- [1] Guiyun Chen, On Thompson's Conjecture, J. Algebra 15 1996 184-193.
- [2] Guiyun Chen, A New Characterization of Sporadic Groups, Algebra Colloq 3(1) 1996 49-58.
- [3] Guiyun Chen, A New Characterization of Suzuki-Ree Groups, Sci. in China(ser A) 27(5) 1997 430-433.
- [4] Guiyun Chen, A New Characterization of $G_2(q)$, $[q \equiv 0 \mod (3)]$, J. Southwest China Normal Uni. 26(4) 2001.
- [5] Guiyun Chen, A New Characterization of $E_8(q)$, J. Southwest China Normal Uni. 21(3) 1995 215-217.
- [6] Guiyun Chen, A New Characterization of $PSL_2(q)$, Southeast Asian Bulletin of Math 22 1998 257-263.
- [7] Guiyun Chen, Characterization of ³D₄(q), Southeast Asian Bulletin of Math 25 2001 389-401.
- [8] Guiyun Chen, On Frobenius and 2-Frobenius Group, J. Southwest China Normal Uni. 20(5) 1995 485-487.
- [9] Guiyun Chen and Huaguo Shi, On Hall Factors of Several Special Integral Expressions, to appear.
- [10] A. Iranmanesh and B. Khosravi, A Characterization of $PSU_5(q)$, International Mathematical Journal, 3(2) 2003 129-141.
- [11] A. Iranmanesh, B. Khosravi and S. H. Alavi, A Characterization of PSU(3, q) for q > 5, Southeast Asian Bulletin Math; 26(2) 2002 33-44.

- [12] B. Khosravi, A Characterization of ${}^2D_4(q)$, Pure Math. Appl. 12(4) 2001 415-424.
- [13] Behrooz Khosravi and Bahman Khosravi, A Characterization of ${}^{2}E_{6}(q)$, Kumamoto J. Math. 16 2003 1-11.
- [14] Behrooz Khosravi and Bahman Khosravi, A Characterization of $E_6(q)$, Algebras Groups and Geometries, 19(2) 2002 225-243.
- [15] J. S. Williams, Prime Graph Components of Finite Group, J. Algebra 69 1981 487-513.
- [16] P. Crescenzo, A Diophantine Equation Which Arises in the Theory Finite Groups, Advances in Math, 17 1975 25-29.
- [17] K. Zsigmody, Zur Theories der Potenzreste. Monatsh, Mat. Phys., 3 1982 265-284.
- [18] A. S. Kondtratev and V. D. Mazurove, Recognition of Alternating Groups of Prime Degree from Their Element Orders, Siberian Mathematical Journal 41(2) (2000) 294-302.