A note on the meromorphic $\mathcal{O}(X)$ -convexity

Dedicated to Professor Hideaki Kazama on the occasion of his sixtieth birthday

Makoto Abe

(Received January 31, 2005)

Abstract

An open set D of a reduced Stein space X is meromorphically $\mathcal{O}(X)$ -convex if and only if D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of X such that D_{ν} is $\mathcal{O}_{X}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$.

1. Introduction

In this paper we prove that an open set D of a reduced Stein space X is meromorphically $\mathcal{O}(X)$ -convex if and only if D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of X such that D_{ν} is $\mathcal{Q}_{X}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$, where $\mathcal{Q}_{X}(D_{\nu})$ denotes the family of the functions φ on D_{ν} of the form $\varphi=(f/g)|_{D_{\nu}}$ such that $f, g \in \mathcal{O}(X)$, $g \not\equiv 0$ on any irreducible component of X and $g \not\equiv 0$ on D_{ν} (see Theorem 4.1).

By the similar argument we also prove that an open set D of \mathbb{C}^n is rationally convex if and only if D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of \mathbb{C}^n such that each D_{ν} is convex with respect to the rational functions which are holomorphic on D_{ν} (see Theorems 4.2 and 4.3).

2. Preliminaries

Throughout this paper all complex spaces are supposed to be *reduced* and *second countable*. Let X be a complex space and D an open set of X. We denote by $\mathcal{Q}_X(D)$ the family of the functions φ on D of the form $\varphi=(f/g)|_D$ such that $f, g \in \mathcal{O}(X), g \not\equiv 0$ on any irreducible component of X and $g\neq 0$ on D. Since every strong Poincaré problem is solvable in \mathbb{C}^n , we have that $\mathcal{Q}_{\mathbb{C}^n}(D) = \mathcal{M}(\mathbb{C}^n) \cap \mathcal{O}(D)$ for every open set D of \mathbb{C}^n .

Let X be a complex space and let $\mathscr{F} \subset \mathscr{O}(X)$. Then X is said to be meromorphically \mathscr{F} -convex if for every compact set K of X the meromorphically convex hull $\widetilde{K}_{\mathscr{F}} := \{x \in X \mid f(x) \in f(K) \text{ for every } f \in \mathscr{F} \}$ of K with respect to \mathscr{F} is compact. An open set D of X is said to be meromorphically \mathscr{F} -convex if D is meromorphically \mathscr{F} -convex, that is, for every compact

18 Makoto Abe

set K of D the set $\tilde{K}_{\mathcal{F}} \cap D$ is compact. If X is a Stein space, then an open set D of X is meromorphically $\mathcal{O}(X)$ -convex if and only if for every compact set K of D we have that $\tilde{K}_X \subset D$, where $\tilde{K}_X := \tilde{K}_{\mathcal{F}(X)}$ (see Theorem 12 of Abe [1]).

Let $z_1, z_2, ..., z_n$ be the coordinates of \mathbb{C}^n . We denote by $\mathbb{C}[z_1, z_2, ..., z_n]$ and by $\mathbb{C}(z_1, z_2, ..., z_n)$ the set of polynomial functions on \mathbb{C}^n and the set of rational functions on \mathbb{C}^n respectively. Let K be a compact set of \mathbb{C}^n . The set $\tilde{K}_{\mathbb{C}[z_1,z_2,...,z_n]}$ is said to be the *rationally convex hull* of K, which coincides with the set of the points $x \in \mathbb{C}^n$ such that if $h \in \mathbb{C}(z_1,z_2,...,z_n)$ is holomorphic near K, then h is also holomorphic near x and $|h(x)| \le ||h||_K$ (see Stolzenberg [11, p. 262] or Lemma 2.4 of Gamelin [4, p. 69]). An open set D of \mathbb{C}^n is said to be *rationally convex* if D is meromorphically $\mathbb{C}[z_1,z_2,...,z_n]$ -convex. Since we have that $\tilde{K}_{\mathbb{C}[z_1,z_2,...,z_n]} = \tilde{K}_{\mathbb{C}^n}$ for every compact set K of \mathbb{C}^n , an open set D of \mathbb{C}^n is rationally convex if and only if D is meromorphically $\mathcal{O}(\mathbb{C}^n)$ -convex (see Lemma 2 of Abe [1]). If an open set D of \mathbb{C}^n is $\mathcal{O}_{\mathbb{C}^n}(D)$ -convex, then D is rationally convex in \mathbb{C}^n . The converse however is not true if $n \ge 2$ (see Abe [2]).

Let $\mathscr{R}(D) := \mathbf{C}(z_1, z_2, ..., z_n) \cap \mathscr{O}(D)$ for every open set D of \mathbf{C}^n . If an open set D of \mathbf{C}^n is $\mathscr{R}(D)$ -convex, then D is $\mathscr{O}_{\mathbf{C}^n}(D)$ -convex. The converse however is not true if $n \ge 2$. As an example, let $D := \mathbf{C}^n \setminus S$, where S is an irreducible transcendental hypersurface of \mathbf{C}^n . Then D is $\mathscr{O}_{\mathbf{C}^n}(D)$ -convex and is not $\mathscr{R}(D)$ -convex.

Let X be a complex space. Let $f_{\mu}, g_{\mu} \in \mathcal{O}(X)$ and let $g_{\mu} \not\equiv 0$ on any irreducible component of X for $\mu=1, 2, ..., m$. Let $h_{\mu} := f_{\mu}/g_{\mu}$ for $\mu=1, 2, ..., m$. Let $Z_1, Z_2, ..., Z_m$ be open sets of C. Let G be an open set of $X \setminus A$, where $A := \{g_1g_2 \cdots g_m = 0\}$. Let $W := G \cap \{x \in X \setminus A \mid h_{\mu}(x) \in Z_{\mu}\}$ for every $\mu=1, 2, ..., m$ and assume that $W \subseteq G$. Then the open set W is said to be a meromorphic polyhedron of X. A meromorphic polyhedron W of C^n is said to be a rational polyhedron of C^n if the functions $f_1, f_2, ..., f_m, g_1, g_2, ..., g_m$ are chosen to be polynomial.

3. Lemmas

We use the notation in Sect. 2 for the meromorphic or rational polyhedron W in the following lemmas. Let $\Delta := \{t \in \mathbb{C} \mid |t| < 1\}$.

Lemma 3.1. If X is a Stein space or an irreducible complex space, then every meromorphic polyhedron W of X is $\mathcal{Q}_X(W)$ -convex.

Proof. Let K be an arbitrary compact set of W. Assume that $\widehat{K}_{\mathcal{L}_i(W)}$ is not compact. Then there exist a sequence $\{p_\nu\}_{\nu=1}^\infty \subset \widehat{K}_{\mathcal{L}_i(W)}$ and $p_0 \in \partial W$ such that $\lim_{\nu \to \infty} p_\nu = p_0$ in G. There exists an index μ_0 such that $c := h_{\mu_0}(p_0) \in \partial Z_{\mu_0}$. Since $f_{\mu_0}/g_{\mu_0} = h_{\mu_0} \neq c$ on W, we have that $f_{\mu_0} - cg_{\mu_0} \neq 0$ on W. We consider the case when X is Stein. Let $\{X_i\}_{i \in I}$ be the set of irreducible components of X. Let $I' := \{i \in I \mid f_{\mu_0} - cg_{\mu_0} \equiv 0 \text{ on } X_i\}$, $I'' := I \setminus I'$ and $X'' := \bigcup_{j \in I''} X_j$. Then $W \subset X''$. Take a point $\xi_i \in X_i \setminus X''$ for every $i \in I'$. Since $X'' \cup \{\xi_i \mid i \in I'\}$ is an analytic set of a Stein space X, there exists $v \in \mathcal{O}(X)$ such that $v = f_{\mu_0} - cg_{\mu_0}$ on X'' and $v(\xi_i) = 1$ for every $i \in I'$.

Then $v \not\equiv 0$ on any irreducible component of X. Let $l := g_{\mu_0}/v$ on X. In the case when X is an irreducible complex space, let $l := g_{\mu_0}/(f_{\mu_0} - cg_{\mu_0})$ on X. In both cases we have that $l \in \mathcal{O}_X(W)$ and that $l = 1/(h_{\mu_0} - c)$ on W. Therefore we have that $\lim_{\nu \to \infty} |l(p_{\nu})| = +\infty$. On the other hand $|l(p_{\nu})| \leq ||l||_K$ for every $\nu \in \mathbb{N}$. It is a contradiction. It follows that $\widehat{K}_{\mathcal{O}_X(W)}$ is compact. Thus we proved that W is $\mathcal{O}_X(W)$ -convex.

Lemma 3.2. Every rational polyhedron W of \mathbb{C}^n is $\mathscr{R}(W)$ -convex.

Proof. Applying the argument in the proof of Lemma 3.1 in the case when X is irreducible, we obtain the assertion.

Lemma 3.3. Let K be a compact set of \mathbb{C}^n and E an open set of \mathbb{C}^n such that $K \subset E \subset \mathbb{C}^n$ and $\widetilde{K}_{\mathbb{C}^n} \cap \partial E = \emptyset$. Then there exists a rational polyhedron W of \mathbb{C}^n with $Z_1 = Z_2 = \cdots = Z_m = \Delta$ and $f_1 = f_2 = \cdots = f_m = 1$ such that $\widetilde{K}_{\mathbb{C}^n} \subset W \subset E$.

Proof. We use the method of the proof of Lemma 2¹ of Abe-Furushima [3] or of Lemma 5 of Abe [1]. Take an arbitrary point $p \in \partial E$. Since $p \notin \tilde{K}_{\mathbb{C}^n}$, there exists $u^{(p)} \in \mathbb{C}[z_1, z_2, ..., z_n]$ such that $u^{(p)}(p) \notin u^{(p)}(K)$. Then there exist $\alpha_p \in \mathbb{C}$ and $\varepsilon_p > 0$ such that $u^{(p)}(p) \in \{t \in \mathbb{C} \mid 0 < |t - \alpha_p| < \varepsilon_p\}$ and $u^{(p)}(K) \subset \{t \in \mathbb{C} \mid |t - \alpha_p| > \varepsilon_p\}$. Let $g^{(p)} := (u^{(p)} - \alpha_p)/\varepsilon_p$, $U_p := \{g^{(p)} \neq 0\}$, $V_p := \{x \in U_p \mid |1/g^{(p)}(x)| < 1\}$. Then $g^{(p)} \in \mathbb{C}[z_1, z_2, ..., z_n]$, $p \in V_p$, $K \subset W_p$, $\overline{W}_p \subset U_p$ and $V_p \cap \overline{W}_p = \emptyset$. Since ∂E is compact, there exist finitely many points $p_1, p_2, ..., p_m \in \partial E$ such that $\partial E \subset \bigcup_{\mu=1}^m V_{p_\mu}$. Let $g_\mu := g^{(p_p)}$ for $\mu=1, 2, ..., m$. Let $A := \{g_1g_2...g_m = 0\}$, $G := E \setminus A$ and $W := G \cap \{x \in \mathbb{C}^n \setminus A \mid |1/g_\mu(x)| < 1\}$ for every $\mu=1, 2, ..., m$. It is easy to verify that $W = G \cap \{m \in \mathbb{C}^n \setminus A \mid |1/g_\mu(x)| < 1\}$ for every $\mu=1, 2, ..., m$. It is easy to verify that $W = G \cap \{m \in \mathbb{C}^n \setminus A \mid |1/g_\mu(x)| < 1\}$ for every $\mu=1, 2, ..., m$.

Lemma 3.4. Let X be a complex space. Let $\mathscr F$ be a subfamily of $\mathscr O(X)$ such that if $f \in \mathscr F$ and c > 0, then $cf \in \mathscr F$. Let K be a compact set of X and E an open set of X such that $K \subset E \subset X$ and $\widehat{K}_{\mathscr F} \cap \partial E = \emptyset$. Then there exist finitely many $h_1, h_2, ..., h_m \in \mathscr F$ such that $K \subset W \subset E$, where $W := E \cap \{x \in X \mid |h_{\mu}(x)| < 1 \text{ for every } \mu = 1, 2, ..., m\}$.

Proof. Take an arbitrary point $p \in \partial E$. Since $p \notin \widehat{K}_{\mathcal{F}}$, there exists $h^{(p)} \in \mathcal{F}$ such that $|h^{(p)}(p)| > \|h^{(p)}\|_{K}$. Multiplying a positive constant we may assume that $|h^{(p)}(p)| > 1 > \|h^{(p)}\|_{K}$. Then $V_p := \{x \in X \mid |h^{(p)}(x)| > 1\}$ is an open neighborhood of p. Since ∂E is compact, there exist finitely many points $p_1, p_2, ..., p_m \in \partial E$ such that $\partial E \subset \bigcup_{\mu=1}^m V_{p_\mu}$. Let $h_\mu := h^{(p_\mu)}$ for every $\mu = 1$,

¹The proof of Lemma 2 of Abe-Furushima [3] contains an inadequate argument. For the corrected proof see Lemma 10 of Abe [1].

20

2, ..., m. Let $W := E \cap \{x \in X \mid |h_{\mu}(x)| < 1 \text{ for every } \mu = 1, 2, ..., m\}$. Then we have that $K \subset W \subset E$.

Lemma 3.5. Let W be a rational polyhedron of \mathbb{C}^n with $Z_1 = Z_2 = \cdots = Z_m = \Delta$ and let D be an open set of \mathbb{C}^n such that $W \subset D \subset \mathbb{C}^n \setminus A$. Then for every compact set K of W we have that $\widehat{K}_{\mathscr{X}(D)} \subset W$.

Proof. The map $\psi := (h_1, h_2, ..., h_m, z_1, z_2, ..., z_n) : \mathbb{C}^n \setminus A \to \mathbb{C}^{m+n}$ is injective and regular. Since the map $(h_1, h_2, ..., h_m) : W \to \Delta^m$ is proper (see E.51f of Kaup-Kaup [5, p. 226]), the induced map $\psi_{W, \Delta^m \times \mathbb{C}^n} : W \to \Delta^m \times \mathbb{C}^n$ is also proper. It follows that $\psi_{W, \Delta^m \times \mathbb{C}^n} : W \to \Delta^m \times \mathbb{C}^n$ is a closed holomorphic embedding. Let K be an arbitrary compact set of W. Take an arbitrary point $x \in \widehat{K}_{\mathscr{F}(D)}$. Since $|h_\mu(x)| \le ||h_\mu||_K < 1$ for $\mu = 1, 2, ..., m$, we have that $\psi(x) = (h_1(x), h_2(x), ..., h_m(x), x) \in \Delta^m \times \mathbb{C}^n$. Assume that $\psi(x) \notin \psi(W)$. Since $\psi(W) \cup \{\psi(x)\}$ is an analytic set of a Stein manifold $\Delta^m \times \mathbb{C}^n$, there exists $\alpha \in \mathscr{O}(\Delta^m \times \mathbb{C}^n)$ such that $\alpha = 0$ on $\psi(W)$ and $\alpha(\psi(x)) = 1$. There exists a polynomial function β on \mathbb{C}^{m+n} such that $|\alpha - \beta| < 1/2$ on $\psi(K \cup \{x\})$. Then $|\beta \circ \psi| < 1/2$ on K and $|\beta(\psi(x))| > 1/2$. Since $\beta \circ \psi$ is a polynomial of $h_1, h_2, ..., h_m, z_1, z_2, ..., z_n$, there exist $u \in \mathbb{C}[z_1, z_2, ..., z_n]$ and a monic monomial v of $g_1, g_2, ..., g_m$ such that $\beta \circ \psi = u/v$ on $\mathbb{C}^n \setminus A$. Since $u/v \in \mathscr{R}(D)$, we have that $|\beta(\psi(x))| \le ||\beta \circ \psi||_K < 1/2$. It is a contradiction. It follows that $\psi(x) \in \psi(W)$. Since ψ is injective, we have that $x \in W$. Thus we proved that $\widehat{K}_{\mathscr{F}(D)} \subset W$.

Lemma 3.6. If an open set D of \mathbb{C}^n is $\mathcal{R}(D)$ -convex, then for every compact set K of D every connected component of $\widehat{K}_{\mathcal{R}(D)}$ intersects K.

²If the polynomials f and g are chosen to be relatively prime, then the function f/g cannot be holomorphic in any neighborhood of a point $p \in \mathbb{C}^n$ such that g(p)=0 (see Theorem 1.3.2 of Rudin [10]). Therefore we have that $\mathcal{R}(D)=\{(f/g)\mid_D\mid f, g\in \mathbb{C}[z_1,z_2,...,z_n] \text{ and } g\neq 0 \text{ on } D\}$ for every open set D of \mathbb{C}^n .

 Δ such that $A \cap D = \emptyset$.² By Lemma 3.5 we have that $\widehat{K}_{\mathscr{F}(D)} \subset W$. It follows that $\widehat{K}_{\mathscr{F}(D)} \subset D \setminus L''$ and therefore $L'' = \emptyset$. Since $\emptyset \neq L \subset L''$, it is a contradiction.

Lemma 3.7. If an open set D of \mathbb{C}^n is $\mathcal{R}(D)$ -convex, then every connected component of D is also $\mathcal{R}(D)$ -convex.

Proof. Let C be a connected component of D. Let K be a compact set of C. Since D is $\mathcal{R}(D)$ -convex, the set $\widehat{K}_{\mathscr{R}(D)}$ is compact. Assume that $P := \widehat{K}_{\mathscr{R}(D)} \setminus C \neq \emptyset$ and take a point $x_0 \in P$. Let L be a connected component of $\widehat{K}_{\mathscr{R}(D)}$ containing x_0 . Since P is closed and open in $\widehat{K}_{\mathscr{R}(D)}$, we have that $L \subset P$. It follows that $L \cap K = \emptyset$. It contradicts Lemma 3.6.

4. Results

We have the following characterization of a meromorphically $\mathcal{O}(X)$ -convex open set of a Stein space X.

Theorem 4.1. Let X be a Stein space and D an open set of X. Then the following two conditions are equivalent.

- (1) D is meromorphically $\mathcal{O}(X)$ -convex.
- (2) D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of X such that D_{ν} is $\mathscr{Q}_{X}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$.

Proof. (1) \Rightarrow (2). Take a sequence $\{K_{\nu}\}_{\nu=1}^{\infty}$ of compact sets of D such that $\bigcup_{\nu=1}^{\infty} K_{\nu} = D$ and $K_{\nu} \subset K_{\nu+1}$ for every $\nu \in \mathbb{N}$. For every compact set K of D we have that $\widetilde{K}_{X} \subset D$ (see Theorem 12 of Abe [1]). There exists a meromorphic polyhedron W of X such that $\widetilde{K}_{X} \subset W \subset D$ (see Corollary 6 of Abe [1]). Therefore by induction there exists a sequence $\{W_{\nu}\}_{\nu=1}^{\infty}$ of meromorphic polyhedra of X such that $K_{\nu} \cup \overline{W}_{\nu-1} \subset W_{\nu} \subset D$ for every $\nu \in \mathbb{N}$, where $W_{0} := \emptyset$. Then we have that $\bigcup_{\nu=1}^{\infty} W_{\nu} = D$ and $W_{\nu} \subset W_{\nu+1}$ for every $\nu \in \mathbb{N}$. By Lemma 3.1 the open set W_{ν} is $\mathscr{O}_{X}(W_{\nu})$ -convex for every $\nu \in \mathbb{N}$.

(2) \Rightarrow (1). There exists an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of X such that $\bigcup_{\nu=1}^{\infty} D_{\nu} = D$ and D_{ν} is $\mathscr{O}_{X}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$. Take an arbitrary compact set K of D. There exists $N \in \mathbb{N}$ such that $K \subset D_{N}$. Since D_{N} is meromorphically $\mathscr{O}(X)$ -convex (see Abe [2]), we have that $\tilde{K}_{X} \subset D_{N} \subset D$ (see Theorem 12 of Abe [1]). It follows that D is meromorphically $\mathscr{O}(X)$ -convex.

By the similar argument we also prove the following Theorem 4.2 which characterizes a rationally convex open set of \mathbb{C}^n .

Theorem 4.2. Let D be an open set of Cⁿ. Then the following three conditions are equivalent.

- (1) D is rationally convex in \mathbb{C}^n .
- (2) D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of \mathbb{C}^n such that D_{ν} is $\mathscr{R}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$.
- (3) D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of open sets of \mathbb{C}^n such that D_{ν} is $\mathscr{Q}_{\mathbb{C}^{\nu}}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$.

Proof. (1) \Rightarrow (2). Take a sequence $\{K_{\nu}\}_{\nu=1}^{\infty}$ of compact sets of D such that $\bigcup_{\nu=1}^{\infty}K_{\nu}=D$ and $K_{\nu}\subset \mathring{K}_{\nu+1}$ for every $\nu\in\mathbb{N}$. For every compact set K of D we have that $\widetilde{K}_{c^{*}}\subset D$ (see Theorem 12 of Abe [1]). By Lemma 3.3 there exists a rational polyhedron W such that $\widetilde{K}_{c^{*}}\subset W\subseteq D$. Therefore by induction there exists a sequence $\{W_{\nu}\}_{\nu=1}^{\infty}$ of rational polyhedra such that $K_{\nu}\cup \overline{W}_{\nu-1}\subset W_{\nu}\subseteq D$ for every $\nu\in\mathbb{N}$, where $W_{0}:=\emptyset$. Then we have that $\bigcup_{\nu=1}^{\infty}W_{\nu}=D$ and $W_{\nu}\subseteq W_{\nu+1}$ for every $\nu\in\mathbb{N}$. By Lemma 3.2 the open set W_{ν} is $\mathscr{R}(W_{\nu})$ -convex for every $\nu\in\mathbb{N}$.

- $(2) \Rightarrow (3)$. Clear.
- (1) \Leftrightarrow (3). The assertion is by Theorem 4.1.

We also have the following Theorem 4.3 which characterizes a connected rationally convex open set of \mathbb{C}^n .

Theorem 4.3. Let D be a connected open set of \mathbb{C}^n . Then the following three conditions are equivalent.

- (1) D is rationally convex in \mathbb{C}^n .
- (2) D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of connected open sets of \mathbb{C}^{n} such that D_{ν} is $\mathcal{R}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$.
- (3) D is the union of an increasing sequence $\{D_{\nu}\}_{\nu=1}^{\infty}$ of connected open sets of \mathbb{C}^n such that D_{ν} is $\mathcal{Q}_{\mathbb{C}^n}(D_{\nu})$ -convex for every $\nu \in \mathbb{N}$.

Proof. (1) \Rightarrow (2). Take a sequence $\{K_{\nu}\}_{\nu=1}^{\infty}$ of connected compact sets of D such that $\bigcup_{\nu=1}^{\infty} K_{\nu} = D$ and $K_{\nu} \subset \mathring{K}_{\nu+1}$ for every $\nu \in \mathbb{N}$. By the proof of Theorem 4.2 there exists a sequence $\{W_{\nu}\}_{\nu=1}^{\infty}$ of rational polyhedra such that $K_{\nu} \cup \overline{W}_{\nu-1} \subset W_{\nu} \subset D$ for every $\nu \in \mathbb{N}$, where $W_0 := \emptyset$. Let D_{ν} be the connected component of W_{ν} containing K_{ν} for every $\nu \in \mathbb{N}$. By Lemmas 3.2 and 3.7 the open set D_{ν} is $\mathscr{R}(W_{\nu})$ -convex and therefore $\mathscr{R}(D_{\nu})$ -convex. Replacing $\{D_{\nu}\}_{\nu=1}^{\infty}$ by a subsequence we also have that $D_{\nu} \subset D_{\nu+1}$ for every $\nu \geq 1$.

- $(2) \Rightarrow (3)$. Clear.
- $(3) \Rightarrow (1)$. The assertion is by Theorem 4.1.

In Oka [8] a domain D in \mathbb{C}^n is said to be rationnellement convexe (rationally convex) if D

is $\mathcal{R}(D)$ -convex or D can be approximated from the interior by domains D_{ν} which are $\mathcal{R}(D_{\nu})$ -convex (see also Nishino [7, p. 99]). By the proof of Theorem 4.2 our definition of the rational convexity for a connected open set of \mathbb{C}^n is equivalent to the one due to Oka [8].

References

- [1] M. Abe, Meromorphic approximation theorem in a Stein space, to appear in Ann. Mat. Pura Appl. (4) (Published Online: August 27, 2004, DOI: 10.1007/s10231-004-0115-7).
- [2] M. Abe, Open sets satisfying the strong meromorphic approximation property, preprint.
- [3] M. Abe and M. Furushima, On the meromorphic convexity of normality domains in a Stein manifold, Manuscripta Math. 103 (2000), 447-453.
- [4] T. W. Gamelin, Uniform algebras, 2nd ed., Chelsea, New York, 1984.
- [5] L. Kaup and B. Kaup, *Holomorphic functions of several variables*, Walter de Gruyter, Berlin-New York, 1983.
- [6] R. Narasimhan, Analysis on real and complex manifolds, North-Holland, Amsterdam-New York-Oxford, 1968.
- [7] T. Nishino, Function theory in several complex variables, Translations of Mathematical Monographs, vol. 193, Amer. Math. Soc., Providence, 2001, Translated by N. Levenberg and H. Yamaguchi.
- [8] K. Oka, Sur les fonctions analytiques de plusieurs variables. IV Domaines d'holomorphie et domaines rationellment convexes, Japan. J. Math. 17 (1941), 517-521.
- [9] R. Remmert, Classical topics in complex function theory, Springer, New York-Berlin-Heidelberg, 1998, Translated by L. Kay.
- [10] W. Rudin, Function theory in polydiscs, Benjamin, New York-Amsterdam, 1969.
- [11] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289.

Makoto Abe School of Health Sciences Kumamoto University Kumamoto 862-0976 Japan

e-mail: mabe@hs.kumamoto-u.ac.jp