A note on domains of holomorphy in two dimensional normal Stein spaces

Yasuhiro Ohshima*

(Received January 31, 2005)

1. Introduction

- 1. Let X be a complex analytic space and D a domain in X. We say that D is a domain of holomorphy if there are no open sets U and V in X with the following properties:
- (i) $\emptyset \neq V \subset U \cap D$
- (ii) U is connected and $U \not\subset D$
- (iii) For every holomorphic function f on D there is a holomorphic function g on U such that f=g in V.

Then we shall study the following

- **Problem 1.** If D is a domain of holomorphy in a Stein space X, then is D Stein? On this problem, the following facts are well-known.
- **Theorem 1. (1)** A domain D in a Stein manifold M is Stein if and only if D is a domain of holomorphy in M (see Cartan-Thullen [2] and F. Docquier and H. Grauert [4]).
- (2) Let D be a domain of holomorphy in a Stein space X with the singular locus Sing X. Then D is locally Stein at every point $p \in \partial D \setminus X$, that is, there is an open neighborhood U of p such that $U \cap D$ is Stein (see F. Docquier and H. Grauert [4]).
- (3) Let X be a Stein space with isolated singularities and D a domain in X. If D is locally Stein at every point $p \in \partial D$, then D is Stein (see Andreotti-Narasimhan [1]).
- (4) Let D be a domain of holomorphy in a two-dimensional normal Stein space X. Assume that D is (locally) simply connected near every singular point x_0 of X on the boundary

^{*} Graduate School of Science and technology, Kumamoto University, Kumamoto 860-8555, Japan

- ∂D. Then D is Stein (see Furushima [6])
- (5) There is a domain of holomorphy D in a normal Stein space of dimension $n \ge 3$ such that D is not Stein (see Grauert-Remmert [7], Scheja [11] and Ueda [13]).

Remark 1. We have no example of two dimensional domain of holomorphy which is not Stein.

From Theorem 1-(3), one sees

Proposition 1. A domain of holomorphy D in a two-dimensional normal Stein space X is Stein if D is locally Stein at every point $p \in \partial D \cap \operatorname{Sing} X$.

Finally the problem is stated as follow:

Problem 2. Let D be a domain of holomorphy in a two-dimensional normal Stein space X. Then is D locally Stein at $p \in \partial D \cap Sing X$?

2. A domain of holomorphy in a two dimensional Stein cone

2. Let $\pi: L \longrightarrow R$ be the negative line bundle over a compact Riemann surface R of genus $g \ge 0$ with the negative section Σ_0 . Then Σ_0 is analytically contractible to one point, that is, there is a proper surjective holomorphic mapping $\varphi: L \longrightarrow X_g$ of L to a normal Stein space X_g with singularity $x_g = \varphi(\Sigma_0)$ such that $\varphi: L - \Sigma_0 \cong X_g - \{x_g\}$ (biholomorphic). The Stein surface X_g is called the two-dimensional *Stein cone* of genus $g \ge 0$. It is well known that X_g is smooth if and only if g = 0 and the self-intersection number $(\Sigma_0^2)_L = -1$.

Now let $D \subset X_g$ be a domain of holomorphy in the two-dimensional Stein cone X_g of genus $g \ge 0$.

Proposition 2. D is Stein if $x_0 \notin \partial D$

Proof. If $x_{\theta} \notin \partial D$, then D is locally Stein by Theorem 1-(2). Thus D is Stein by Theorem 1-(3).

3. Thus we may assume that $x_g \in \partial D$. Let $\varphi \colon L \longrightarrow X_g$ and $\pi \colon L \longrightarrow R$ be as above. We set $\widetilde{D} := \varphi^{-1}(D) \subset L$, $\widetilde{D}_t := \widetilde{D} \cap \pi^{-1}(t)$ and $\Gamma_t := \varphi$ (\widetilde{D}_t) for $t \in R$. Then the one-dimensional analytic subset Γ_t $(\cong \widetilde{D}_t)$ of D is considered as a plane domain containing the origin $0 \in \mathbb{C}$ if $\Gamma_t \neq \emptyset$.

Then we have

Proposition 3. Assume that $\Gamma_{t_0} = \emptyset$ for some $t_0 \in R$. Then D is Stein. Proof. We put $\ell_0 := \varphi(\pi^{-1}(t_0))$. Then we have $D \subset X_g - \ell_0$ by assumption. Then the complement $X_{\sigma} - \ell_0$ is a Stein manifold by Simha [10]. Since D is a domain of holomorphy in a Stein manifold, it is Stein by the theorem of Docquier and Grauert [4].

Proposition 4. If the genus g=0, then D is Stein.

Proof. If g=0, then X_0 has at most a cyclic quotient singularity at x_0 , that is, $X_0 \cong \mathbb{C}^2/G$, where $G = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{n-1} \end{pmatrix}$ and $\zeta^n = 1$ for some integer $n \ge 1$. Let $\psi : \mathbb{C}^2 \longrightarrow X_0 = \mathbb{C}^2/G$ be the quotient mapping. Since D is a domain of holomorphy, so is $\psi^{-1}(D) \subset \mathbb{C}^2$, hence it is Stein. Since ψ is a proper finite surjective holomorphic mapping, the image $D = \psi(\psi^{-1}(D))$ is also Stein by Narasimhan [9].

4. Our main theorem is the following:

Theorem 2. Let D is a domain of holomorphy in the Stein cone X_g . Assume that $\Gamma_t \subset D$ is simply connected for any $t \in R$. Then D is Stein.

Proof. We may assume that $g \ge 1$ and $\Gamma_t \ne \emptyset$ for any $t \in \Gamma$ by Proposition 3 and 4. We set $X_{\sigma}^* := X_{\sigma} - x_{\sigma}$ and let $\sigma \colon \widetilde{X}_{\sigma}^* \longrightarrow X_{\sigma}^*$ be the universal covering of X_{σ}^* .

(Claim) \widetilde{X}_{σ}^* is a Stein (cf. [3]).

In fact, take the universal covering $\tau\colon \widehat{L}\longrightarrow L$ of the negative line bundle L. Since the universal covering of R is biholomorphic to the plane C (resp. a unit disc Δ) if g=1 (resp. $g\geq 2$), \widehat{L} is biholomorphic to either C^2 or $\Delta\times C$. Thus \widehat{L} is a two-dimensional Stein manifold. Since $\tau^{-1}(\Sigma_0)$ is a one-dimensional analytic subset of \widehat{L} , the complement $M:=\widehat{L}-\tau^{-1}(\Sigma_0)$ is also Stein. Since \widetilde{X}_g^* is simply connected, there is an unramified holomorphic covering map $\gamma: \widehat{X}_g^* \longrightarrow M$. Since M is Stein, so is \widehat{X}_g^* by K. Stein [12].

We continue the proof of Theorem 2. One has $\Gamma_t \cap \Gamma_{t'} = \emptyset$ for any $t \neq t' \in R$. Any connected component $\widehat{\Gamma}_t^{(t)}$ (i=0, 1, 2,...) of σ^{-1} (Γ_t) is biholomorphic to Γ_t since Γ_t is simply connected. Take a point $p \in D$ and a small neighborhood $U := U(p) \subset D$ such that $\sigma^{-1}(U) = \bigcup_k \widetilde{U}_k$ (the disjoint union) and $\widetilde{U}_k \stackrel{\sigma}{=} U$ (biholomorphic) for $0 \leq k \in \mathbb{Z}$. Take a connected component \widetilde{U}_0 of $\sigma^{-1}(U)$. Then there is a connected component $\widehat{\Gamma}_t^{(0)}$ of $\sigma^{-1}(\Gamma_t)$ such that $\widehat{\Gamma}_t^{(0)} \cap \widehat{U}_0 \neq \emptyset$. We set $T := \{t \in R : \widehat{\Gamma}_t^{(0)} \cap \widehat{U}_0 \neq \emptyset \} \neq \emptyset$. Let \widetilde{D}^* be the connected component of $\sigma^{-1}(D)$ containing the family $\{\widehat{\Gamma}_t^{(0)}\}_{t \in T}$. Then \widetilde{D}^* is biholomorphic to $D \subset X_{\sigma}^*$. Since D is a domain of holomorphy, so is \widetilde{D}^* . Since \widehat{X}_{σ}^* is a Stein manifold, D^* is Stein. This completes the proof.

Finally we propose the following:

Problem 3. Let $\Omega \subset X$ be an domain of holomorphy in a Stein space X and $\mu : \widetilde{\Omega} \longrightarrow \Omega$ an

infinite unramified covering. If $\tilde{\Omega}$ is a Stein manifold, then is Ω Stein?

- **Remark 2.** (1) In the case where X is a Stein manifold, it is known that any domain Ω whose infinite unramified covering space $\tilde{\Omega}$ is Stein is also Stein by Kerner [8].
- (2) If Problem 2 is affirmative in general, then from the proof of Theorem 4 one sees that Problem 1 is affirmative.

Finally the author would like to thank Prof. M. Furushima for the encouragement.

References

- [1] A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc. 111 (1964), 345-366.
- [2] H. Cartan and P. Thullen, Zur Theorie der Singularitäten der Funktionen mehrerer komplexer Veränderlichen: Regularitäts-und Konvergenzbereiche, Math. Ann. 106 (1932), 617-647.
- [3] M. Coltoiu and M. Tibar, Steinness of the universal covering of the complement of a 2-dimensional complex singularity, Math. Ann. 326 (2003), 95-104.
- [4] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
- [5] J. E. Fornaess and R. Narasimhan, Levi problem on Stein spaces, Math. Ann. 248 (1980), 47
- [6] M. Furushima, Domains of holomorphy in two-dimensional normal Stein spaces, Preprint, (2004).
- [7] H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorphkonvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comm. Math. Helv. 31 (1960), 152-183.
- [8] H. Kerner, Überlgerungen und Holomorphiehüllen, Math. Ann. 144 (1961), 126-134.
- [9] R. Narasimhan, A note on Stein spaces and their normalizations, Ann. Scuola Norm. Sup. Pisa. 16 (1962), 327-333.
- [10] R. R. Simha, On the complement of a curve on a Stein space of dimension two, Math. Z. 82 (1963), 63-66.
- [11] G. Scheja, Über das Auftreten von Holomorphie- und Meromorphie-gebieten, die nicht holomorph-konvex sind, Math. Ann. 140 (1960), 33-50.
- [12] K. Stein, Überlagerungen holomorph-vollständiger komplexer Räume, Archiv Math. 7 (1956), 354-361.

[13] T. Ueda, Domains of holomorphy in Segre cones, Publ. Res. Inst. Math. Sci. 22 (1986), 561-569.