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Abstract

An analytic characterization of gaugeability (or conditional gaugeability) for non-local
Feynman-Kac functionals is given by a large deviation approach.

1. Introduction

Let M=(Q,X.,P:,¢) be a transient m-symmetric Hunt process on a locally compact sepa-
rable metric space X. Here m is a positive Radon measure on X with full support and ¢ is the
life time of X.. Denote by R(x,y) the Green function of M and P¥ the probability of Doob’s
R(+,y)-transformed process starting from x. Let Af be the continuous additive functional of
M with a signed Revuz measure p=y*—u~. We say that g is gaugeable (resp. conditionally
gaugeable) if

§LEI):{>Ex(exp(Aé‘)) <o (reSp. Sup xxx\dEé’(exp(A;‘y))) <o, (1.1)
Here ¢? is the lifetime of the conditioned process PY.

In [13], the author obtained using a large deviation method and time change operator, the
analytic characterization of gaugeability and conditionally gaugeability for a general potential
given by a measure ¢ as follows; under suitable conditions for z and M, the gaugeability (1.
1) is equivalent with

inf { & (u0)+ [ z?zdy'} >1, (1.2)

where ( & %) is the Dirichlet form generated by M, i isa quasi continuous #-version of # € %~
and the inf is calculated on « € 5 satisfying '[Y #’dp*=1. The characterization (1.2) was very
useful in determining whether g being gaugeable or conditionally gaugeable in many concrete
cases, as illustrated by several examples given in his paper.
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Let us consider the following non-local type of additive functional of the form,

AbF . =Af+Af, Af= g!‘F(Xs-,Xs). (1.3)

Here F(z,y) is a symmetric (F(x,y)=F(y,z)) bounded Borel function on X X X which vanishes
along the diagonal. In the past years, the Dirichlet form and the associated semigroup
perturbed by (1.3) have been studied by many authors with some related applications ([5], [8],
[10], [14D).

The gauge theorem for (1.3) was first studied in [10] on symmetric stable processes and
generalized on symmetric Markov processes ([3], [5]). In particular, Chen [2] recently give the
analytic characterization of gaugeability (or conditional gaugeability) for (1.3) on general
symmetric Markov processes by using a pure jump Girsanov transform and his gauge theorems.
The main result was as follows ; under suitable Kato class conditions for ¢ and F,

supEx(exp(AfF)) <o (14)
xeX
is equivalent with

inf { & ()= [ #(2)@()G(z,0)N(x,dy)undz)
(1.5)
+ [B@H e +ue)dn) >1,

where the inf is calculated on « € ¥ satisfying '/; #(x)p* + pe+)(dx)=1, and the definitions of
G and p¢+ are appeared in §2 of this paper.

An objective of this paper is to derive the characterization (1.5) for the gaugeability (1.4)
by using a large deviation method and time change operator. Thus, we extend the analytic
characterization of gaugeability for local Feynman-Kac functionals in [13] to non-local cases.

Unlike the local cases, we can not consider the time change operator related to (1.3)
directly. However, some properties of the subprocess by the jump type Girsanov transform
introduced in § 3 will make it possible to use the time change operator. In §4, the main
theorem is given, in which, some regularity assumptions on Green functions as in [13] are
removed.

2. Preliminaries

In what follows, let (:)eso be the transition semigroup, pf(x)=Ex(f(X:)), and (Ra)azo the
resolvent of M, Raf(x)=Ex( £ e "f(X:)ds). Let Ro(x,y), (2=0) be the a-resolvent density,
RAx,y)= '/o' e~"p.(x,y)dt, where p.(x,y) is the transition density of (pe)ezo. Then Ro(x,y)=:
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R(z,y) is the Green function of M. For any given smooth measure o, define R.u(x)= [{ Rz,
y)ul(dy). For z€ X, denote by

R¥(x,y): =ﬂﬁ%§%ﬁ, z,y€ X\{2)

the Green function of Doob’s R(-,z)-transformed process and P? the probability starting from
z. Let A¥=A%— A% be a continuous additive functional with signed smooth measure p=u*
—u~ as its Revuz measure. Denote by |A¥|=A% 4+ A% and |pl=p*+u~. Let F(z,y)=F*(x,
y)—F(z,y) be a symmetric (F(x,y)=F(y,x)) bounded Borel function on X X X that vanishes
along the diagonal and denote by |F(z,y)|=F*(x,y)+ F(z,y).

Definition 21 (i) A signed smooth measure yu on X is said to be in the Kato class % (R) if

lim sup £:(| A%])=0.
xeX

(i) A signed smooth measure y is said to be in the class Ho(R) if for any €>0, there exists
a compact set K=K(e) of finite |u|-measure and a constant 6=58(e)>0 such that for all
measurable set BCK with |p)(B)<S$,

sup R(z,p)lul(dy)<e.

xeXx s (K\B)C

(#5) A signed smooth measure p is said to be in the class S(R) if for any >0, there
exists a compact set K=K(e) of finite |p|-measure and a constant 8=06(e)>0 such that for all
measurable set BC K with |p|(B)<S,

SUP J e R @DNel(dy)<e.
Definition 2.2 Let (N,H) be the Lévy system for M and pu be the Revuz measure of the positive
continuous additive functional H.
(i) A bounded function F on X X X\d is said to be in the class S (R) if the measure

mei(dz): =NIFl(2)uldz), NIFW(@)= [ |F(z,n)IN(z,dy)

belongs to the class #(R).

(#) A bounded function F on X X X\d is said to be in the class _/#(R) if the measure m
belongs to the class F(R).

(i) A bounded function F on X x X\d is said to be in the class V(R) if for any >0,
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there exists a compact set K=K(¢) of finite pr-measure and a constant 6= 6(€)>0 such that
for all measurable set BCK with mr(B)<9,

sup. f““\m seanelt EOIF(y,wlN(y,dw)puldy) <e

and the measure pr belongs to Ju(R).

We note that the relations %%(R)C Z#(R)C % (R) (and consequently %(R)C_#(R)C 7

(R)) which are proved in [5].
Now let us make the following assumptions on M throughout this paper.

(A)) (Irreducibility) If a Borel set B satisfies xsp:f =p:(xaf) for any f € L X ; m)N By(X) and
¢ >0, then m(B)=0 or m(X\B)=0. Here B:(X) is the space of bounded Borel functions
on X.

(A.) (Strong Feller Property) p«(Bs(X))C Cs(X), where Co(X) is the space of bounded continu-
ous functions on X.
Let us denote by A, the spectral radius of the semigroup (p:):»0 as an operator on L?(X,m),

Ap= —l,i_rg%logllﬁe oy 1<p<oo,

where ||+|.» is the operator norm form L? to L. Then the following theorem is known as a
corollary of Donsker-Varadhan type’s large deviation principle.

Theorem 2.3 ([13]) For any €>0, let us suppose that there exists a compact set K such that
supzexRixx(x)<e. Then, we have
Ao= inf & (u,u). 2.1)

ue S lullz=1

Note that the equation (2.1) implies the p-independence of the spectral radius A, because the
right hand side of (2.1) is equal to A. On the other hand, Sato [9] showed that the exponential
boundedness of the life time ¢ of M is equivalent with the condition A.>1. So, by combining
this fact with the p-independence of A,, it holds that

Corollary 2.4 ([13]) For any €>0, let us suppose that there exists a compact set K such that
supxeanxxc(x)Se. Then

suBE;(exp( £))<co if and only if A2>1. 2.2)
xe,
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3. Subprocess by jump type Girsanov transform
For F(z,y)=F*(z,y)—F (x,y) in §2, we put

G(x,y)=G"(x,y)—G'(x,y)=(e”"”’—1)—(e"“"”—1)-
Define the associated additive functional of G by
AS;:A?’—A?-:Q G+(Xs-,Xs) - sg‘ G-(Xs—,Xs). (3.1)
Then its dual predictable projection, namely, Af=A% — AS- is written as
- - - t ¢
A=A~ A= ['NGAX)dH,~ ['NGX)dH,, (3.2)
0 0
where
NGx)= [ N(z.dy)G*(z.)

and (N,H) is the Lévy system of M. We denote by pe= pe+— tte- the Revuz measure of the
continuous additive functional Af=A%— A¢-

Lemma 3.1 For a signed smooth measure it and the symmetric bounded functions F,G defined
as above,

Se: =exp(Af—Af‘—Atc’)
s a supermartingale multiplicative functional,

Proof. Note that Af—Af is a Pr-martingale for every x€ X. So it follows from Doléans-
Dade exponential formula that

Qc: =R I (14 G(Xo-, X))o ke
eI (1+ G(Xe-, Xo) (33)

<
A€

Al

e
is a supermartingale multiplicative functional. Hence, we have for ¢ >0,

E:(S¢)=Ex( mep(—(Ai“-l-A?‘)))SEAQ;)S 1
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The proof is completed O

Let MS=(Q,X.,P5,¢) be the transformed process of M by the jump type Girsanov transform
S:. That is, the semigroup of M?, the so called Feynman-Kac semigroup is given by

pff(x)=Eg(f(Xt))=Ex(Stf(Xl)),

and also its resolvent is given by
R§f(.7:)=Ex< '/0‘ ”e'“‘SJ(Xe)dl).
Let us consider the symmetric bilinear form ( &%, .%7) on L¥X ; m) defined by
u0)= & (w,)+ [ #(2) 5()p + po)(dz)
~ [ (@) 5(0)G(2,9)N(z,dy)pn d)
F={ue 5 g I(X; |1 +|ud)}

Lemma 3.2 Assume that p~ € Z(R) and F€_#(R). Then

(i) {3} is a strongly continuous semigroup of symmetric bounded operators on L(X ; m).
That is, ( &5,.575) is a lower semibounded closed symmetric bilinear form on L(X ; m).

(#%) For any p=1, there exist constants a, B>0 such that for all t =0,

suBEx(( S)P) < ae®.

(i) For any p=1, lime-osup zex Ex(|Ve|?)=0. Here V.=Af—At-—Af. In particular,

lim sup E:(|S¢—1)=0.
-0 rex

Proof. It is easy to see that if Fy,Fz € _#(R) and c is a constant, then cF1 and Fy+ F; belong
to _#(R). Furthermore, if F €_#(R), then

Gp: =e¥ -1

also belongs to _#(R) by the boundedness of the function x—x"'(e*—1) on [—a,a] such that
|F(z,9)|< a for any z,y € X. Now, the statement (i) is the consequence of Theorem 3.2 in [14].

(ii) It is well-known that the local Feynman-Kac functional exp (Af) associated with a
measure v € % (R) is bounded in the sense that there exist constants &, >0 such that for any
>0,



On a Gaugeability for Non-local Feynman-Kac Functionals 37
supEz(exp(AY)) < a e (3.4)
xeXx

(Lemma 3 in [6]). Now, let us define the additive functional Af and its dual predictable
projection A% for the function G, as the same way of (3.1) and (3.2). On the same reason of
(3.3),

exp(ZpAf - Af’)

is a supermartingale multiplicative functional. So applying the Schwartz inequality, we have

E((S:)”) < Exexp(pA))
< [E;(exp(ZpAf—AF’))]uz[Ex(exp(fT?"))]m 35)

< [oos( 35"

Since Gy € _#(R), there exist constants &,8 >0 such that for any #>0,
supEx(exp(fT?")) <me™*
xeXx

on account of (3.4). Thus, (ii) is proved by (3.5).
(iii) Note that for x>>1, z* is dominated up to a constant ¢ by e*. Thus, by the Schwartz
inequality, we have

EAVE) = EAV?; Vi>1)+EAVF; Vi<1)
< EAVZ; Vi>1)2P(Ve>1)"2 4+ E«(V.)
< C”zEx(st)”zEx( V:)”z+ E.t( Vt)

which implies that lim;-osupzexE:(( V:)?)=0. Moreover, by noting |¢*—1|<|z|(e + &%), we have

EAlS:—1P) < EAVE(e+S.)?)
< eE.t( W)‘*‘ZQEI( Vt‘)”zEx(Sﬁ“z
+EA V) PEL(SH'.

Now, the proofs are completed. O

Lemma 3.3 Assume that y~ € Y4(R) and F e (R). Then the Green function R¥(x,y) of
M?® is comparable to R(x,y) in the sense that

R(x,y)<kR(x,y)
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for some constant k>1.

Proof. By the assumptions of this lemma, the measures s and pc+ belong to FR).
Therefore, the gaugeability and conditional gaugeability for the additive functional Af—A#-
— A% are equivalent each other on account of Theorem 3.10 in [5]. Moreover, since

EASp<1

for any x € X by virtue of (3.3), the conditional gauge integral E¥(S;v) is to be bounded. So,
we have RS(x,y)=E¥4Sw)R(x,y)< kR(x,y) for some constant 2>1. Od

Proposition 3.4 Assume that p~ € 94(R) and F e %(R). Then the transformed process
MS is an m-symmetric Markov process satisfying the assumptions (A1) and (As).

Proof. Let 7 be the reversal operator on Q; for @€ Q and ¢ < {(w), Xe(rw)=X.-s(w) for s
<t and Xs(7:w)=A (the trap point of M) for s>¢. Since F is symmetric, it is easy to check
that Si(7:w)=S«(w), Pn-ae.. Hence we have for any measurable functions f,g

(0%,9)n = En(S{@)f (X(0))9(Xo@)))
= En(S:(r)f(Xrw))g(Xo(rw)))
= En(Sl{0)f(X0))g9(Xe()))
= (f,big)n
which implies that M® is m-symmetric. The irreducibility of M is immediately derived by the
positivity of S¢ up to the lifetime §. For proving the strong Feller property, the standard
methods by Theorem 3.9 in [1] are still useful. More pricisely, for any f € By(X) and t >0, we

can write
23 (z)=Ee" "f(X:))+ Efe" " (e"—1)f(X:)). 3.7

Here Vi=Af—A#-—A%. The first term on the right-hand side of (3.7), pe(pi-of) (x) is
bounded continuous by virtue of Lemma 3.2 (i) and the assumption (A2). For the second term,

it is dominated up to
12
10 E{1S:—1F)) " sup (B s

which tends to 0 uniformly as e—»0 by Lemma 3.2 (ii) and (iii). Hence (p?:20 is a strong Feller
semigroup. d
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Lemma 3.5 Assume that p~ € S%(R) and Fe€ (R). Then

ENuu)= inf  &(u,u). (3.8)

}l’l
ue flullz=1 e ullz=1

Proof. It is well-known that for any positive smooth measure v of M,

[YﬁzdusllRulla & (u,u)

for any uw€ % ([12]). Since ¢~ € %(R) and F € oZ(R), we have ’/": idu < oo, '/‘; #@%du g <
and consequently, it follows from the Schwartz inequality

L 2@ TG 0)ING d)n(de)< [ @ diar< oo
for any u€ % Therefore
&(u,0)= & (u,0)+ [ #(2) 5(2)x+ o) (dx)
— [ 4@ 5(5)Clz,9)N(z,dy) pul )

is well defined for any « € .% which implies (3.8). Od
4. Analytic characterization and time change operator

In this section, we are going to derive the analytic characterization of gaugeability (1.5) for
the non-local Feynman-Kac functional (1.3) by using the time change operator associated with
the additive functional (4.1) below. The original idea is due to [13] but some regularity
assumptions on Green functions will be removed in our present section.

For notation convenience, we denote
A‘(ﬂ+c)x: =A~{’+A-¢G*.
Let {ze(+ G)+}e20 be the right continuous inverse of the positive continuous additive functional
Amror. (CRY)

that is, w(z+G)+=inf{s>0: A;**9>¢), where (u+G)+: =u*+pc. stands for the smooth
measure of A,“*°* as the Revuz correspondence. Let E=E®*%* be the fine support of (u«
+G). in the sense that

E={ze X: P{o(u+G).=0)=1).
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The time changed process (M%(u+G)s+): =(X.,P5 E) of M® with respect to A,“+* is then
defined by

X e=Xuotusn-
The transition semigroup and the resolvent of (M*{u+ G).) are given by
2 p(x)=EXp(Xuwurer)), T€E
and

1"\3“(”+G)‘¢(x)=E§(’/o‘ e aawwn¢(X¢)dA.z("+c)’), xeE

respectively. It follows from Theorem 6.2.1 in [7] that the time changed process (M®, («+ G).)
is a (u+ G)4-symmetric Hunt process on E with lifetime

z =A((#+G)o_ (42)

We assume that E equals to the topological support of (z+ G)+; E=supp [(#+G).]. Set
Hiu(x)=E3 (u(Xa),

where gf=inf {{>0: X, € E}. Then the corresponding Dirichlet form ( &%, %) on L¥E ; (¢
+G).) of the time changed process (M®,(#+ G).) is represented as follows:

&%(p,0)= &(Hiu, Hiu),
for p€ & p=u (u+G)s-ae. on E, u€ .. Here
F=lpe LX(E; (u+G)s): p=u (¢+G)s-ae. on E}
for some u belongs to the extended Dirichlet space %% of ( &%,.%) (Theorem 6.2.1 in [7]).
Theorem 4.1 Assume that p€ SAR) and F € %(R). Then the time changed process (M°, (¢

+ G),) satisfies the assumptions (A1) and (Az). Moreover, there exists a compact set K such that
suprez R1#“*"yx(x)<e, for any £>0.

Proof. Let R**9(x,dy) be the O-resolvent kernel of (M®%,(zz+G)+). Since p*, pe-€ F2R)
C #(R), we have for any & >0 and some constant 2>1
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R Opelz) s [ R*(z,dy)
= [ R@u)e+G)s(dy)

<k _[‘ R(z,9) 1+ G)(dy)

< ke: =¢

by Lemma 3.3 and the definition of the time changed process. Now, we note that the rest of
the proofs for this theorem is equivalent to show that the time change operator relative to the
measure (¢#+ G). inherits the properties (A:) and (A,) of M* by virtue of Proposition 3.4.

(A)): In general, the irreducibility is preserved by time change of strictly increasing
positive continuous additive functional. So, the time changed process (M®, m+(uz+G).) by
additive functional corresponding to m+(u+ G). is to be irreducible. Now let us consider the
time changed process of (M®, m+(«+ G).) by additive functional

oy d{u+G).
c,_j: r(Xs)ds, ”—d(mf(p+c)+)'

Then this time changed process is nothing but (M°,(x+ G).) and for g€ B,(E),
ko(ﬂw). ¢(x)= }éu’””"’w”(fpr)(r) (4.3)

where the right hand side of (4.3) denotes the resolvent of (M®,m+(u+ G)+). Suppose that (M,
(#+ G)4) is not irreducible. Then by the definition of irreducibility, there exists B € B(E,), E,
=supp[#] with (#+ G)+(B)>0 such that

Ro**y5(x)=0  (u+G)+—ae. on E/\B.
On the other hand, since m(B)+(z+ G).(B)>0,
Ro*+ @ xa(x)=Ro™ “*(3a7)(x)>0  (u+G)s—ace.

by the irreducibility of (M m+(z+G).). This is a contradiction.
(Az): For g€ B,(E) and >0, we have

I‘égwc). ¢( .t)

ES ('/o'“e-aix""""‘p(xt)dﬁgwc).) (4.4)

Il

Es (-A-ce_a,iy.a.?(Xs)dA‘s(uc).)+p§(Rgnw).‘p) (x).

The first term of the right-hand side of (4.4) is dominated up to
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- 142
[I ¢"w Ex( Sf)uz Ex(( At(ﬂ+c).)z)
which goes to 0 as -0 by virtue of Lemma 3.2 (ii) and (jii). Hence we have R+ p(x) €
Cy(E) because the last term of the right-hand side of (4.4) is in C+(E) on account of Lemma 3.2

(i). Now, the proofs are completed. O

Theorem 4.2 Assume that p€ F(R) and F € v(R). Then

suBE;(exp(A‘;"F )< oo
if and only if

inf{ 8’(u,v)+£{ﬁ(x) F(x) (g + pe)(dx)
— [, @ PGl )N,y dn)} >1
where the inf is calculated on u € Fsatisfying _[( #(x)¥du* + duc)(dx)=1.

Proof. Note that it follows from Corollary 2.4, Lemma 3.5 and Theorem 4.1 that
sup E(exp(Af+9*)) < oo
xEX
if and only if
inf{ F%(u,u): ue F [ @d(u+ G)=1}>1. (45)

By using the same argument of Theorem 2.4 in [13], one can easily check that (4.5) is equivalent
with

inf{ Euu): ue I j; z?zd(a+G)+=1}
=inf{ g(u,u)+Lﬁ’($)(#'+;z,;.)(dr) (4.6)
- [{ DG )N d)unldz): e 5 j; #2d(u+ G)+=1} >1.

On the other hand, let M°=(Q, X, P?¢) be the transformed process of M by @ in (3.3) and E°
be the expectation related to M? Since for any >0
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Se=Qeexp (—Af+°),

M? is the subprocess of M killed at rate (#+G)-. So, the same argument of Theorem 2.10 in
[5] implies that

E3 (exp(ﬁ?‘*“))( 0o E¢ (exp(/ﬂ"“”))< oo, “.n

Moreover, for each fixed £>0, we have

E$ (knexp{ Ap+o))

=E¢( L Tenexo{ )] —dQs))+Ex(k/\ Qeexp( Ap+9)) o

by virtue of 62 in [11]. The first term of the right hand side of (4.8) is equal to
- [Tonewfazt)a( - 27)
which is zero for each fixed £>0. Since for any £20,
Qeexp (A9 =exn( az*),
we have
B (exp( ¢+ 9))=Ex(exo( at+)) (4.9)

by passing £~ 0. Now, combining (4.7) and (4.9) with (4.6), we reach the conclusion.
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