## Positive definite state extensions in transformation group C\*-algebras Yukimasa Oka (Received January 31, 2005) ## 1. Introduction In this note, we discuss the state extensions in transformation group C\*-algebras by means of positive definite functions. We say these extensions to be positive definite state extensions. Let A be the C\*-algebra C(X) of continuous functions on a compact Hausdorff space X and $\sigma$ the action of a discrete group G on A induced by an action $\sigma$ of G on X as homeomorphisms. We denote by $\tilde{A}$ the crossed product C\*-algebra $A \rtimes_{\sigma} G$ of A by G under $\sigma$ . The C\*-algebra $\tilde{A}$ is generated by A, $\delta_s$ ( $s \in G$ ), where $\delta_s$ is a function on G satisfying $\delta_s(s)=1$ , $\delta_s(t)=0$ ( $t \neq s$ ). If $\tau$ is an automorphism of A which commutes with $\sigma$ , it induces an automorphism $\tilde{\tau}$ of $\tilde{A}$ such that $\tilde{\tau}=\tau$ on A and $\tilde{\tau}=\mathrm{id}$ on G. If $\phi$ is a positive definite function on G with $\phi(e)=1$ and $\phi(e)=1$ and $\phi(e)=1$ and $\phi(e)=1$ and $\phi(e)=1$ is $\phi(e)=1$ invariant, then the state $\phi(e)=1$ is a state on $\phi(e)=1$ is an identity automorphism and $\phi(e)=1$ is the Dirac measure $\delta_x(x\in X)$ , then it is known that there exists a bijective correspondence between the set of state extensions of $\delta_x$ on $\tilde{A}$ and that of positive definite functions $\phi(e)=1$ . The correspondence $\phi(e)=1$ is given by $\phi(e)=1$ . The correspondence $\phi(e)=1$ is given by $\phi(e)=1$ . The correspondence $\phi(e)=1$ is given by $\phi(e)=1$ . The $\phi(e)=1$ is the isotropy group $\phi(e)=1$ is $\phi(e)=1$ . The $\phi(e)=1$ is the isotropy group $\phi(e)=1$ . The $\phi(e)=1$ is the isotropy group $\phi(e)=1$ . Now we introduce the notion of a positive definiteness of a function $\phi$ on G to discuss the positive definite state extensions, which is somewhat stronger than the usual one. We say that a function $\phi$ on G is positive definite with respect to $\sigma$ under $\mu$ if it satisfies $$\sum_{i,j}\phi(s_i^{-1}s_j)\mu(\sigma_{s_i^{-1}}(a_i^*a_j))\geq 0$$ for any finite sets $\{s_i\}_{i\in F}$ in G and $\{a_i\}_{i\in F}$ in A. If a function $\phi$ on G is positive definite with respect to $\sigma$ under $\mu$ , then it is the usual positive definite function on G and conversely if a positive definite function $\phi$ on G is supported in $G_\mu$ , then $\phi$ is positive definite with respect to $\sigma$ under $\mu$ . From them follow that if $\mu$ is $\sigma$ -invariant, then a positive definite function on G is positive definite with respect to $\sigma$ under $\mu$ and that a positive definite function on $G_x$ is positive definite with respect to $\sigma$ under $\delta_x$ . We show that if a function $\phi$ on G with $\phi(e)=1$ is positive definite with respect to $\sigma$ under $\mu$ and is supported in the subgroup $G_{\mu}=\{s\in G|\mu\circ\sigma_s=\mu\}$ , then $\varphi=\sum_s\oplus\phi(s)\mu$ is a state on $\tilde{A}$ (Prop. 2) and that if $\mu$ is $\tau$ -ergodic, then the $\tilde{\tau}$ -invariant state extension of $\mu$ is only of this form (Prop. 4). We say an invariant state on a C\*-algebra to be ergodic if it is an extreme point in the invariant states on the C\*-algebra. Thus we have that there is a bijective correspondence between the set of $\tilde{\tau}$ -invariant state extensions of $\mu$ on $\tilde{A}$ and that of positive definite functions $\phi$ on G with $\phi(e)=1$ , which is supported in $G_{\mu}$ (Th.4). If $\tau$ is an identity automorphism and $\mu$ is the Dirac measure $\delta_x$ , then from this theorem is implied that there is a bijective correspondence between the set of state extensions of $\delta_x$ on $\tilde{A}$ and that of positive definite functions $\phi$ on $G_x$ with $\phi(e)=1$ ([4], Th.3.3.7). ## 2. Positive definite state extensions in transformation group C\*-algebras A state $\varphi$ on $\tilde{A}$ defines a function $\Phi$ on G to $A^*$ , the dual space of A, by $$\langle a, \Phi(s) \rangle = \langle a\delta_s, \varphi \rangle, (a \in A, s \in G)$$ ([4]). If $\mu = \Phi(e)$ , then $\mu = \varphi|_A$ and the state $\varphi$ is an extension of the state $\mu$ on A. The state $\varphi$ on $\tilde{A}$ gives a distribution of a bounded family $\{\mu_s\}$ of linear functionals on A which is denoted by $\varphi = \sum_s \oplus \mu_s$ , where $\mu_s = \Phi(s)$ . On the other hand, if $\mu$ is a $\sigma$ -invariant state on A, then it is known the following way to construct a state $\varphi$ on $\tilde{A}$ . **Proposition 1.** ([4], Prop.3.3.6) If $\phi$ is a positive definite function on G with $\phi(e)=1$ and $\mu$ is a $\sigma$ -invariant state on A, then the functional $\varphi=\sum_s \oplus \phi(s)\mu$ is a state on $\tilde{A}$ . This method is not available for a state on A which is not necessarily $\sigma$ -invariant. But it is also known that the state extension $\varphi$ on $\tilde{A}$ of the Dirac measure $\delta_x$ is given by $\varphi = \sum_s \oplus \phi(s)\sigma_x$ , where $\phi$ is a positive definite function on the isotropy group $G_x([4], \text{Th.3.3.7})$ . We note that if $\mu$ is a $\sigma$ -invariant state on A, then a positive definite function on G is positive definite with respect to $\sigma$ under $\mu$ and that a positive definite function $\phi$ on the isotropy group $G_x$ is positive definite with respect to $\sigma$ under $\delta_x$ . Thus these ways of state extensions by means of positive definite functions are generalized as the following **Proposition 2.** Let A, G, $\sigma$ , $\tilde{A}$ be as above, and $\mu$ be a state on A. If a function $\phi$ on G is positive definite with respect to $\sigma$ under $\mu$ and satisfies $\phi(e)=1$ , then the functional $\varphi=\sum_s \oplus \phi(s)\mu$ is a state on $\tilde{A}$ . **Proof.** Let $\varphi = \sum_s \oplus \phi(s)\mu$ , where $\phi$ is a function on G with $\phi(e)=1$ , which is positive definite with respect to $\sigma$ under $\mu$ . It is evident that $\varphi$ extends to a bounded linear functional on $\ell^1(G, A)$ . Moreover, for a finite sum $x = \sum_i a_i \delta_{s_i}$ in $\tilde{A}$ , we have $$\varphi(x^*x) = \varphi\left(\sum_{i,j} \sigma_{s_i^{-1}}(a_i^*a_j)\delta_{s_i^{-1}s_j}\right)$$ $$= \sum_{i,j} \phi(s_i^{-1}s_j)\mu(\sigma_{s_i^{-1}}(a_i^*a_j))$$ $$\geq 0.$$ Since $\varphi$ is positive on the dense \*-subalgebra of $\tilde{A}$ which consists of all finite sums $\sum_i a_i \delta_{s_i}$ , where $a_i \in A$ and $s_i \in G$ , $\varphi$ is extended to a state on $\tilde{A}$ . This completes the proof. **Proposition 3.** Let A, G, $\sigma$ be as above, and $\mu$ be a state on A. If a positive definite function $\phi$ on G is supported in the subgroup $G_{\mu} = \{s \in G : \mu \circ \sigma_s = \mu\}$ , then it is positive definite with respect to $\sigma$ under $\mu$ . **Proof.** Let $S = \{s_i\}_{i \in F}$ be a finite set of G and $\{a_i\}_{i \in F}$ be a finite set of A. We have $S = \bigcup_{k=1}^m S_k$ , where $S_k$ is the set of elements in S belonging in the same coset of $G_\mu$ . If $S_k = \{s_{k1}, s_{k2}, ..., s_{kk}\}$ , then there are an s in G and $t_i \in G_\mu$ such that $s_{ki} = st_i$ for $i = 1, 2, ..., l_k$ . For each k, we have $$\sum_{i,j} \phi(s_{ki}^{-1} s_{kj}) \mu(\sigma_{s_{ki}}(a_{ki}^* a_{kj})) = \sum_{i,j} \phi(t_i^{-1} t_j) \mu(\sigma_{s-1}(a_{ki}^* a_{kj}))$$ $$= \mu \circ \sigma_{s-1} \left( \sum_{i,j} \phi(t_i^{-1} t_j) a_{ki}^* a_{kj} \right)$$ $$> 0$$ In fact, since $\phi$ is positive definite on $G_{\mu}$ , we have that for every x in X, $$\left(\sum_{i,j}\phi(t_i^{-1}t_j)a_{ki}^*a_{kj}\right)(x) = \sum_{i,j}\phi(t_i^{-1}t_j)\overline{a_{ki}(x)}a_{kj}(x) \ge 0.$$ Hence $\sum_{i,j} \phi(t_i^{-1}t_j) a_{ki}^* a_{kj}$ is a positive element of A = C(X). On the other hand, if $s_i$ and $s_j$ are not in the same set $S_k$ , then $s_i^{-1}s_j$ is not in $G_\mu$ and $\phi(s_i^{-1}s_j) = 0$ . Therefore we have $$\sum_{i,j} \phi(s_i^{-1}s_j) \mu(\sigma_{s_i^{-1}}(a_i^*a_j)) = \sum_{k=1}^m \sum_{i,j} \phi(s_{ki}^{-1}s_{kj}) \mu(\sigma_{s_k^{-1}}(a_{ki}^*a_{kj})) \ge 0.$$ This completes the proof. Now let $\tau$ be an automorphism of A which commutes with the action $\sigma$ of G on A and $\bar{\tau}$ the automorphism of $\tilde{A}$ induced by $\tau$ . We have that if $\mu$ is $\tau$ -ergodic, then the $\tilde{\tau}$ -invariant state extension $\varphi$ on $\tilde{A}$ of $\mu$ is given by $\varphi = \sum_s \oplus \phi(s)\mu$ , where $\varphi$ is a function on G which is positive definite with respect to $\sigma$ under $\mu$ and is supported in $G_{\mu}$ . **Proposition 4.** Let A, G, $\sigma$ , $\tau$ , $\tilde{A}$ , $\tilde{\tau}$ , be as above. Let $\mu$ be a $\tau$ -ergodic state on A. Suppose that $\mu$ is extended to a $\tilde{\tau}$ -invariant state $\varphi$ on $\tilde{A}$ : $\varphi = \sum_s \oplus \mu_s$ . Then there is a function $\varphi$ on G such that $\mu_s = \varphi(s)\mu$ , which is positive definite with respect to $\sigma$ under $\mu$ and is supported in the subgroup $G_{\mu}$ . **Proof.** Since $\varphi$ is an extension of $\mu$ , it follows from Prop.3.3.4 [4] that each $\mu_s$ is absolutely continuous with respect to $\mu_e = \mu$ . Then the Radon-Nikodym derivative $d\mu_s/d\mu(x)$ is $\tau$ -invariant. The ergodicity of $\mu$ implies that $d\mu_s/d\mu(x)$ is a constant $\phi(s)$ for each $s \in G$ . Thus we have $\mu_s = \phi(s)\mu$ . We show that $\phi(s)$ is positive definite with respect to $\sigma$ under $\mu$ . Take finite sets $\{s_i\}_{i\in F}$ in G and $\{a_i\}_{i\in F}$ in A. Then we have $$0 \leq \varphi\left(\left(\sum_{i} a_{i} \delta_{s_{i}}\right)^{*}\left(\sum_{i} a_{i} \delta_{s_{i}}\right)\right)$$ $$= \varphi\left(\sum_{i,j} \sigma_{s_{i}^{-1}}(a_{i}^{*} a_{j}) \delta_{s_{i}^{-1}} s_{j}\right)$$ $$= \sum_{i,j} \mu_{s_{i}^{-1} s_{j}}(\sigma_{s_{i}^{-1}}(a_{i}^{*} a_{j}))$$ $$= \sum_{i,j} \phi(s_{i}^{-1} s_{j}) \mu(\sigma_{s_{i}^{-1}}(a_{i}^{*} a_{j})).$$ Therefore $\phi$ is positive definite with respect to $\sigma$ under $\mu$ . Secondly we show that $\phi(s)$ is supported in the subgroup $G_{\mu}$ . In fact, since the state $\varphi$ is an extension of $\mu$ , it also follows from Prop.3.3.4 [4] that $\mu_s$ is absolutely continuous with respect to $\mu_e \circ \sigma_{s^{-1}} = \mu \circ \sigma_{s^{-1}}$ . Then the Radon-Nikodym derivative $\mathrm{d}\mu_s/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x) = \phi(s)\mathrm{d}\mu/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x)$ is $\tau$ -invariant and thus the ergodicity of $\mu \circ \sigma_{s^{-1}}$ implies $\phi(s)\mathrm{d}\mu/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x)$ is a constant for each $s \in G$ . Hence if $\phi(s) \neq 0$ , then $\mathrm{d}\mu/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x)$ is a constant c. Since $$c = \int c d\mu \circ \sigma_{s^{-1}}(x) = \int \frac{d\mu}{d\mu \circ \sigma_{s^{-1}}}(x) d\mu \circ \sigma_{s^{-1}}(x) = \int d\mu(x) = 1,$$ we have that if $\phi(s) \neq 0$ , then $\mu = \mu \circ \sigma_{s-1}$ . From it follows that $\phi(s) = 0$ for $s \notin G_{\mu}$ . This completes the proof. Thus we have the following **Theorem 5.** Let A, G, $\sigma$ , $\tau$ , $\tilde{A}$ , $\tilde{\tau}$ , be as above. Let $\mu$ be a $\tau$ -ergodic state on A. Then there is a bijective correspondence between the set of $\tilde{\tau}$ -invariant state extensions $\varphi$ of $\mu$ on $\tilde{A}$ and that of positive definite functions $\varphi$ on G with $\varphi(e)=1$ , supported in the subgroup $G_{\mu}$ . The correspondence: $\varphi \leftrightarrow \varphi$ is given by $\varphi=\sum_s \oplus \varphi(s)\mu$ . **Proof.** Suppose that $\varphi$ is a $\tilde{\tau}$ -invariant state extension of $\mu$ . By Proposition 4, there is a function $\phi$ on G such that $\mu_s = \phi(s)\mu$ , which is positive definite with respect to $\sigma$ under $\mu$ and supported in $G_{\mu}$ . It is enough to show the mapping is bijective. For this, let $\varphi = \sum_s \oplus \phi(s)\mu$ , where $\phi$ is a function on G with $\phi(e)=1$ , which is positive definite with respect to $\sigma$ under $\mu$ and is supported in $G_{\mu}$ . It is evident that $\varphi$ is $\tilde{\tau}$ -invariant. By Proposition 2, $\varphi$ is a state on $\tilde{A}$ and thus we have a $\tilde{\tau}$ -invariant state extension $\varphi$ on $\tilde{A}$ of $\mu$ . Injectivity follows from the uniqueness of the decomposition $\varphi = \sum_s \oplus \mu_s([4])$ . This completes the proof. Corollary 6. Let A, G, $\sigma$ , $\tau$ , $\tilde{A}$ , $\tilde{\tau}$ , be as above. The $\tilde{\tau}$ -ergodic state extension of a $\tau$ -ergodic state $\mu$ is unique if and only if $G_{\mu}$ is trivial. Since any positive definite function $\phi$ on $G_{\mu}$ taking value 1 at 0 is nothing but a state on the group C\*-algebra $C^*(G_{\mu})$ , we have Corollary 7. In the correspondence as the above theorem, the $\tilde{\tau}$ -invariant state $\varphi$ is $\tilde{\tau}$ -ergodic if and only if $\varphi$ is a pure state on $C^*(G_{\mu})$ . ## References - [1] Dixmier, J., Les C\*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. - [2] Kawamura, S., Takemoto, H. and Tomiyama, J., State extensions in transformation group C\*-algebras, Acta Sci. Math., 54(1990), 191-200. - [3] Rudin, W., Fourier analysis on groups, Interscience Publishers, New York, 1962. - [4] Tomiyama, J., Invitation to C\*-algebras and topological dynamics, World Scientific, Singapore, 1987. - [5] Tomiyama, J., The interplay between topological dynamics and theory of C\*-algebras, Lecture note series No.2, Global Analysis Research Center, Seoul, 2nd Printing, 1994. - [6] Walters, P., An introduction to ergodic theory, Springer-Verlag, New York, 1982. Department of Mathematics Faculty of Science Kumamoto University en de la composition La composition de la