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1. Introduction

In this note, we discuss the state extensions in transformation group C*-algebras by means of
positive definite functions. We say these extensions to be positive definite state extensions.

Let A be the C*-algebra C(X) of continuous functions on a compact Hausdorff space X
and o the action of a discrete group G on A induced by an action ¢ of G on X as homeomor-
phisms. We denote by A the crossed product C*-algebra A Xs G of A by G under . The
C*-algebra A is generated by A, 8s (s € G), where & is a function on G satisfying 8s(s)=1, 8s(¢)
=0(t+s). If ris an automorphism of A which commutes with 0, it induces an automorphism
7 of A suchthat =z on A and #=idon G. If ¢ is a positive definite function on G with ¢(e)
=1 and ¢ a o-invariant state on A, then ¢=31s® ¢(s)x is a state on A ([4], Prop.3.3.6). It is
evident that if x is r-invariant, then the state ¢ is #-invariant. And also when r is an identity
automorphism and g is the Dirac measure 8:(x € X), then it is known that there exists a
bijective correspondence between the set of state extensions of 8z on A and that of positive
definite functions ¢ on G: with ¢(e)=1. The correspondence: ¢ < ¢ is given by p=31s@
#(s)8:x with #(s)=0 for s ¢ G, where G: is the isotropy group {s € Glost=x}(4], Th.3.3.7).

Now we introduce the notion of a positive definiteness of a function ¢ on G to discuss the
positive definite state extensions, which is somewhat stronger than the usual one. We say that
a function ¢ on G is positive definite with respect to ¢ under y if it satisfies
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for any finite sets {s:}ier in G and {a:}:ier in A. If a function ¢ on G is positive definite with
respect to ¢ under g, then it is the usual positive definite function on G and conversely if a
positive definite function ¢ on G is supported in G,, then ¢ is positive definite with respect to
o under £ From them follow that if x is o-invariant, then a positive definite function on G is
positive definite with respect to ¢ under # and that a positive definite function on G« is positive
definite with respect to o under 8:. We show that if a function ¢ on G with #(e)=1 is positive
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definite with respect to ¢ under g and is supported in the subgroup G.=({s € Glpoos=p}, then
e=1s® ¢(s)x is a state on A (Prop. 2) and that if ¢ is r-ergodic, then the Z-invariant state
extension of 4 is only of this form (Prop. 4). We say an invariant state on a C*-algebra to be
ergodic if it is an extreme point in the invariant states on the C*.algebra. Thus we have that
there is a bijective correspondence between the set of #-invariant state extensions of x# on A and
that of positive definite functions ¢ on G with ¢(e)=1, which is supported in Gu (Thd). Ifr
is an identity automorphism and g is the Dirac measure J:, then from this theorem is implied
that there is a bijective correspondence between the set of state extensions of 5on A and that
of positive definite functions ¢ on G: with ¢(e)=1 ([4], Th.3.3.7).

2. Positive definite state extensions in transformation group C*-algebras

A state @ on A defines a function @ on G to A*, the dual space of A, by
<a, ®(s)>=<ads, p>, (a€ A, s€G)

([4)). If x=(e), then u=gls and the state ¢ is an extension of the state 4 on A. The state ¢
on A gives a distribution of a bounded family {us} of linear functionals on A which is denoted
by @=31s® s, where ps=@(s). On the other hand, if # is a o-invariant state on A, then it is
known the following way to consruct a state ¢ on A.

Proposition 1. ([4], Prop.3.3.6) If ¢ is a positive definite function on G with ¢(e)=1 and p is
a g-invariant state on A, then the functional p=2s® &(s)u is a state on A,

This method is not available for a state on A which is not necessarily g-invariant. But it
is also known that the state extension @ on A of the Dirac measure 8; is given by ¢=23:®
#(s)az, where @ is a positive definite function on the isotropy group G:([4], Th.3.3.7). We note
that if u is a o-invariant state on A, then a positive definite function on G is positive definite
with respect to ¢ under # and that a positive definite function ¢ on the isotropy group G: is
positive definite with respect to ¢ under d:. Thus these ways of state extensions by means of
positive definite functions are generalized as the following

Proposition 2. Let A, G, o, A be as above, and u be a state on A. If a function ¢ on G is
positive definite with respect to ¢ under p and satisfies ¢(e)=1, then the functional p=23:®
B(s)y is a state on A.

Proof. Let p=3:® ¢(s)u, where ¢ is a function on G with ¢#(e)=1, which is positive
definite with respect to ¢ under g It is evident that ¢ extends to a bounded linear functional
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on (G, A). Moreover, for a finite sum x=3Ya.0s in A, we have

p(x*z)= ¢(26sr-(a?‘a;)83rns,)

=Z¢(s:'sj)#(asrn(a?af))
0.

Since ¢ is positive on the dense % -subalgebra of A which consists of all finite sums 3:a:0s,
where a;€ A and s; € G, ¢ is extended to a state on A.
This completes the proof.

Proposition 3. Let A, G, ¢ be as above, and 1 be a state on A. If a positive definite function
¢ on G is supported in the subgroup Gu={s€ G: pogs=p}, then it is positive definite with
respect lo o under p.

Proof. Let S={s:}ier be a finite set of G and {a.}:er be a finite set of A. We have S=
UZ=1S, where S; is the set of elements in S belonging in the same coset of Gu. If Si={su,
Sk2,-.-,Suus}, then there are an s in G and £ € G, such that ssx=st; for i =1,2,....Ix». Foreach &, we
have

Z¢(s;ilski)ﬂ(asif(a:faki))=Z¢( 17 :) 1 0s-(akians))

= po as_.(ggﬁ(t.-_'tj)d:iaki)
=20

In fact, since ¢ is positive definite on G, we have that for every x in X,
(Z'ﬁ(ia"t:)atsau)(r)=Z¢(t.-"t;)ak.-(x)au(.r)20.
iJ £

Hence X:.,4(47't;)akiaw is a positive element of A=C(X). On the other hand, if s; and s; are
not in the same set S, then s;i's; is not in G, and #(s7's;)=0. Therefore we have

ZvS(sF 'spu(osi(atas))= 22¢(s§3sﬁ)#( asi(akian)) =0.

A=11J

This completes the proof.
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Now let 7 be an automorphism of A which commutes with the action ¢ of G on A and ¢
the automorphism of A induced by z. We have that if ¢ is 7-ergodic, then the 7-invariant state
extension ¢ on A of y is given by ¢=31;® ¢(s)x, where ¢ is a function on G which is positive
definite with respect to ¢ under # and is supported in G

Proposition 4. Let A, G, o, 1, A, £ be as above. Let u be a t-ergodic state on A. Suppose
that p is extended to a T-invariant state ¢ on A: o=@ us. Then there is a function ¢ on G
such that ps=¢(s)y, which is positive definite with respect to ¢ under p and is supported in the
subgroup Gp.

Proof. Since @ is an extension of g, it follows from Prop.3.3.4 [4] that each s is
absolutely continuous with respect to ge=p. Then the Radon-Nikodym derivative dus/dp(x)
is r-invariant. The ergodicity of z implies that dus/du(x) is a constant ¢(s) for each s€ G.
Thus we have us=¢(s)z. We show that ¢(s) is positive definite with respect to ¢ under s.
Take finite sets {s:}ier in G and {a:}:er in A. Then we have

o<o{(Faae) ()

i [

= ¢(Eo‘srn(a’."a,-)3srlsj)

i

=El~‘sr's;(0'sr'(a?a.i))
iJ

qu(s.-—'s,-)u(as,--(ara,-».

Therefore ¢ is positive definite with respect to ¢ under .

Secondly we show that ¢(s) is supported in the subgroup G.. In fact, since the state ¢ is
an extension of g, it also follows from Prop.3.3.4 [4] that us is absolutely continuous with
respect t0 peodsi=pooss. Then the Radon-Nikodym derivative dys/dueos-(x)=
#(s)dg/dusos+(z) is r-invariant and thus the ergodicity of zods- implies ¢(s)du/dpeoos-(z) is
a constant for each s€ G. Hence if ¢(s)#0, then du/dueos(x) is a constant ¢. Since

c= [edpeos(x)= fd—ﬁg%sj(x)dﬂ°as-'(x)= fd#(x)=1.
we have that if ¢(s)#0, then g=geos. From it follows that ¢(s)=0 for s ¢ G
This completes the proof.
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Thus we have the following

Theorem 5. Let A, G, o, t, A, , be as above. Let u be a t-ergodic state on A. Then there
is a bijective correspondence between the set of i-invariant state extensions @ of 1 on A and that
of positive definite functions ¢ on G with ¢(e)=1, supported in the subgroup Gu.. The corve-
spondence: ¢ « ¢ is given by p=220® ¢(s)p.

Proof. Suppose that ¢ is a #-invariant state extension of z. By Proposition 4, there is a
function ¢ on G such that ps=@(s)y, which is positive definite with respect to ¢ under # and
supported in Gu. It is enough to show the mapping is bijective. For this, let p=3,® #(s)u,
where ¢ is a function on G with ¢(e)=1, which is positive definite with respect to ¢ under u«
and is supported in G.. It is evident that ¢ is 7-invariant. By Proposition 2, ¢ is a state on
A and thus we have a 7-invariant state extension ¢ on A of p. Injectivity follows from the
uniqueness of the decomposition ¢=231:® us([4]).

This completes the proof.

Corollary 6. Let A, G, o, 1, A, £ be as above. The t-ergodic state extension of a t-ergodic
state p is unique if and only if G. is trivial.

Since any positive definite function ¢ on G, taking value 1 at 0 is nothing but a state on
the group C*-algebra C*(G,), we have

Corollary 7. In the correspondence as the above theorem, the t-invariant state @ is T-ergodic if
and only if ¢ is a pure state on C*(G,).
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