Positive definite state extensions in transformation group C*-algebras

Yukimasa Oka

(Received January 31, 2005)

1. Introduction

In this note, we discuss the state extensions in transformation group C*-algebras by means of positive definite functions. We say these extensions to be positive definite state extensions.

Let A be the C*-algebra C(X) of continuous functions on a compact Hausdorff space X and σ the action of a discrete group G on A induced by an action σ of G on X as homeomorphisms. We denote by \tilde{A} the crossed product C*-algebra $A \rtimes_{\sigma} G$ of A by G under σ . The C*-algebra \tilde{A} is generated by A, δ_s ($s \in G$), where δ_s is a function on G satisfying $\delta_s(s)=1$, $\delta_s(t)=0$ ($t \neq s$). If τ is an automorphism of A which commutes with σ , it induces an automorphism $\tilde{\tau}$ of \tilde{A} such that $\tilde{\tau}=\tau$ on A and $\tilde{\tau}=\mathrm{id}$ on G. If ϕ is a positive definite function on G with $\phi(e)=1$ and $\phi(e)=1$ and $\phi(e)=1$ and $\phi(e)=1$ and $\phi(e)=1$ is $\phi(e)=1$ invariant, then the state $\phi(e)=1$ is a state on $\phi(e)=1$ is an identity automorphism and $\phi(e)=1$ is the Dirac measure $\delta_x(x\in X)$, then it is known that there exists a bijective correspondence between the set of state extensions of δ_x on \tilde{A} and that of positive definite functions $\phi(e)=1$. The correspondence $\phi(e)=1$ is given by $\phi(e)=1$. The correspondence $\phi(e)=1$ is given by $\phi(e)=1$. The correspondence $\phi(e)=1$ is given by $\phi(e)=1$. The $\phi(e)=1$ is the isotropy group $\phi(e)=1$ is $\phi(e)=1$. The $\phi(e)=1$ is the isotropy group $\phi(e)=1$. The $\phi(e)=1$ is the isotropy group $\phi(e)=1$.

Now we introduce the notion of a positive definiteness of a function ϕ on G to discuss the positive definite state extensions, which is somewhat stronger than the usual one. We say that a function ϕ on G is positive definite with respect to σ under μ if it satisfies

$$\sum_{i,j}\phi(s_i^{-1}s_j)\mu(\sigma_{s_i^{-1}}(a_i^*a_j))\geq 0$$

for any finite sets $\{s_i\}_{i\in F}$ in G and $\{a_i\}_{i\in F}$ in A. If a function ϕ on G is positive definite with respect to σ under μ , then it is the usual positive definite function on G and conversely if a positive definite function ϕ on G is supported in G_μ , then ϕ is positive definite with respect to σ under μ . From them follow that if μ is σ -invariant, then a positive definite function on G is positive definite with respect to σ under μ and that a positive definite function on G_x is positive definite with respect to σ under δ_x . We show that if a function ϕ on G with $\phi(e)=1$ is positive

definite with respect to σ under μ and is supported in the subgroup $G_{\mu}=\{s\in G|\mu\circ\sigma_s=\mu\}$, then $\varphi=\sum_s\oplus\phi(s)\mu$ is a state on \tilde{A} (Prop. 2) and that if μ is τ -ergodic, then the $\tilde{\tau}$ -invariant state extension of μ is only of this form (Prop. 4). We say an invariant state on a C*-algebra to be ergodic if it is an extreme point in the invariant states on the C*-algebra. Thus we have that there is a bijective correspondence between the set of $\tilde{\tau}$ -invariant state extensions of μ on \tilde{A} and that of positive definite functions ϕ on G with $\phi(e)=1$, which is supported in G_{μ} (Th.4). If τ is an identity automorphism and μ is the Dirac measure δ_x , then from this theorem is implied that there is a bijective correspondence between the set of state extensions of δ_x on \tilde{A} and that of positive definite functions ϕ on G_x with $\phi(e)=1$ ([4], Th.3.3.7).

2. Positive definite state extensions in transformation group C*-algebras

A state φ on \tilde{A} defines a function Φ on G to A^* , the dual space of A, by

$$\langle a, \Phi(s) \rangle = \langle a\delta_s, \varphi \rangle, (a \in A, s \in G)$$

([4]). If $\mu = \Phi(e)$, then $\mu = \varphi|_A$ and the state φ is an extension of the state μ on A. The state φ on \tilde{A} gives a distribution of a bounded family $\{\mu_s\}$ of linear functionals on A which is denoted by $\varphi = \sum_s \oplus \mu_s$, where $\mu_s = \Phi(s)$. On the other hand, if μ is a σ -invariant state on A, then it is known the following way to construct a state φ on \tilde{A} .

Proposition 1. ([4], Prop.3.3.6) If ϕ is a positive definite function on G with $\phi(e)=1$ and μ is a σ -invariant state on A, then the functional $\varphi=\sum_s \oplus \phi(s)\mu$ is a state on \tilde{A} .

This method is not available for a state on A which is not necessarily σ -invariant. But it is also known that the state extension φ on \tilde{A} of the Dirac measure δ_x is given by $\varphi = \sum_s \oplus \phi(s)\sigma_x$, where ϕ is a positive definite function on the isotropy group $G_x([4], \text{Th.3.3.7})$. We note that if μ is a σ -invariant state on A, then a positive definite function on G is positive definite with respect to σ under μ and that a positive definite function ϕ on the isotropy group G_x is positive definite with respect to σ under δ_x . Thus these ways of state extensions by means of positive definite functions are generalized as the following

Proposition 2. Let A, G, σ , \tilde{A} be as above, and μ be a state on A. If a function ϕ on G is positive definite with respect to σ under μ and satisfies $\phi(e)=1$, then the functional $\varphi=\sum_s \oplus \phi(s)\mu$ is a state on \tilde{A} .

Proof. Let $\varphi = \sum_s \oplus \phi(s)\mu$, where ϕ is a function on G with $\phi(e)=1$, which is positive definite with respect to σ under μ . It is evident that φ extends to a bounded linear functional

on $\ell^1(G, A)$. Moreover, for a finite sum $x = \sum_i a_i \delta_{s_i}$ in \tilde{A} , we have

$$\varphi(x^*x) = \varphi\left(\sum_{i,j} \sigma_{s_i^{-1}}(a_i^*a_j)\delta_{s_i^{-1}s_j}\right)$$

$$= \sum_{i,j} \phi(s_i^{-1}s_j)\mu(\sigma_{s_i^{-1}}(a_i^*a_j))$$

$$\geq 0.$$

Since φ is positive on the dense *-subalgebra of \tilde{A} which consists of all finite sums $\sum_i a_i \delta_{s_i}$, where $a_i \in A$ and $s_i \in G$, φ is extended to a state on \tilde{A} .

This completes the proof.

Proposition 3. Let A, G, σ be as above, and μ be a state on A. If a positive definite function ϕ on G is supported in the subgroup $G_{\mu} = \{s \in G : \mu \circ \sigma_s = \mu\}$, then it is positive definite with respect to σ under μ .

Proof. Let $S = \{s_i\}_{i \in F}$ be a finite set of G and $\{a_i\}_{i \in F}$ be a finite set of A. We have $S = \bigcup_{k=1}^m S_k$, where S_k is the set of elements in S belonging in the same coset of G_μ . If $S_k = \{s_{k1}, s_{k2}, ..., s_{kk}\}$, then there are an s in G and $t_i \in G_\mu$ such that $s_{ki} = st_i$ for $i = 1, 2, ..., l_k$. For each k, we have

$$\sum_{i,j} \phi(s_{ki}^{-1} s_{kj}) \mu(\sigma_{s_{ki}}(a_{ki}^* a_{kj})) = \sum_{i,j} \phi(t_i^{-1} t_j) \mu(\sigma_{s-1}(a_{ki}^* a_{kj}))$$

$$= \mu \circ \sigma_{s-1} \left(\sum_{i,j} \phi(t_i^{-1} t_j) a_{ki}^* a_{kj} \right)$$

$$> 0$$

In fact, since ϕ is positive definite on G_{μ} , we have that for every x in X,

$$\left(\sum_{i,j}\phi(t_i^{-1}t_j)a_{ki}^*a_{kj}\right)(x) = \sum_{i,j}\phi(t_i^{-1}t_j)\overline{a_{ki}(x)}a_{kj}(x) \ge 0.$$

Hence $\sum_{i,j} \phi(t_i^{-1}t_j) a_{ki}^* a_{kj}$ is a positive element of A = C(X). On the other hand, if s_i and s_j are not in the same set S_k , then $s_i^{-1}s_j$ is not in G_μ and $\phi(s_i^{-1}s_j) = 0$. Therefore we have

$$\sum_{i,j} \phi(s_i^{-1}s_j) \mu(\sigma_{s_i^{-1}}(a_i^*a_j)) = \sum_{k=1}^m \sum_{i,j} \phi(s_{ki}^{-1}s_{kj}) \mu(\sigma_{s_k^{-1}}(a_{ki}^*a_{kj})) \ge 0.$$

This completes the proof.

Now let τ be an automorphism of A which commutes with the action σ of G on A and $\bar{\tau}$ the automorphism of \tilde{A} induced by τ . We have that if μ is τ -ergodic, then the $\tilde{\tau}$ -invariant state extension φ on \tilde{A} of μ is given by $\varphi = \sum_s \oplus \phi(s)\mu$, where φ is a function on G which is positive definite with respect to σ under μ and is supported in G_{μ} .

Proposition 4. Let A, G, σ , τ , \tilde{A} , $\tilde{\tau}$, be as above. Let μ be a τ -ergodic state on A. Suppose that μ is extended to a $\tilde{\tau}$ -invariant state φ on \tilde{A} : $\varphi = \sum_s \oplus \mu_s$. Then there is a function φ on G such that $\mu_s = \varphi(s)\mu$, which is positive definite with respect to σ under μ and is supported in the subgroup G_{μ} .

Proof. Since φ is an extension of μ , it follows from Prop.3.3.4 [4] that each μ_s is absolutely continuous with respect to $\mu_e = \mu$. Then the Radon-Nikodym derivative $d\mu_s/d\mu(x)$ is τ -invariant. The ergodicity of μ implies that $d\mu_s/d\mu(x)$ is a constant $\phi(s)$ for each $s \in G$. Thus we have $\mu_s = \phi(s)\mu$. We show that $\phi(s)$ is positive definite with respect to σ under μ . Take finite sets $\{s_i\}_{i\in F}$ in G and $\{a_i\}_{i\in F}$ in A. Then we have

$$0 \leq \varphi\left(\left(\sum_{i} a_{i} \delta_{s_{i}}\right)^{*}\left(\sum_{i} a_{i} \delta_{s_{i}}\right)\right)$$

$$= \varphi\left(\sum_{i,j} \sigma_{s_{i}^{-1}}(a_{i}^{*} a_{j}) \delta_{s_{i}^{-1}} s_{j}\right)$$

$$= \sum_{i,j} \mu_{s_{i}^{-1} s_{j}}(\sigma_{s_{i}^{-1}}(a_{i}^{*} a_{j}))$$

$$= \sum_{i,j} \phi(s_{i}^{-1} s_{j}) \mu(\sigma_{s_{i}^{-1}}(a_{i}^{*} a_{j})).$$

Therefore ϕ is positive definite with respect to σ under μ .

Secondly we show that $\phi(s)$ is supported in the subgroup G_{μ} . In fact, since the state φ is an extension of μ , it also follows from Prop.3.3.4 [4] that μ_s is absolutely continuous with respect to $\mu_e \circ \sigma_{s^{-1}} = \mu \circ \sigma_{s^{-1}}$. Then the Radon-Nikodym derivative $\mathrm{d}\mu_s/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x) = \phi(s)\mathrm{d}\mu/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x)$ is τ -invariant and thus the ergodicity of $\mu \circ \sigma_{s^{-1}}$ implies $\phi(s)\mathrm{d}\mu/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x)$ is a constant for each $s \in G$. Hence if $\phi(s) \neq 0$, then $\mathrm{d}\mu/\mathrm{d}\mu \circ \sigma_{s^{-1}}(x)$ is a constant c. Since

$$c = \int c d\mu \circ \sigma_{s^{-1}}(x) = \int \frac{d\mu}{d\mu \circ \sigma_{s^{-1}}}(x) d\mu \circ \sigma_{s^{-1}}(x) = \int d\mu(x) = 1,$$

we have that if $\phi(s) \neq 0$, then $\mu = \mu \circ \sigma_{s-1}$. From it follows that $\phi(s) = 0$ for $s \notin G_{\mu}$. This completes the proof.

Thus we have the following

Theorem 5. Let A, G, σ , τ , \tilde{A} , $\tilde{\tau}$, be as above. Let μ be a τ -ergodic state on A. Then there is a bijective correspondence between the set of $\tilde{\tau}$ -invariant state extensions φ of μ on \tilde{A} and that of positive definite functions φ on G with $\varphi(e)=1$, supported in the subgroup G_{μ} . The correspondence: $\varphi \leftrightarrow \varphi$ is given by $\varphi=\sum_s \oplus \varphi(s)\mu$.

Proof. Suppose that φ is a $\tilde{\tau}$ -invariant state extension of μ . By Proposition 4, there is a function ϕ on G such that $\mu_s = \phi(s)\mu$, which is positive definite with respect to σ under μ and supported in G_{μ} . It is enough to show the mapping is bijective. For this, let $\varphi = \sum_s \oplus \phi(s)\mu$, where ϕ is a function on G with $\phi(e)=1$, which is positive definite with respect to σ under μ and is supported in G_{μ} . It is evident that φ is $\tilde{\tau}$ -invariant. By Proposition 2, φ is a state on \tilde{A} and thus we have a $\tilde{\tau}$ -invariant state extension φ on \tilde{A} of μ . Injectivity follows from the uniqueness of the decomposition $\varphi = \sum_s \oplus \mu_s([4])$.

This completes the proof.

Corollary 6. Let A, G, σ , τ , \tilde{A} , $\tilde{\tau}$, be as above. The $\tilde{\tau}$ -ergodic state extension of a τ -ergodic state μ is unique if and only if G_{μ} is trivial.

Since any positive definite function ϕ on G_{μ} taking value 1 at 0 is nothing but a state on the group C*-algebra $C^*(G_{\mu})$, we have

Corollary 7. In the correspondence as the above theorem, the $\tilde{\tau}$ -invariant state φ is $\tilde{\tau}$ -ergodic if and only if φ is a pure state on $C^*(G_{\mu})$.

References

- [1] Dixmier, J., Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- [2] Kawamura, S., Takemoto, H. and Tomiyama, J., State extensions in transformation group C*-algebras, Acta Sci. Math., 54(1990), 191-200.
- [3] Rudin, W., Fourier analysis on groups, Interscience Publishers, New York, 1962.
- [4] Tomiyama, J., Invitation to C*-algebras and topological dynamics, World Scientific, Singapore, 1987.
- [5] Tomiyama, J., The interplay between topological dynamics and theory of C*-algebras, Lecture note series No.2, Global Analysis Research Center, Seoul, 2nd Printing, 1994.
- [6] Walters, P., An introduction to ergodic theory, Springer-Verlag, New York, 1982.

Department of Mathematics Faculty of Science Kumamoto University

en de la composition La composition de la