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Abstract

In this article we consider analogies for polyhedral surfaces in R? with respect to Theorema
Egregium and Weyl’s volume formula of tube in classical surface theory.

Theorema Egregium of Gauss is a well known, famous theorem in the classical surface
theory. Roughly speaking, it says that the Gauss curvature defined extrinsicly coincides with
some intrinsic value. An extrinsic definition of Gauss curvature for polytopes was given in [4]
by D. Hilbert and S. Cohn-Vossen. In the case of the pblytopes, A. D. Alexandrov discussed an
analogous theorem in [1] and [2]. In the case of general polyhedra T. Banchoff discussed it in
[3], but his definition of extrinsic curvature is different from the original one in [4].

In this article we first define the extrinsic curvature of (not necessarily convex) polyhedra,
following the direction indicated in [4], and prove Theorema Egregium for polyhedra in R®.
Next we consider an analogy of Weyl’s volume formula for polyhedra in R? by using another
type of curvature. The general dimensional case is treated in [5] and [6].

A polyhedral surface P is a PL 2-dimensional manifold, which we assume triangulated by
Euclidean simplices ¢“, such that P is locally embedded in R? around for any interior vertex v.
We say an interior vertex v has property (*), if there is a unit vector » such that for all faces
fi of P incident to », the normal vectors #; on the same side of P satisfy L(m,n)<%.

We define the intrinsic curvature K*(v) at a vertex v of P as follows:

K'(v) :=Z,(-l)d.,2fd(v’6d)’

where 8%(v,6%) denotes the outer angle at v of the d-simplex o®. The outer angle is defined
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by (x—inner angle of ¢%)/2x if d=2, formally defined by % if d=1and by 1if 4=0. It holds
that K(v)=(2n— 3;e;)/2xn, where a; denotes the inner angle at v of the face f; incident to v.
Next we define an extrinsic curvature for a polyhedral surface P. For each vertex v € P,
denote the faces around v by {fi} (i=1,,k) and their normal vectors on the same side of P by
{#:}, where the indices are numbered in the anti-clockwise order looking from the side of the
normal direction. Let ¢; . be the shortest arc from #; to #;,1 on the unit sphere S*(1). We -
define the closed broken geodesic arc ¢ by ¢:=c12U c23U = Ucea and define K*(v,n) by the
signed area of the domain enclosed by ¢ with respect to the base point #. Denote the oriented

spherical triangle with vertices n, #;, njsi(#n—n;= n;a—~n) by T(j). Then K*(v,») is given by
Kv,n) :=%Z(— 1)*9 Area( T(5)),

where 8(j) is 1 if the orientation #— n;~ ;.- n of the spherical triangle T(/) is clockwise, and
0 otherwise. If a polyhedron P has property (*), then the value of K*(v,%) clearly does not
depend on the choice of »; in this case we write it K*¢(v) and call the extrinsic curvature of v.

Now we get the following theorem.

Theorem 1 (Theorema Egregium for polyhedra). For any polyhedral surface P in R® and an
interior verlex v of P with property (*¥) it holds that K*(v)=K(v).

Remark. (i) The above definition of K“(v) seems complicated, but it is natural at least when
we consider the example of the vertex » with faces around it, of normal vectors m=(b,—a,c),
ne=(a,— b,c), na=(a,b,c), na=(b,a,c), ns=(—b,a,c), ne=(—a,b,c), m=(—a,—b,c), ns=(—b,
—a,c) (0<a<c<b<l).

(ii) There is a polyhedron P and a vertex v € P such that for any vector »n € S*(1) it holds
K(v)#K(v,n) [5]. This shows the necessity of the additional property(*).

Lemma. If a verlex v of a polyhedral surface P has 3 faces around it, then K'(v)=K*(v).
Proof of Lemma. Let us assume first that P is convex around ». Let f; be the faces around
v, n: the unit nomal vector of f; and @ the inner angle of f; at v (/=1,2,3). Let & be the inner

angle at 7. of the spherical triangle A(a,n2,15) on S*(1). Lemma follows easily from the area
formula Area(A)=3230;—r and §i=r—a;=27f3:. In fact, it holds that

K*(v) :=ﬁ(;9i— 7r)=21—ﬁ(227rﬂ.-7 :r)=l——g—+ Z:BFK‘(U).
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Next let’s assume that P is not convex around ». We may assume, without loss of
generality, that the inner angle @ of f; is larger than #. Define the spherical triangle A(7, 7.,
ns) and 6; as above. Note that in this case the orientation M~ n2— n3— m is clockwise and o
=6,2=6,; s—r=0. From these considerations the conclusion follows,

Proof of Theorem 1. Let f,,, f: be the faces around an interior vertex . From the property
(*) we can take » € S¥(1) and two planes p/* which are orthogonal to # and go through the
points v+ ex respectively, such that there are not vertices of f; between pl* and pl-. Here, &
is a positive number, conveniently small. Let As* (resp. ks™) be the half space with boundary
pl*(resp. pI”) not containing » and f3 (resp. f5:) be the connected component of p/*\ P(resp.
pI"\P) containing v+en (resp. v—en). Let w; be the point of f;N fix1 in pi*, or p/~, according
to the case. Consider the polyhedra (PNAs*)U £ and (PN ks™)U fx with vertices wn, ", Wn
Note that K*(w;)=(—1)"’ Area( T(;)), so K(v)=3,K(w;). We can easily check that 8(v, f)
=B(w;, £:0 hs*)+ Bwi-y, f.ﬂhs*) if /: does not intersect both As* and ks~, and 8(v,f:)= B(w:,
LN As®)+ B(wi-y, N hs*)+—1f /i intersects both 4s* and ks~. The number of faces which
intersect both 4s* and ks~ is even and denoted by 2m. Note that the number of the connected
components of PN As*N L(v) is 2m, where L(v) denotes the link of P at ». We can easily get
that 33,8(w;,pl*)=—m+1. Then it holds that

D)= Y =3+ B 1)+ B fyn) + B 5 =~ 24 TR0, )1,
J 7 J
Therefore we get Theorem 1 from previous Lemma.

The Weyl’s volume formula of tube for a closed surface M in R" [7] says that for any
positive number » small enough, it holds VoIN,(M)=2rAreaM + 3 f uKdv, where N.(M)
denotes the 7 neighborhood of M and K denotes Gauss curvature on M. Let Pbea polyhedral
surface in R®. We will consider the problem : What is the volume formula for polyhedra pP?
The difficulty is to define N,(P) and K(v) such that Vol N.(M)=2rAreaM + EverK(v)

Let us define the curvature K(v) at a vertex v of P with three faces fi around it. Denote
by #; the unit normal direction of f; (7=1,2,3) on the same side of P. Let T; be the tangent
plane of S*(1) at #; and T} be the closed half space with boundary 7} and containig S*(1). The
indices are always numbered in anti-clockwise order, ldoking from the side of normal direc-
tions. Put 7%:=N,T;*. Let H; be the plane through the origin containing two normal
vectors different to #;, and Hj(resp. H;”) be the half space with boundary H; and not
containing (resp. containing) »,. Put ¢:=M3.17;. Define the unit vector n by n=gqlql™.
Let L; be the plane trough #, »; and the origin and D; be the domain bounded by L;s1, Ljs2 and
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containing the great arc #n;+17;42. We define K(v) by

3
R(v):=)\(~179Areal( T,U Tu) N(T* N Hiia Disal)
J=1
where 8(7) is 1 if the orientation %> #;— n;.1— n of spherical triangle ##,2;. is clockwise, and

0 otherwise.

Let P be an oriented polyhedral surface in R®. We consider a neighborhood NAP) of P
which is given by the parallel translation of each face with constant speed. It is exactly
defined as follows. Let f be a face of P and 7, be the unit normal direction of /. Let pl, be
the plane containing the face f. Define a parallel plane by pl,(f) :=pl,+tn,. Let {f'} be the
set of faces with fNf'#=0. Let hs,(#) be the half space with boundary p/-(¢) such that ks,D
Fif FOplAt)=0, hspD F if FOPLA)FD. Put o/(t) :=Nin(plt)Nhsy(t)), and P(2):=
Uyerp,{f), where F denotes the set of all faces of P. Define Nx(P) by N:(P):=U-rgicrP(t).
Now we get the following theorem.

Theorem 2 (Weyl type volume formula for polyhedra). Let P be a 2-dimensional closed
ovientable polyhedral surface in R® such that each vertex has just three faces around it. For any
positive number v small enough, it holds that

VoIN,(M)=2rAreaM +ZT”3 2 K().
vepr

Remark. (i) The above definition of K(») seems complicated, but it is natural at least when
we consider the example of the vertex » with faces around it, of normal vectors m=(a,0,b), n:
=(0,b,a), ns=(0,—b,a) (0< a<b<1).
(i) If g€ NIaH}, then K(v)=Area{(U- TN T*N(Ni-1H;*)). If P is convex around v,
then K*(v)=Area(S*N(N31H})). Hence it seems that K(v) has some relation to K*(») and
the usual Gauss curvature.
(iii) The above formula does not hold without the assumption that any vertex have precisely
3 faces around it.

Proof of Theorem 2. We use the notations and the constructions considered for the definition
of NAP). Let n, be the unit normal vector of the face f on a side and 7, the one on the other
side of f. Let 3, (resp. 3},) be the direct product set f X s,(resp. f X §,) where s,(resp. §. )
denotes the line-segment 77, (resp. 77,). Put Ny :=Uboge:@s(t), Ny :=U-rseco@s(t) and e(7)
=pl(r)Npl(7). Let H. (resp. Hu.) be the plane orthogonal to e and through the midpoint
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me of e (resp. through ), and Hy. be the half space with dH}.=Hj. and not containing e.
For each edge e around f, take a triangle t.,(7)C H, with vertices me.,me+ rns,a, where a
denotes the nearest point on e(r) to m.. Put v(»):=(,,»s@s(7). Take the tetrahedron
Tv.e.s/(7) such that the triangle fv,e,(7) on pl,(r) with vertices v+ 7n,,b,0(7) is its base and the
fourth vertex coincides with », where & denotes the nearest point on e(r)to v. Note that when
02 are two vertices of e, we can assume that To,e {#)N Tyser(#)=80, because 7 is small
enough. For any face 7 it holds that

N,= (ZIQ( teAr)Xe )):[:Elr To,es(7),

where the first symbol |_]| denotes either the union if £ pl,()=#, or the setminus if £ N pl(2)
#4, and the second symbol |_J denotes either the union if N pl(¢)=8 and v(r) € Hie, or N
pl(t)+ @ and v(7) ¢ H{., or denotes the setminus otherwise. We obtain the same relation for
N, by using —r instead of 7. Indeed, if it holds that £ N pl,(¢)=0 and v(r) € Hi.at v € f, then
that N pl(¢)+0 and v(—r) ¢ Hi.on the other side. Note that the volume of disjoint union
of 33, and 2, is equal to 27Area(f). Then we get from the above considerations that

Vol(N,U N,)=2rArea(f)+ 2 (—1)“”-"-'%rArea(tv.e.f(r)Ut.w(—r)),

{vie)esf

where A(v,e,f)=0 if |_| denotes the union, A(v,e,f)=1 if |_| denotes the setminus. From the
definition of K(v) it holds that

R@)= )} (-pseen

(esf)3v

23r Area(ty,e (7))

Hence it follows the conclusion of Theorem 2.
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