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Abstract

We shall see that for a space-like minimal surface S in the 4-dimensional de Sitter space
1 such that the shape operator with respect to some light-like normal vector field is nowhere
zero, there exists a Willmore surface S in S? without any umbilical point such that the image
of S by the conformal Gauss map is congruent with $ in Si. In addition, we shall show that
a Willmore surface S in $° without any umbilical point is the inverse image of a minimal
surface in R® by a stereographic projection if and only if the image of S by the conformal Gauss
map is a space-like minimal surface in St such that the curvature with respect to the metric
induced by the conformal Gauss map is identically equal to one.

1. Introduction

Let M be an oriented smooth two-dimensional manifold. Then for each immersion ¢: M
- S8? of M into S%, we set

W(c):= L (H*+1)dA,

where H is the mean curvature of M with respect to ¢ and dA is the area element of M with
respect to the metric ¢ induced by ¢. We call W the Willmore functional. An immersion ¢ is
called Willmore if the first variation of W for ¢ is zero, where we consider variations of ¢ with
compact support. If ¢ is Willmore, then the image (M) is called a Willmore surface. The
Euler-Lagrange equation for Willmore immersions is given by the following ([7]):

AH+2(H*— K +1)H=0, 1
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where A and K are the Laplacian and the curvature of M with respect to g, respectively. From
(1), we see that a minimal surface in S is Willmore. Referring to [7], we see that the inverse
image of a minimal surface in R® by a stereographic projection is Willmore.

Suppose that M has no umbilical point with respect to an immersion ¢. In [3], Bryant
pointed out that ¢ is Willmore if and only if the conformal Gauss map 7. of ¢ is a space-like
minimal immersion of M into the 4-dimensional de Sitter space S{. In the present paper, we
shall see that for a space-like minimal immersion 7 of M into Si such that the shape operator
of M with respect to some light-like normal vector field is nowhere zero, there exists a
Willmore immersion ¢ of M into S such that the conformal Gauss map of ¢ is equal to y or—7.
In addition, we shall show that for a Willmore immersion ¢: M~ S° «(M) is the inverse image
of a minimal surface in R® by a stereographic projection if and only if the conformal Gauss map
7. of ¢ is a space-like minimal immersion such that the curvature of M with respect to the metric
induced by 7. is identically equal to one.

Remark. In [3], Bryant showed that if # is homeomorphic to S? then the image of M by a
Willmore immersion is the compactification of the inverse image by a stereographic projection
of a complete minimal surface in R? with finite total curvature and with embedded, flat ends.

2. The conformal Gauss map

In [3], Bryant introduced and studied the conformal Gauss map of an immersion ¢: M~ S°.
The purpose of this section is to describe properties of the conformal Gauss map.

2.1. Preliminaries
Let <, > be the Lorentzian inner product on RS, i. e., an indefinite inner product on R®
defined by

<x'y> = _x(o)y(0)+ x“’y"’+x‘2’y‘z’+x‘3’y‘3’+x“’y“’

for two vectors z :=(z2®,z",z?,2®,29), y :=(y*,yP,y?,y,y") of R®. We say that a vector
x € R® is space-like if <x,x> >0, time-like if <x,x><0, and light-like or null if x is not zero but
satisfies <x,z>=0. A time-like or light-like vector x € R°® is said to be future directed if x>
0. Let L* be the set of the future directed light-like vectors of R%. For two vectors x,y € L*,
we write x~y if x and v are linearly dependent. We see that~is an equivalence relation in
L* and that L*/~ may be identified with the 3-dimensional sphere. In addition, a subset {x €
L*; x®=1} of L*, which is a set of representatives of the equivalence classes, may be identified
with the 3-dimensional unit sphere S° which is the 3-dimensional sphere equipped with the
standard metric.
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Let G be the group of the linear transformations of R® which preserve the Lorentzian inner
product <, >, the orientation of R® and the future direction. Then each element X of G induces
a conformal transformation #x of S* which preserves the orientation of S®: if for v € S3 ix(y)
denotes a unique intersection of L*N{z®=1)} with a line through the origin of R® determined
by the light-like vector X(y), then tx is a conformal transformation of S® which preserves the
orientation of S®. Conversely, for each conformal transformation # of S? which preserves the
orientation of S° there exists a unique element X of G satisfying éx=¢. Therefore G may be
identified with the group of the conformal transformations of S® which preserve the orientation
of S®. The group G may be considered as a connected Lie group isomorphic to the identity
component of SO(4,1).

2.2. The conformal Gauss map and the induced metric

Let M be an oriented smooth two-dimensional manifold and ¢ : M~ S? an immersion of M
into S®. For each X € G, let e.x be a smooth vector field along M normal to S° at #x (¢) and
satisfying e.x € L* and <eux,fx(¢)>=—1, and let esx be a smooth unit normal vector field on M
with respect to #xec: M~ S® such that for each p€ M and an ordered basis (z1,22) of To(M)
which gives the orientation of M,

(tx(d)),d(txoc)(n),d(txo ) (v2), es.x(B),e0x(2))

is an ordered basis of Tix«sn(R®) which gives the orientation of RS. Let Hy be the mean
curvature of M with respect to fxoc: M—S% For the identity transformation id € G, we set
€ :=ey, e3:=esa and H :=Ha. Let y.x be a smooth map of M into the 4-dimensionalde
Sitter space St:={x€R®; <x,x>=1} defined by y.x:=esx+Hx (tx.c). We set 7o 1= Yeua
Then 7.x=7u. holds. Let Reg(M,¢) be the set of the non-umbilical points of M with respect
to¢: M—S° Let pbe an element of Reg(M,¢) and U, a neighborhood of p in Reg(M ,0). Let
(2,v) be local coordinates on U, such that each of 9/0u and 3/3v is in a principal direction with
respect to ¢: M- S? at each point of Up. Let 4 and & be principal curvature functions on M
with respect to ¢: M—S® such that % and 4 correspond to 3/du and 8/dw, respectively.
Suppose %1 >k.. The following hold:

a’n(%) =—hd (%) + Hdz(%) +Hyu= —#dc(a—i—) + Hue, 2)
dn(Z)=- ka2 + Hde(%) + Hu=—2=k d{)+ Ha, ®)

Let g be the metric induced by ¢ and K the curvature of Mwith respect to g. We set
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e:=bl_ PR

Then we see that 7. | res.o is a conformal immersion of Reg(M,¢) into St such that § :=gg
is the metric induced by 7. | reswar.r. If p is an umbilical point of M with respect to ¢, then for
local coordinates (%,v) on a neighborhood of , we may show that (d7.)»(8/d%) and (dr.),(3/
dv) are light-like. The map 7.: M~ Si is called the conformal Gauss map of the immersion ¢.

Remark. Let %: M—R" be an immersion of M into R*(#23) and H. the mean curvature
vector of M with respect to ». Let go be the metric induced by &, and Ko and dA. the Gaussian
curvature and the area element of M with respect to g, respectively. We set & Z=1/|Fol-2——_l{: .
Then €dA, is invariant under conformal transformations of R"U{co} ([4] for a general n23,
(2], [8] for »=3). In the following, we suppose that « is an immersion into R®. Let pobea
point of S® and : S°\ {#)— R?® a stereographic projection from po. Then = is the restriction
of an inversion of R*U{co} on S°. Therefore for the immersion ¢: M~ §° satisfying 7o c=1,
noticing that the length of the mean curvature vector of M with respect to ide¢: M -RY(id: S°
-R*is a natural embedding) is given by yH?+1, we obtain £2dA=efdAo, where dA is the area
element of M with respect to g. Noticing that x is conformal, we see that § is conformal to
g and we obtain

g=€’g==cige. @

In the following, suppose Reg(M,c)=M.Then Reg(M,ixe¢)=M holds and 7..x is a confor-
mal immersion for any X € G. Noticing the above remark, we see that e*dA is invariant under
conformal transformations of S°. Therefore we see that the metric induced by 7.x does not
depend on the choice of X € G. In addition, we shall show

rex=Xe7. (5)

For each X € G, there exist a smooth vector field X(es). along M and a smooth function ax on
M satisfying

X(es)=X(es)s+axX(c), X(eds€ SiN{x=0}.
Therefore we obtain
X(7)=X(es)+ H-X()=X(es)s+(ax+H)X(c).

We set e- :=(—1,0,0,0,0) and bx :=<e-,X(¢)>. Then X(¢)=bxtx(¢) holds. Therefore noticing
es,x=X(es)+ in R® we obtain
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X(r)=esx+(ax + H) bxix(e). (6)

If F is a conformal map of M into St represented as F:=esx+f+({xo¢), where f is a smooth
function on M, then F must be identically equal to 7.x, ie..f=Hx must hold. Therefore
noticing (6), we obtainy..x=Xocy, and Hx=(ax+ H)bx.

2.3. The mean curvature vector with respect to the conformal Gauss map
We set

v ——( +—r+H’) g“ de(a?l) yr dc( )+He3+e4, )]

where (u,v) are local coordinates on an open set U of M such that each of 3/3u and 8/dv is
in a principal direction with respect to ¢: M- S? at each point of U, and

Then we see the following: v is an L*-valued function ; ¢ and v may be considered as normal
vector fields on M with respect to 7.: M- Si; <v,t>=—1 holds. We shall compute the trace
of the shape operator of M with respect to each of ¢ and v. From (2) and (3), we obtain

valaut= —%dn( 9 )+ H,

u)t e o)

(A §alavt =%d}',,( I e ¢,

where V is the covariant differentiation with respect to the Levi-Civita connection of (R%,)).
Therefore we see that the trace of the shape operator of M with respect to ¢ is identically equal
to zero. If we set

valaul/ = Cnd)’;( aa )+ szd)’;( o ) + iy, + v+ e,

then we obtain

cn ——z?-+ (ALE).,_’-?{{?'(]O&AE)”

L HR 1 1({ H?
e

®
e 2\ AL ?Q?_-FHZ)

if we set

68[301/ Cz.dn( 8(34 )+ cudn( aa ) +caay + cauv+ e,
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then we obtain

(:zz——gz—z-+ g ” Bs) +—'¥";-(logBe).;

Hep 1,1 H3

©
i Ly He i)

From (8) and (9), we see that the trace of the shape operator of M with respect to v is equal
to —(AH +2H), where A is the Laplacian on M with respect to &

Let / be the second fundamental form of M with respect to 7.: M—Si. Then for two
tangent vectors u, vz at a point of M and a smooth normal vector field &€ on M with respect
to 7.,

(A, va)=Ch(n,02),&> (10)

holds, where A, is the shape operator of M with respect to & Therefore by <v,e>= —1 together
with (10), we obtain

Rrtor=—oh (G ) v orh (5a)=@H +2H). an

From(11), we see that (AH+2H)¢ is the twice of the mean curvature vector H of M with
respect to 7.: M~ Si. In addition, noticing (1) and (H*— K+ 1) A=A, we see that 7.: M- S{
is minimal if and only if ¢: M— S® is Willmore.

Remark. We see that H is light-like.

Remark. We see that 7.: M — St is minimal if and only if 7{* is an eigenfunction of A such
that the corresponding eigenvalue is equal to 2. This is an analogue of Takahashi’s theorem

((6)).

3. Construction of a Willmore surface in S° from a space-like
minimal surface in S

Let y: M- Sibe a space-like immersion of M into S1 such that the mean curvature vector
H of M with respect to 7 is represented by a smooth S%valued function ¢ on M up to a constant
at each point of M. Then we see that the trace of the shape operator A, of M with respect to
¢ is identically equal to zero. Let § be the metric induced by 7 and WV, Vz smooth unit vector
fields on an open set U of M perpendicular to each other with respect to § at any point of U.
Then there exists a smooth function / on U satisfying
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Vne,edy=—1, (Vue,&>=I,

where &;:=dy(V) for 7=1,2. Suppose that / is nowhere zero and positive-valued. In addi-
tion, suppose

Ve, 80=CV vy, 81> =0. (12)
Let e; be a smooth vector field along M satisfying
(e.-,e.->=—li-, e: € {x9=0}, i'éi—ei=Cnrt.
€ €
where £:=1//. Then noticing <¢,7>=0, <¢,£>=0, (12) and that ¢ is S*-valued, we obtain
vv.t’—‘ —e, Gv;t =éea. (13)

Therefore we may consider ¢ as an immersion of M into S* such that the metric ¢ induced by
¢ is represented as g= (1/&®) §. We represent 7 as 7 :=e;+ He, where es is a smooth vector
field along M satisfying es € S§N{x®=0} and H is a smooth function on /. Then we see that
es is a unit normal vector field on M with respect to ¢: M~S%. By y=es+ H together with
(13), we obtain

dr( Vl)=6v. es— Hey+ Vi(H), dr(Vz) =€v,es + He:+ Vo(H)e.
Since dr(Vi)=e(e:+ cic), we obtain
6;'.6.«)'—~ —(H+ &)d( V), 6v363= —(H—e&)d( V).

We set oo :=H+¢, lz:=H~—e¢. Then we see that 4 and 4. are principal curvature functions
on M with respect to ¢ :M— S® and therefore we see that H=(k,+ k.)/2 is the mean curvature
of M with respect to ¢:M—S° Therefore referring to Section 2, we obtain

Theorem 3.1. Let M be an oriented smooth two-dimensional manifold and y: M-St a
space-like immersion of M into Si such that the mean curvature vector H of M with respect to
v is represented by a smooth S*-valued function ¢ on M up lo a constant at each point of M.
Let es be a smooth vector field along M satisfying es€ SiN{x®=0} and y=es+He for some
smooth function H on M. Suppose that the shape operator A, of M with respect to ¢ is nowhere
zero. Then the following hold :

(a) ¢ may be considered as an immersion of M into S*;
(b) es is a smooth unit normal vector field on M with respect to ¢: M~ S®;
(c) H is the mean curvature of M with respect to ¢ ;
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(d) Reg(M,c)=M holds, i.e., M has no umbilical point with respect to ¢;

(e) the metric g induced by ¢ is conformal to the metric § induced by v: if ki, ke are distinct
two principal curvature functions on M with respect to ¢ and if we set € :=(ki—k:)/2, then §
=¢g%g holds ;

(f) the conformal Gauss map 7. of ¢ is equal to y or—7.

In particular, we obtain

Corollary 3.2. Let M be an oriented smooth two-dimensional manifold and y: M -5 a
space-like minimal immersion of M into St. Let ¢ be a smooth normal vector field on M with
respect lo y satisfying ¢€ S°. Suppose that the shape operator A, of M with respect to ¢ is
nowhere zevo. Then ¢: M- S? is a Willmore immersion of M info S® satisfying y.~7v or—17.

Remark. Since 7 is space-like, we see that there exist at most two Willmore immersions of
M into S° such that the conformal Gauss map of each of them is equal to y or —y. Suppose
that there exist such distinct two immersions «, 2. Then {7.,7.)={r,—7} holds. In [3], one
of u and ¢ is called the Willmore dual of the other.

4. A space-like minimal surface in S{ such that the curvature is
identically equal to one

We shall prove

Theorem 4.1. Let M be an oriented smooth two-dimensional manifold and ¢: M~ S® a
Willmore immersion of M into S® such that M has no umbilical point with respect to t. Then
M) is the inverse image of a minimal surface in R® by a stereographic projection if and only
if the conformal Gauss map y. of ¢ is a minimal immersion such that the curvature of M with
respect to the melric § induced by v. is identically equal to one.

In order to prove Theorem 4.1, we need lemmas.

Lemma 4.2. Let M be an oriented smooth two-dimensional manifold and v: M- Si a space-
like minimal immersion of M into St such that the curvature of M with respect to the metric
§ induced by 7 is identically equal to one. Suppose that there exists a smooth normal veclor
field ¢ on M with respect to 7 satisfying ¢€ S° and the condition that the shape operator A, is
nowhere zero. Then there exists a vector w€ L* such that y(M) is contained in a hyperplane
{reR®; <x,u>=0} of R°.
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Proof. Let R (respectively, ') be the curvature tensor field on (M, ) (respectively, (S4,<,5)).
Then the equation of Gauss is given by

(R(X,Y)Z,W>— G(R(X,Y)Z,W)

14
=C(X,Z), i(Y, W) —CR(X, W), i(Y,Z)), a9

where X, Y, Z, W are smooth vector fields on an open set U of Mand % is the second
fundamental form of M with respect to 7. Let V; and V; be smooth vector fields on U
satisfying § (V;,V3)=0y (i,j€{1,2)). If weset X:=Wi, Y:=V;, Z:=V,, W:= Vi in (14), then
noticing

R(Vi, V) Vo, Vid=G(R (W, Vi) V3, Vi)=1,
we obtain
(VW) B (Vo Va)d>=<k (Wi, W), & (Vi, Va)). (15)

Let v be a smooth normal vector field on M with respect to y satisfying v € L* and {v,t>=—1.
Then we may set #(V;,V;):=ayt+byv. Then ay=a; and by=b; hold. In addition, since y
is minimal, we obtain a1+ a2=0, b+ b.=0. If we set

a1 i=an=—an, G=ae=an, b :=bi=-— bzz, be=b= ba,
then (15) is represented as
ab+ a2b.=0. (16)

Since A, is nowhere zero, we suppose that at each point of U, V; is an eigenvector of A.. Then
noticing <v,¢>=—1 and (10), we obtain 5=0. Since we suppose that A, is nowhere zero, we
obtain 5#0. Therefore from (16), we obtain @,=0. In the following, we set @ :=as, b :=b,.
Let (u,v) be local coordinates on U satisfying 6/du=AV; and 8/dv=BV,, where A and B are
smooth, positive-valued functions. Then the following hold:

$a,auu=%a§v—+ aw, ﬁa,auu=%a%+ cw, a7

where ¢; and ¢, are smooth functions. By (17), we obtain

o=l it Gl +{( )+ oril .

+{—ABab+(c1)»+c1c2)v— ABay,
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va/auaa,a,,y={(%a)u+%al“h}3%+ a(—%ﬁ. +%Cz)’l'9@v‘ (19)
+{ABab+(c2)u+ crcl}y— ABay,

where I'™(i,j,k=1,2) are the Christoffel’s symbols of the Levi-Civita connection of (M, §) with
respect to local coordinates (%,v). From (18), (19) and VaraoV araut =V a12uV a0V, We obtain

(%a)u +(%I‘ h ——%P%z—%a)a=0, (20)
(40 (- oo -
2ABab—(c1)v+(c2)=0. (22)

The following hold:
Mh=(logA), Th=—48, ri=-EL ri=(og).. (23)

If a+0, then by (20), (21) and (23), we obtain (c1)»=(cz).. This contradicts (22). Therefore we
obtain =0. Then from (17), we obtain Vasv=civ and Vaswv=cav. Since (a1)o=(cz)u, there
exists a smooth function f satisfying fu=c1 and fo=c.. Then we see that Vaalev) and
va/av(e"y) are identically zero. Therefore w:=e /v is constant. Hence we have proved
Lemma 4.2. O

Lemma 4.3. ([3]) Let ¢: M~S® be an immersion of M into S* and v as in (7). Then for
each point p€ M, a unique intersection of S*=L*N{x®=1} with a line through the origin of R®
determined by V(p) is contained in a sphere in S° tangent to M at «p) such that the mean
curvature is equal to H(p).

For the proof of Lemma 4.3, see [3, pp. 33].

Proof of Theorem 4.1. Let w: M—R®be a minimal immersion of M into R? such that M has
no umbilical point with respect to %. Then on a neighborhood U, of each point p of M, there
exist isothermal coordinates (#,v) and a smooth, positive-valued function A satisfying

(a) the metric g induced by ¢ is represented as AXdu*+dv®) on Up;
(b) each of 3/3u and 3/dv is in a principal direction with respect to ¢ at each point of Up;
(c) the Gaussian curvature K, of M with respect to g is represented as Ko= —1/A% on U,.
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Let 7: S*\{po}~R? be a stereographic projection and ¢: M~ S* the immersion satisfying zo¢
=« Then by (4), we see that the metric § induced by the conformal Gauss map of ¢ is
represented as §=—Kog. Then §=A"du®+dv*) holdson U,. Let K be the curvature of M
with respect to §. Then K=—Alog(1/A) holds. Since A=— K3'Ao=A"*Ao, where Ao is the
Laplacian on M with respect to g, we obtain £=A4A, logA. In addition, since Ay logA=—K,
=1/A*, we obtain K=1.

Let ¢: M~ S®be a Willmore immersion of M into S? such that M has no umbilical point with
respect to ¢, and suppose that the conformal Gauss map 7, of ¢ is a minimal immersion such that
the curvature of M with respect to the metric § induced by 7. is identically equal to one. Then
by Lemma 4.2, we see that there exists a vector vo€ L* such that y.(M) is contained in the
hyperplane of R® determined by v. Then by Lemma 4.3, we see that for any point pe M, a
sphere in S° tangent to M at ¢(p) such that the mean curvature is equal to H(p) contains the
point xo of S* determined by 1. Let m be the stereographic projection from xo. Then meo:¢ is
a minimal immersion. Hence we obtain Theorem 4.1. ad

Remark. Let ¢: M- S® be a minimal immersion such that M has no umbilical point with
respect to ¢. Then on a neighborhood U, of each point p of M, there exist isothermal
coordinates (%,v) and a smooth, positive-valued function A satisfying the following: (a) the
metric ¢ induced by ¢ is represented as AX(du*+dv® on U, ; (b) each of 3/du and 8/8v is in a
principal direction with respect to ¢ at each point of U, ; (c) the curvature X of M with respect
to the metric g is represented as K=1—1/A*on U,. The metric § induced by 7. is represented
as §=A"*(du’+dv®). Then the curvature K of Mwith respect to § is represented as K=A log
A. Since

A=(1-K)'A=A'A, AlogA=—-K=-1+1/A",
we obtain K=1—A*<1.
References

[1] N. Ando, An isolated umbilical point of a Willmore surface, Osaka J. Math. 41 (2004) 865
-876.

[2] W. Blaschke, Vorlesungen liber Differentialgeometrie Ill, Springer, Berlin, 1929.

[3] R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984)
23-53.

[4] B.-Y.Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973) 563-564.

[5] M. Spivak, A comprehensive introduction to differential geometry, IV (3rd ed.), Publish or
Perish, 1999.



68 Naoya Ando

[6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966)
380-385. ' .

(7] J. L. Weiner, On a problem of Chen, Willmore et alia, Indiana University Math. J. 21 (1978)
19-35.

[8] J. H. White, A global invariant of conformal mappings in space, Proc. Amer. Math. Soc.
38 (1973) 162-164.

[9] T. J. Willmore, Riemannian geometry, Oxford University Press, 1993.

Naoya Ando

Faculty of Science,

Kumamoto University,

2-39-1 Kurokami,

Kumamoto 860-8555,

Japan

e-mail : ando@math.sci.kumamoto-u.ac.jp



