Willmore surfaces in S^3 and minimal surfaces in S^4

Naoya Ando

(Received January 31, 2005)

Abstract

We shall see that for a space-like minimal surface \tilde{S} in the 4-dimensional de Sitter space S_1^4 such that the shape operator with respect to some light-like normal vector field is nowhere zero, there exists a Willmore surface S in S_1^3 without any umbilical point such that the image of S by the conformal Gauss map is congruent with \tilde{S} in S_1^4 . In addition, we shall show that a Willmore surface S in S_1^3 without any umbilical point is the inverse image of a minimal surface in S_1^3 by a stereographic projection if and only if the image of S by the conformal Gauss map is a space-like minimal surface in S_1^4 such that the curvature with respect to the metric induced by the conformal Gauss map is identically equal to one.

1. Introduction

Let M be an oriented smooth two-dimensional manifold. Then for each immersion $\iota: M \to S^3$ of M into S^3 , we set

$$W(\iota):=\int_{M}(H^{2}+1)dA,$$

where H is the mean curvature of M with respect to ι and dA is the area element of M with respect to the metric g induced by ι . We call W the Willmore functional. An immersion ι is called Willmore if the first variation of W for ι is zero, where we consider variations of ι with compact support. If ι is Willmore, then the image $\iota(M)$ is called a Willmore surface. The Euler-Lagrange equation for Willmore immersions is given by the following ([7]):

$$\Delta H + 2(H^2 - K + 1)H = 0, (1)$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 53A05; Secondary 53A99, 53B25.

Keywords: Wilmore surface, minimal surface, conformal Gauss map.

This work was supported by Grant-in-Aid for Scientific Research (No. 15740041), Japan Society for the Promotion of Science.

58 Naoya Ando

where Δ and K are the Laplacian and the curvature of M with respect to g, respectively. From (1), we see that a minimal surface in S^3 is Willmore. Referring to [7], we see that the inverse image of a minimal surface in \mathbb{R}^3 by a stereographic projection is Willmore.

Suppose that M has no umbilical point with respect to an immersion ι . In [3], Bryant pointed out that ι is Willmore if and only if the conformal Gauss map γ_{ι} of ι is a space-like minimal immersion of M into the 4-dimensional de Sitter space S_{\bullet}^{\bullet} . In the present paper, we shall see that for a space-like minimal immersion γ of M into S_{\bullet}^{\bullet} such that the shape operator of M with respect to some light-like normal vector field is nowhere zero, there exists a Willmore immersion ι of M into S_{\bullet}^{\bullet} such that the conformal Gauss map of ι is equal to γ or $-\gamma$. In addition, we shall show that for a Willmore immersion ι : $M \to S_{\bullet}^{\circ}$, $\iota(M)$ is the inverse image of a minimal surface in \mathbb{R}^3 by a stereographic projection if and only if the conformal Gauss map γ_{ι} of ι is a space-like minimal immersion such that the curvature of M with respect to the metric induced by γ_{ι} is identically equal to one.

Remark. In [3], Bryant showed that if M is homeomorphic to S^2 , then the image of M by a Willmore immersion is the compactification of the inverse image by a stereographic projection of a complete minimal surface in \mathbb{R}^3 with finite total curvature and with embedded, flat ends.

2. The conformal Gauss map

In [3], Bryant introduced and studied the conformal Gauss map of an immersion $\iota: M \to S^3$. The purpose of this section is to describe properties of the conformal Gauss map.

2.1. Preliminaries

Let $\langle \ , \ \rangle$ be the Lorentzian inner product on \mathbf{R}^5 , i. e., an indefinite inner product on \mathbf{R}^5 defined by

$$\langle x,y\rangle := -x^{(0)}y^{(0)} + x^{(1)}y^{(1)} + x^{(2)}y^{(2)} + x^{(3)}y^{(3)} + x^{(4)}y^{(4)}$$

for two vectors $x:=(x^{(0)},x^{(1)},x^{(2)},x^{(3)},x^{(4)}),\ y:=(y^{(0)},y^{(1)},y^{(2)},y^{(3)},y^{(4)})$ of \mathbf{R}^5 . We say that a vector $x\in\mathbf{R}^5$ is space-like if $\langle x,x\rangle>0$, time-like if $\langle x,x\rangle<0$, and light-like or null if x is not zero but satisfies $\langle x,x\rangle=0$. A time-like or light-like vector $x\in\mathbf{R}^5$ is said to be future directed if $x^{(0)}>0$. Let L^+ be the set of the future directed light-like vectors of \mathbf{R}^5 . For two vectors $x,y\in L^+$, we write $x\sim y$ if x and y are linearly dependent. We see that $x\sim y$ in addition, a subset $x\sim y$ if $y\sim y$ is a set of representatives of the equivalence classes, may be identified with the 3-dimensional unit sphere $x\sim y$ if $x\sim y$ is a set of representatives of the equivalence classes, may be identified with the 3-dimensional unit sphere $x\sim y$ if $x\sim y$ is a set of representatives of the equivalence classes, may be identified with the 3-dimensional unit sphere $x\sim y$ if $x\sim y$ is a set of representatives of the equivalence classes, may be identified with the 3-dimensional sphere equipped with the standard metric.

Let G be the group of the linear transformations of \mathbb{R}^5 which preserve the Lorentzian inner product \langle , \rangle , the orientation of \mathbb{R}^5 and the future direction. Then each element X of G induces a conformal transformation t_X of S^3 which preserves the orientation of S^3 : if for $y \in S^3$, $t_X(y)$ denotes a unique intersection of $L^+ \cap \{x^{(0)} = 1\}$ with a line through the origin of \mathbb{R}^5 determined by the light-like vector X(y), then t_X is a conformal transformation of S^3 which preserves the orientation of S^3 . Conversely, for each conformal transformation t of t which preserves the orientation of t there exists a unique element t of t satisfying t therefore t may be identified with the group of the conformal transformations of t which preserve the orientation of t of t may be considered as a connected Lie group isomorphic to the identity component of t of t of t may be considered as a connected Lie group isomorphic to the identity

2.2. The conformal Gauss map and the induced metric

Let M be an oriented smooth two-dimensional manifold and $\iota: M \to S^3$ an immersion of M into S^3 . For each $X \in G$, let $e_{4,x}$ be a smooth vector field along M normal to S^3 at $t_X(\iota)$ and satisfying $e_{4,x} \in L^+$ and $\langle e_{4,x}, t_X(\iota) \rangle = -1$, and let $e_{3,x}$ be a smooth unit normal vector field on M with respect to $t_X \circ \iota: M \to S^3$ such that for each $p \in M$ and an ordered basis (v_1, v_2) of $T_p(M)$ which gives the orientation of M,

$$(t_X(\iota(p)), d(t_X \circ \iota)(v_1), d(t_X \circ \iota)(v_2), e_{3,X}(p), e_{4,X}(p))$$

is an ordered basis of $T_{tx(\iota(p))}(\mathbb{R}^5)$ which gives the orientation of \mathbb{R}^5 . Let H_X be the mean curvature of M with respect to $t_X \circ \iota : M \to S^3$. For the identity transformation $\mathrm{id} \in G$, we set $e_4 := e_{4,\mathrm{id}}, e_3 := e_{3,\mathrm{id}}$ and $H := H_{\mathrm{id}}$. Let $\gamma_{\iota,X}$ be a smooth map of M into the 4-dimensionalde Sitter space $S_1^4 := \{x \in \mathbb{R}^5 \; ; \; \langle x,x \rangle = 1\}$ defined by $\gamma_{\iota,X} := e_{3,X} + H_X \cdot (t_X \cdot \iota)$. We set $\gamma_{\iota} := \gamma_{\iota,\mathrm{id}}$. Then $\gamma_{\iota,X} = \gamma_{\iota,x\iota}$ holds. Let $\mathrm{Reg}(M,\iota)$ be the set of the non-umbilical points of M with respect to $\iota : M \to S^3$. Let p be an element of $\mathrm{Reg}(M,\iota)$ and U_p a neighborhood of p in $\mathrm{Reg}(M,\iota)$. Let (u,v) be local coordinates on U_p such that each of $\partial/\partial u$ and $\partial/\partial v$ is in a principal direction with respect to $\iota : M \to S^3$ at each point of U_p . Let k_1 and k_2 be principal curvature functions on M with respect to $\iota : M \to S^3$ such that k_1 and k_2 correspond to $\partial/\partial u$ and $\partial/\partial v$, respectively. Suppose $k_1 > k_2$. The following hold:

$$d\gamma_{\ell}\left(\frac{\partial}{\partial u}\right) = -k_{1}d\ell\left(\frac{\partial}{\partial u}\right) + Hd\ell\left(\frac{\partial}{\partial u}\right) + H_{u\ell} = -\frac{k_{1} - k_{2}}{2}d\ell\left(\frac{\partial}{\partial u}\right) + H_{u\ell},\tag{2}$$

$$d\gamma_{\iota}\left(\frac{\partial}{\partial u}\right) = -k_{2}d\iota\left(\frac{\partial}{\partial u}\right) + Hd\iota\left(\frac{\partial}{\partial u}\right) + H_{u\iota} = -\frac{k_{1} - k_{2}}{2}d\iota\left(\frac{\partial}{\partial u}\right) + H_{v\iota}. \tag{3}$$

Let g be the metric induced by ι and K the curvature of M with respect to g. We set

$$\varepsilon := \frac{k_1 - k_2}{2} = \sqrt{H^2 - K + 1}.$$

Then we see that $\gamma_{\iota} \mid_{\operatorname{Reg}(M, \iota)}$ is a conformal immersion of $\operatorname{Reg}(M, \iota)$ into S_{1}^{ι} such that $\tilde{g} := \varepsilon^{2}g$ is the metric induced by $\gamma_{\iota} \mid_{\operatorname{Reg}(M, \iota)}$. If p is an umbilical point of M with respect to ι , then for local coordinates (u, v) on a neighborhood of p, we may show that $(d\gamma_{\iota})_{p}(\partial/\partial u)$ and $(d\gamma_{\iota})_{p}(\partial/\partial v)$ are light-like. The map $\gamma_{\iota} : M \to S_{1}^{\iota}$ is called the *conformal Gauss map* of the immersion ι .

Remark. Let $\iota_0: M \to \mathbb{R}^n$ be an immersion of M into $\mathbb{R}^n(n \ge 3)$ and H_0 the mean curvature vector of M with respect to ι_0 . Let g_0 be the metric induced by ι_0 , and K_0 and dA_0 the Gaussian curvature and the area element of M with respect to g_0 , respectively. We set $\varepsilon_0:=\sqrt{|H_0|^2-K_0}$. Then $\varepsilon_0^2 dA_0$ is invariant under conformal transformations of $\mathbb{R}^n \cup \{\infty\}$ ([4] for a general $n \ge 3$, [2], [8] for n=3). In the following, we suppose that ι_0 is an immersion into \mathbb{R}^3 . Let p_0 be a point of S^3 and $\pi: S^3 \setminus \{p_0\} \to \mathbb{R}^3$ a stereographic projection from p_0 . Then π is the restriction of an inversion of $\mathbb{R}^4 \cup \{\infty\}$ on S^3 . Therefore for the immersion $\iota: M \to S^3$ satisfying $\pi \circ \iota = \iota_0$, noticing that the length of the mean curvature vector of M with respect to $\mathrm{id} \circ \iota: M \to \mathbb{R}^4$ is a natural embedding) is given by $\sqrt{H^2+1}$, we obtain $\varepsilon^2 dA = \varepsilon_0^2 dA_0$, where dA is the area element of M with respect to g. Noticing that π is conformal, we see that \tilde{g} is conformal to g_0 and we obtain

$$\tilde{g} = \varepsilon^2 g = \varepsilon_0^2 g_0. \tag{4}$$

In the following, suppose $\operatorname{Reg}(M,\iota)=M$. Then $\operatorname{Reg}(M,\iota_X\circ\iota)=M$ holds and $\gamma_{\iota,X}$ is a conformal immersion for any $X\in G$. Noticing the above remark, we see that ε^2dA is invariant under conformal transformations of S^3 . Therefore we see that the metric induced by $\gamma_{\iota,X}$ does not depend on the choice of $X\in G$. In addition, we shall show

$$\gamma_{\iota,X} = X \circ \gamma_{\iota}. \tag{5}$$

For each $X \in G$, there exist a smooth vector field $X(e_3)_+$ along M and a smooth function a_X on M satisfying

$$X(e_3)=X(e_3)_++a_XX(\iota), \qquad X(e_3)_+\in S_1^4\cap\{x^{(0)}=0\}.$$

Therefore we obtain

$$X(\gamma_{\iota}) = X(e_3) + H \cdot X(\iota) = X(e_3) + (a_X + H)X(\iota).$$

We set $e_- := (-1,0,0,0,0)$ and $b_x := \langle e_-, X(\iota) \rangle$. Then $X(\iota) = b_x t_X(\iota)$ holds. Therefore noticing $e_{3,x} = X(e_3)_+$ in \mathbb{R}^5 , we obtain

$$X(\gamma_{\iota}) = e_{3,X} + (a_X + H)b_X t_X(\iota). \tag{6}$$

If F is a conformal map of M into S_1^4 represented as $F := e_{3,x} + f \cdot (t_x \circ \iota)$, where f is a smooth function on M, then F must be identically equal to $\gamma_{\iota,x}$, i.e., $f \equiv H_X$ must hold. Therefore noticing (6), we obtain $\gamma_{\iota,x} = X \circ \gamma_{\iota}$ and $H_X = (a_X + H)b_X$.

2.3. The mean curvature vector with respect to the conformal Gauss map

We set

$$\nu := \frac{1}{2} \left(\frac{H_u^2}{A^2 \varepsilon^2} + \frac{H_v^2}{B^2 \varepsilon^2} + H^2 \right) \iota - \frac{H_u}{A^2 \varepsilon} d\iota \left(\frac{\partial}{\partial u} \right) + \frac{H_v}{B^2 \varepsilon} d\iota \left(\frac{\partial}{\partial v} \right) + He_3 + e_4, \tag{7}$$

where (u,v) are local coordinates on an open set U of M such that each of $\partial/\partial u$ and $\partial/\partial v$ is in a principal direction with respect to $\iota: M \to S^3$ at each point of U, and

$$A := \sqrt{g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right)}, \qquad B := \sqrt{g\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right)}.$$

Then we see the following: ν is an L^+ -valued function; ι and ν may be considered as normal vector fields on M with respect to $\gamma_{\iota} \colon M \to S_1^+$; $\langle \nu, \iota \rangle = -1$ holds. We shall compute the trace of the shape operator of M with respect to each of ι and ν . From (2) and (3), we obtain

$$\overline{\nabla}_{\partial/\partial u}\iota = -\frac{1}{\varepsilon}d\gamma_{\iota}\left(\frac{\partial}{\partial u}\right) + \frac{H_{u}}{\varepsilon}\iota, \qquad \overline{\nabla}_{\partial/\partial v}\iota = \frac{1}{\varepsilon}d\gamma_{\iota}\left(\frac{\partial}{\partial v}\right) - \frac{H_{v}}{\varepsilon}\iota,$$

where $\overline{\nabla}$ is the covariant differentiation with respect to the Levi-Civita connection of $(\mathbf{R}^5, \langle , \rangle)$. Therefore we see that the trace of the shape operator of M with respect to ι is identically equal to zero. If we set

$$\overline{\nabla}_{\partial_1\partial_2\nu} := c_{11} d\gamma_{\iota} \left(\frac{\partial}{\partial \nu} \right) + c_{12} d\gamma_{\iota} \left(\frac{\partial}{\partial \nu} \right) + c_{13} \gamma_{\iota} + c_{14} \nu + c_{10} \iota,$$

then we obtain

$$c_{11} = \frac{H_{uu}}{A^2 \varepsilon^2} + \frac{H_u}{A \varepsilon} \left(\frac{1}{A \varepsilon}\right)_u + \frac{H_v}{B^2 \varepsilon^2} (\log A \varepsilon)_v + \frac{H k_1}{\varepsilon} + \frac{1}{\varepsilon} - \frac{1}{2\varepsilon} \left(-\frac{H_u^2}{A^2 \varepsilon^2} - \frac{H_v^2}{B^2 \varepsilon^2} + H^2\right);$$
(8)

if we set

$$\overline{\nabla}_{\partial/\partial v}\nu := c_{21}d\gamma_{\iota}\left(\frac{\partial}{\partial u}\right) + c_{22}d\gamma_{\iota}\left(\frac{\partial}{\partial v}\right) + c_{23}\gamma_{\iota} + c_{24}\nu + c_{20}\iota,$$

then we obtain

$$c_{22} = \frac{H_{vv}}{B^2 \varepsilon^2} + \frac{H_v}{B \varepsilon} \left(\frac{1}{B \varepsilon}\right)_v + \frac{H_u}{A^2 \varepsilon^2} (\log B \varepsilon)_u$$

$$- \frac{H k_2}{\varepsilon} - \frac{1}{\varepsilon} + \frac{1}{2 \varepsilon} \left(-\frac{H_u^2}{A^2 \varepsilon^2} - \frac{H_v^2}{B^2 \varepsilon^2} + H^2\right). \tag{9}$$

From (8) and (9), we see that the trace of the shape operator of M with respect to ν is equal to $-(\tilde{\Delta}H+2H)$, where $\tilde{\Delta}$ is the Laplacian on M with respect to \tilde{g} .

Let \tilde{h} be the second fundamental form of M with respect to $\gamma_1 : M \to S_1^4$. Then for two tangent vectors v_1 , v_2 at a point of M and a smooth normal vector field ξ on M with respect to γ_1 ,

$$\tilde{q}(\tilde{A}_{\theta}(v_1), v_2) = \langle \tilde{h}(v_1, v_2), \xi \rangle \tag{10}$$

holds, where \tilde{A}_{ℓ} is the shape operator of M with respect to ξ . Therefore by $\langle \nu, \iota \rangle = -1$ together with (10), we obtain

$$\tilde{\Delta}\gamma_{\iota} + 2\gamma_{\iota} = \frac{1}{A^{2}}\tilde{h}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) + \frac{1}{B^{2}}\tilde{h}\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) = (\tilde{\Delta}H + 2H)\iota. \tag{11}$$

From(11), we see that $(\tilde{\Delta}H+2H)\iota$ is the twice of the mean curvature vector \tilde{H} of M with respect to $\gamma_{\iota}: M \to S_1^4$. In addition, noticing (1) and (H^2-K+1) $\tilde{\Delta}=\Delta$, we see that $\gamma_{\iota}: M \to S_1^4$ is minimal if and only if $\iota: M \to S^3$ is Willmore.

Remark. We see that \tilde{H} is light-like.

Remark. We see that $\gamma_i: M \to S_1^i$ is minimal if and only if $\gamma_i^{(k)}$ is an eigenfunction of $\tilde{\Delta}$ such that the corresponding eigenvalue is equal to 2. This is an analogue of Takahashi's theorem ([6]).

3. Construction of a Willmore surface in S^3 from a space-like minimal surface in S^4

Let $\gamma: M \to S_1^4$ be a space-like immersion of M into S_1^4 such that the mean curvature vector \widetilde{H} of M with respect to γ is represented by a smooth S^3 -valued function ι on M up to a constant at each point of M. Then we see that the trace of the shape operator \widetilde{A}_{ι} of M with respect to ι is identically equal to zero. Let \widetilde{g} be the metric induced by γ and V_1 , V_2 smooth unit vector fields on an open set U of M perpendicular to each other with respect to \widetilde{g} at any point of U. Then there exists a smooth function l on U satisfying

$$\langle \overline{\nabla}_{v_1} \iota, \tilde{e}_1 \rangle = -l, \quad \langle \overline{\nabla}_{v_2} \iota, \tilde{e}_2 \rangle = l,$$

where $\tilde{e}_i := d\gamma(V_i)$ for i=1,2. Suppose that l is nowhere zero and positive-valued. In addition, suppose

$$\langle \overline{\nabla}_{\nu_1} \iota, \tilde{e}_2 \rangle = \langle \overline{\nabla}_{\nu_2} \iota, \tilde{e}_1 \rangle = 0. \tag{12}$$

Let e_i be a smooth vector field along M satisfying

$$\langle e_i, e_i \rangle = \frac{1}{\varepsilon^2}, \quad e_i \in \{x^{(0)} = 0\}, \quad \frac{1}{\varepsilon} \bar{e}_i - e_i = c_{i\ell},$$

where $\varepsilon := 1/l$. Then noticing $\langle \iota, \gamma \rangle = 0$, $\langle \iota, \iota \rangle = 0$, (12) and that ι is S^3 -valued, we obtain

$$\overline{\nabla}_{\nu_1 \ell} = -e_1, \qquad \overline{\nabla}_{\nu_2 \ell} = e_2. \tag{13}$$

Therefore we may consider ι as an immersion of M into S^3 such that the metric g induced by ι is represented as $g = (1/\varepsilon^2)$ \tilde{g} . We represent γ as $\gamma := e_3 + H\iota$, where e_3 is a smooth vector field along M satisfying $e_3 \in S_1^4 \cap \{x^{(0)} = 0\}$ and H is a smooth function on M. Then we see that e_3 is a unit normal vector field on M with respect to $\iota : M \to S^3$. By $\gamma = e_3 + H\iota$ together with (13), we obtain

$$d\gamma(V_1) = \overline{\nabla}_{V_1} e_3 - He_1 + V_1(H)\iota, \qquad d\gamma(V_2) = \overline{\nabla}_{V_2} e_3 + He_2 + V_2(H)\iota.$$

Since $d\gamma(V_i) = \varepsilon(e_i + c_i t)$, we obtain

$$\overline{\nabla}_{v_1}e_3 = -(H+\varepsilon)d\iota(V_1), \quad \overline{\nabla}_{v_2}e_3 = -(H-\varepsilon)d\iota(V_2).$$

We set $k_1 := H + \varepsilon$, $k_2 := H - \varepsilon$. Then we see that k_1 and k_2 are principal curvature functions on M with respect to $\iota : M \to S^3$ and therefore we see that $H = (k_1 + k_2)/2$ is the mean curvature of M with respect to $\iota : M \to S^3$. Therefore referring to Section 2, we obtain

Theorem 3.1. Let M be an oriented smooth two-dimensional manifold and $\gamma: M \to S_1^4$ a space-like immersion of M into S_1^4 such that the mean curvature vector \tilde{H} of M with respect to γ is represented by a smooth S_1^3 -valued function ι on M up to a constant at each point of M. Let e_3 be a smooth vector field along M satisfying $e_3 \in S_1^4 \cap \{x^{(0)} = 0\}$ and $\gamma = e_3 + H\iota$ for some smooth function H on M. Suppose that the shape operator \tilde{A}_{ι} of M with respect to ι is nowhere zero. Then the following hold:

- (a) ι may be considered as an immersion of M into S^3 ;
- (b) e_3 is a smooth unit normal vector field on M with respect to $\iota: M \to S^3$;
- (c) H is the mean curvature of M with respect to ι ;

- (d) $Reg(M,\iota)=M$ holds, i.e., M has no umbilical point with respect to ι ;
- (e) the metric g induced by ι is conformal to the metric \tilde{g} induced by γ : if k_1 , k_2 are distinct two principal curvature functions on M with respect to ι and if we set $\varepsilon := (k_1 k_2)/2$, then $\tilde{g} = \varepsilon^2 g$ holds;
- (f) the conformal Gauss map γ_{ι} of ι is equal to γ or $-\gamma$.

In particular, we obtain

Corollary 3.2. Let M be an oriented smooth two-dimensional manifold and $\gamma: M \to S_1^4$ a space-like minimal immersion of M into S_1^4 . Let ι be a smooth normal vector field on M with respect to γ satisfying $\iota \in S^3$. Suppose that the shape operator \tilde{A}_{ι} of M with respect to ι is nowhere zero. Then $\iota: M \to S^3$ is a Willmore immersion of M into S^3 satisfying $\gamma_{\iota} = \gamma$ or $-\gamma$.

Remark. Since γ is space-like, we see that there exist at most two Willmore immersions of M into S^3 such that the conformal Gauss map of each of them is equal to γ or $-\gamma$. Suppose that there exist such distinct two immersions ι_1 , ι_2 . Then $\{\gamma_{\iota_1},\gamma_{\iota_2}\}=\{\gamma,-\gamma\}$ holds. In [3], one of ι_1 and ι_2 is called the *Willmore dual* of the other.

4. A space-like minimal surface in S₁ such that the curvature is identically equal to one

We shall prove

Theorem 4.1. Let M be an oriented smooth two-dimensional manifold and $\iota: M \to S^3$ a Willmore immersion of M into S^3 such that M has no umbilical point with respect to ι . Then $\iota(M)$ is the inverse image of a minimal surface in \mathbb{R}^3 by a stereographic projection if and only if the conformal Gauss map γ_ι of ι is a minimal immersion such that the curvature of M with respect to the metric \tilde{g} induced by γ_ι is identically equal to one.

In order to prove Theorem 4.1, we need lemmas.

Lemma 4.2. Let M be an oriented smooth two-dimensional manifold and $\gamma: M \to S_1^4$ a space-like minimal immersion of M into S_1^4 such that the curvature of M with respect to the metric \tilde{g} induced by γ is identically equal to one. Suppose that there exists a smooth normal vector field ι on M with respect to γ satisfying $\iota \in S^3$ and the condition that the shape operator \tilde{A}_{ι} is nowhere zero. Then there exists a vector $\nu_0 \in L^+$ such that $\gamma(M)$ is contained in a hyperplane $\{x \in \mathbb{R}^5: \langle x, \nu_0 \rangle = 0\}$ of \mathbb{R}^5 .

Proof. Let \tilde{R} (respectively, \tilde{R}) be the curvature tensor field on (M, \tilde{g}) (respectively, $(S_1^4, \langle , \rangle)$). Then the equation of Gauss is given by

$$\langle \tilde{R}'(X,Y)Z,W\rangle - \tilde{g}(\tilde{R}(X,Y)Z,W)$$

$$= \langle \tilde{h}(X,Z), \tilde{h}(Y,W)\rangle - \langle \tilde{h}(X,W), \tilde{h}(Y,Z)\rangle,$$
(14)

where X, Y, Z, W are smooth vector fields on an open set U of M and \tilde{h} is the second fundamental form of M with respect to γ . Let V_1 and V_2 be smooth vector fields on U satisfying \tilde{g} (V_i, V_j) = δ_{ij} ($i, j \in \{1, 2\}$). If we set $X := V_1$, $Y := V_2$, $Z := V_2$, $W := V_1$ in (14), then noticing

$$\langle \tilde{R}'(V_1, V_2) V_2, V_1 \rangle = \tilde{g}(\tilde{R}(V_1, V_2) V_2, V_1) = 1$$

we obtain

$$\langle \tilde{h} (V_1, V_1), \tilde{h} (V_2, V_2) \rangle = \langle \tilde{h} (V_1, V_2), \tilde{h} (V_1, V_2) \rangle. \tag{15}$$

Let ν be a smooth normal vector field on M with respect to γ satisfying $\nu \in L^+$ and $\langle \nu, \iota \rangle = -1$. Then we may set $\tilde{h}(V_i, V_j) := a_{ij}\iota + b_{ij}\nu$. Then $a_{ij} = a_{ji}$ and $b_{ij} = b_{ji}$ hold. In addition, since γ is minimal, we obtain $a_{11} + a_{22} = 0$, $b_{11} + b_{22} = 0$. If we set

$$a_1 := a_{11} = -a_{22}, \quad a_2 = a_{12} = a_{21}, \quad b_1 := b_{11} = -b_{22}, \quad b_2 = b_{12} = b_{21},$$

then (15) is represented as

$$a_1b_1 + a_2b_2 = 0. (16)$$

Since \tilde{A}_{ι} is nowhere zero, we suppose that at each point of U, V_{ι} is an eigenvector of \tilde{A}_{ι} . Then noticing $\langle \nu, \iota \rangle = -1$ and (10), we obtain $b_2 \equiv 0$. Since we suppose that \tilde{A}_{ι} is nowhere zero, we obtain $b_1 \neq 0$. Therefore from (16), we obtain $a_1 \equiv 0$. In the following, we set $a := a_2$, $b := b_1$. Let (u,v) be local coordinates on U satisfying $\partial/\partial u = AV_1$ and $\partial/\partial v = BV_2$, where A and B are smooth, positive-valued functions. Then the following hold:

$$\overline{\nabla}_{\partial l \partial u} \nu = \frac{A}{B} a \frac{\partial}{\partial v} + c_1 \nu, \qquad \overline{\nabla}_{\partial l \partial u} \nu = \frac{B}{A} a \frac{\partial}{\partial u} + c_2 \nu, \tag{17}$$

where c_1 and c_2 are smooth functions. By (17), we obtain

$$\overline{\nabla}_{\partial/\partial v}\overline{\nabla}_{\partial/\partial u}\nu = a\left(\frac{A}{B}\Gamma_{22}^{1} + \frac{B}{A}c_{1}\right)\frac{\partial}{\partial u} + \left\{\left(\frac{A}{B}a\right)_{v} + \frac{A}{B}a\Gamma_{22}^{2}\right\}\frac{\partial}{\partial v} + \left\{-ABab + (c_{1})_{v} + c_{1}c_{2}\right\}\nu - ABa\gamma, \tag{18}$$

$$\overline{\nabla}_{\partial/\partial u}\overline{\nabla}_{\partial/\partial v}\nu = \left\{ \left(\frac{B}{A}a \right)_{u} + \frac{B}{A}a\Gamma^{1}_{11} \right\} \frac{\partial}{\partial u} + a \left(\frac{B}{A}\Gamma^{2}_{11} + \frac{A}{B}c_{2} \right) \frac{\partial}{\partial v} + \left\{ ABab + (c_{2})_{u} + c_{1}c_{2} \right\}\nu - ABa\gamma, \tag{19}$$

where $\Gamma^{k}{}_{ij}(i,j,k=1,2)$ are the Christoffel's symbols of the Levi-Civita connection of (M,\tilde{g}) with respect to local coordinates (u,v). From (18), (19) and $\overline{\nabla}_{\partial/\partial v}\overline{\nabla}_{\partial/\partial u}\nu = \overline{\nabla}_{\partial/\partial v}\overline{\nabla}_{\partial/\partial v}\nu$, we obtain

$$\left(\frac{B}{A}a\right)_{\mu} + \left(\frac{B}{A}\Gamma^{1}_{11} - \frac{A}{B}\Gamma^{1}_{22} - \frac{B}{A}c_{1}\right)a = 0, \tag{20}$$

$$\left(\frac{A}{B}a\right)_{\nu} + \left(\frac{A}{B}\Gamma^{2}_{22} - \frac{B}{A}\Gamma^{2}_{11} - \frac{A}{B}c_{2}\right)a = 0, \tag{21}$$

$$2ABab - (c_1)_v + (c_2)_u = 0. (22)$$

The following hold:

$$\Gamma_{11}^{1} = (\log A)_{u}, \quad \Gamma_{11}^{2} = -\frac{AA_{v}}{B^{2}}, \quad \Gamma_{22}^{1} = -\frac{BB_{u}}{A^{2}}, \quad \Gamma_{22}^{2} = (\log B)_{v}.$$
 (23)

If $a\neq 0$, then by (20), (21) and (23), we obtain $(c_1)_v=(c_2)_u$. This contradicts (22). Therefore we obtain $a\equiv 0$. Then from (17), we obtain $\overline{\nabla}_{\partial/\partial u}\nu=c_1\nu$ and $\overline{\nabla}_{\partial/\partial v}\nu=c_2\nu$. Since $(c_1)_v=(c_2)_u$, there exists a smooth function f satisfying $f_u=c_1$ and $f_v=c_2$. Then we see that $\overline{\nabla}_{\partial/\partial u}(e^{-f}\nu)$ and $\overline{\nabla}_{\partial/\partial v}(e^{-f}\nu)$ are identically zero. Therefore $\nu_0:=e^{-f}\nu$ is constant. Hence we have proved Lemma 4.2.

Lemma 4.3. ([3]) Let $\iota: M \to S^3$ be an immersion of M into S^3 and ν as in (7). Then for each point $p \in M$, a unique intersection of $S^3 = L^+ \cap \{x^{(0)} = 1\}$ with a line through the origin of \mathbb{R}^5 determined by $\nu(p)$ is contained in a sphere in S^3 tangent to M at $\iota(p)$ such that the mean curvature is equal to H(p).

For the proof of Lemma 4.3, see [3, pp. 33].

Proof of Theorem 4.1. Let $\omega: M \to \mathbb{R}^3$ be a minimal immersion of M into \mathbb{R}^3 such that M has no umbilical point with respect to ω . Then on a neighborhood U_p of each point p of M, there exist isothermal coordinates (u,v) and a smooth, positive-valued function A satisfying

- (a) the metric g_0 induced by ω is represented as $A^2(du^2+dv^2)$ on U_p ;
- (b) each of $\partial/\partial u$ and $\partial/\partial v$ is in a principal direction with respect to ω at each point of U_P ;
- (c) the Gaussian curvature K_0 of M with respect to g_0 is represented as $K_0 = -1/A^4$ on U_P .

Let $\pi: S^3 \setminus \{p_0\} \to \mathbb{R}^3$ be a stereographic projection and $\iota: M \to S^3$ the immersion satisfying $\pi \circ \iota = \iota_0$. Then by (4), we see that the metric \tilde{g} induced by the conformal Gauss map of ι is represented as $\tilde{g} = -K_0 g_0$. Then $\tilde{g} = A^{-2} (du^2 + dv^2)$ holds on U_p . Let \tilde{K} be the curvature of M with respect to \tilde{g} . Then $\tilde{K} = -\tilde{\Delta} \log(1/A)$ holds. Since $\tilde{\Delta} = -K_0^{-1}\Delta_0 = A^4\Delta_0$, where Δ_0 is the Laplacian on M with respect to g_0 , we obtain $\tilde{K} = A^4\Delta_0 \log A$. In addition, since $\Delta_0 \log A = -K_0 = 1/A^4$, we obtain $\tilde{K} = 1$.

Let $\iota: M \to S^3$ be a Willmore immersion of M into S^3 such that M has no umbilical point with respect to ι , and suppose that the conformal Gauss map γ_ι of ι is a minimal immersion such that the curvature of M with respect to the metric \tilde{g} induced by γ_ι is identically equal to one. Then by Lemma 4.2, we see that there exists a vector $\nu_0 \in L^+$ such that $\gamma_\iota(M)$ is contained in the hyperplane of \mathbb{R}^5 determined by ν_0 . Then by Lemma 4.3, we see that for any point $p \in M$, a sphere in S^3 tangent to M at $\iota(p)$ such that the mean curvature is equal to H(p) contains the point x_0 of S^3 determined by ν_0 . Let π_0 be the stereographic projection from x_0 . Then $\pi_0 \circ \iota$ is a minimal immersion. Hence we obtain Theorem 4.1.

Remark. Let $\iota: M \to S^3$ be a minimal immersion such that M has no umbilical point with respect to ι . Then on a neighborhood U_P of each point p of M, there exist isothermal coordinates (u,v) and a smooth, positive-valued function A satisfying the following: (a) the metric g induced by ι is represented as $A^2(du^2+dv^2)$ on U_P ; (b) each of $\partial/\partial u$ and $\partial/\partial v$ is in a principal direction with respect to ι at each point of U_P ; (c) the curvature K of M with respect to the metric g is represented as $K=1-1/A^4$ on U_P . The metric \tilde{g} induced by γ_{ι} is represented as $\tilde{g}=A^{-2}(du^2+dv^2)$. Then the curvature \tilde{K} of M with respect to \tilde{g} is represented as $\tilde{K}=\tilde{\Delta}\log A$. Since

$$\tilde{\Delta} = (1 - K)^{-1} \Delta = A^4 \Delta$$
, $\Delta \log A = -K = -1 + 1/A^4$.

we obtain $\tilde{K}=1-A^4<1$.

References

- [1] N. Ando, An isolated umbilical point of a Willmore surface, *Osaka J. Math.* 41 (2004) 865 -876.
- [2] W. Blaschke, Vorlesungen über Differentialgeometrie III, Springer, Berlin, 1929.
- [3] R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984) 23-53.
- [4] B.-Y. Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973) 563-564.
- [5] M. Spivak, A comprehensive introduction to differential geometry, IV (3rd ed.), Publish or Perish, 1999.

- [6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380-385.
- [7] J. L. Weiner, On a problem of Chen, Willmore et alia, *Indiana University Math. J.* 27 (1978) 19-35.
- [8] J. H. White, A global invariant of conformal mappings in space, *Proc. Amer. Math. Soc.* 38 (1973) 162-164.
- [9] T. J. Willmore, Riemannian geometry, Oxford University Press, 1993.

Naoya Ando Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

e-mail: ando@math.sci.kumamoto-u.ac.jp