The Gaussian curvature of a parallel curved surface

Hitoshi Kishimura

(Received January 31, 2005)

Abstract

We shall represent the Gaussian curvature of a canonical parallel curved surface in terms of a generating pair. In addition, we shall study a relation between generating pairs such that the corresponding canonical parallel curved surfaces have the same semisurface structure.

1. Introduction

A surface S in \mathbb{R}^3 is called parallel curved if there exists a plane P such that one of the principal directions of S at each point is parallel to P. If S is parallel curved, then such a plane as P is called a base plane of S. A parallel curved surface S is called canonical if there exist smooth functions ϕ_1, ϕ_2 on an open interval I and smooth functions ϕ_3, ϕ_4 on an open interval J satisfying $a := \sqrt{(\phi'_1)^2 + (\phi'_2)^2} \neq 0$ on I, $b := \sqrt{(\phi'_3)^2 + (\phi'_4)^2} \neq 0$ on J, and the condition that S is the image of $I \times J$ by a map Φ defined by

$$\Phi(u, v) := (\phi_1(u) + \phi_2(v)\phi'_2(u)/a(u))e_1 + (\phi_3(u) - \phi_4(v)\phi'_4(u)/a(u))e_2 + \phi_2(v)e_3 + c,$$

(1)

where c is a vector of \mathbb{R}^3 and (e_1, e_2, e_3) is an orthonormal basis of \mathbb{R}^3 such that e_1 and e_2 form a basis of a base plane of S. Parallel curved surfaces were studied in [1], [2] and [3].

Let C_0 and C_θ be simple curves in \mathbb{R}^3 with a unique intersection $p(C_0, C_\theta)$ and contained in planes P_0 and P_θ, respectively. A pair (C_0, C_θ) is called generating if we may choose as P_0 the plane normal to C_0 at $p(C_0, C_\theta)$; if (C_0, C_θ) is generating, then C_0 and C_θ are called the base curve and the generating curve of (C_0, C_θ), respectively. For a canonical parallel curved surface S with a base plane P_0 and each point q of S, there exists a generating pair (C_0, C_θ) satisfying the following:

1. C_0 and C_θ are lines of curvature in S through q,

2000 Mathematics Subject Classification: Primary 53A05; Secondary 53A99, 53B25.

Keywords: canonical parallel curved surface, generating pair, semisurface structure.
2. P_b is parallel to P_b (therefore P_b is a base plane of S) (see [2]). In addition, for a generating pair (C_b, C_p), there exists a canonical parallel curved surface S satisfying the following:

1. S contains a neighborhood O_b (respectively, O_p) of $\rho(C_b, C_p)$ in C_b (respectively, C_p) so that O_b and O_p are lines of curvature in S;

2. P_b is a base plane of S

(see [2]). We say that S is generated by (C_b, C_p).

In the sequel, suppose that for a generating pair (C_b, C_p), there exists a canonical parallel curved surface S satisfying the above 1 and 2 with $O_b = C_b$ and $O_p = C_p$. The minimum of such canonical parallel curved surfaces as S is denoted by $S_{(C_b, C_p)}$. For example, if C_b and C_p are isometric to \mathbb{R}, then $S_{(C_b, C_p)}$ is homeomorphic to a plane; if one of C_b and C_p is isometric to \mathbb{R} and the other isometric to a closed curve, then $S_{(C_b, C_p)}$ is homeomorphic to a cylinder; if C_b and C_p are closed curves, then $S_{(C_b, C_p)}$ is homeomorphic to a torus. If S is a connected, complete, real-analytic, embedded, parallel curved surface, then S is homeomorphic to a sphere, a plane, a cylinder, or a torus, and in addition,

1. if S is homeomorphic to a sphere, then S is a surface of revolution which crosses its axis of rotation at just two points;

2. if S is homeomorphic to a plane, then one of the following holds:

 (a) S is a surface of revolution which crosses its axis of rotation at just one point,
 (b) $S = S_{(C_b, C_p)}$ holds, where (C_b, C_p) is a generating pair each element of which is isometric to \mathbb{R};

3. if S is homeomorphic to a cylinder, then $S = S_{(C_b, C_p)}$ holds, where (C_b, C_p) is a generating pair such that one of C_b and C_p is isometric to \mathbb{R} and the other a closed curve;

4. if S is homeomorphic to a torus, then $S = S_{(C_b, C_p)}$ holds, where (C_b, C_p) is a generating pair each element of which is a closed curve

(see [1]).

The first purpose of the present paper is to represent the Gaussian curvature of a canonical parallel curved surface in terms of a generating pair. For a canonical parallel curved surface $S_{(C_b, C_p)}$, we suppose
The Gaussian curvature of a parallel curved surface

\[C_b = \{ \Phi(u, v_0); u \in I \}, \quad C_v = \{ \Phi(u_0, v); v \in J \} \]

for some \(u_0 \in I \) and some \(v_0 \in J \) satisfying \(\phi_0(v_0) = 0 \). In addition, we suppose \(e_1 := (1, 0, 0), e_2 := (0, 1, 0), e_3 := (0, 0, 1), c := (0, 0, 0) \) in (1). Then the map \(\Phi \) is represented as follows:

\[
\Phi(u, v) := \begin{pmatrix}
\phi_1(u) \\
\phi_2(u) \\
\phi_3(u)
\end{pmatrix} + \begin{pmatrix}
\phi_1'(u) \\
\phi_2'(u) \\
\phi_3'(u)
\end{pmatrix} + \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}.
\]

(2)

Let \(k_b \) and \(k_v \) be the curvatures of \(C_b \) and \(C_v \), respectively. We shall prove

Theorem 1.1. The Gaussian curvature \(K \) of a canonical parallel curved surface \(S(c_0, c_v) \) is represented as follows:

\[
K = \frac{\phi_2'(v)k_b(u)k_v(v)}{(1 + \phi_3(v)k_0(u))\beta(v)}.
\]

(3)

Remark. From (3), we see that if \(C_b \) and \(C_v \) are closed and convex, then the sign of the Gaussian curvature of a canonical parallel curved surface \(S(c_0, c_v) \) depends only on \(\phi_3 \), and that the set of the zero points of the Gaussian curvature is represented as \(C_{0,1} \cup C_{0,2} \), where \(C_{0,1} \) and \(C_{0,2} \) are simple closed curves in \(S(c_0, c_v) \) such that each of \(C_{0,1} \) and \(C_{0,2} \) is contained in a base plane of \(S(c_0, c_v) \).

The second purpose of the present paper is to study a relation between generating pairs such that the corresponding canonical parallel curved surfaces have the same semi-surface structure. Let \(S \) be a surface in \(\mathbb{R}^3 \) without any umbilical point and \(p \) a point of \(S \). Then there exist local coordinates \((u, v) \) on a neighborhood \(U_p \) of \(p \) such that two principal distributions are given by \(\partial/\partial u \) and \(\partial/\partial v \) on \(U_p \). Such coordinates are said to be compatible with principal distributions on \(S \). The first fundamental form of \(S \) is represented as \(A^2 du^2 + B^2 dv^2 \) on \(U_p \), where \(A \) and \(B \) are smooth, positive-valued functions on \(U_p \). Let \(k_1 \) and \(k_2 \) be two principal curvature functions corresponding to \(\partial/\partial u \) and \(\partial/\partial v \), respectively. If the Gaussian curvature \(K \) of \(S \) is nowhere zero on \(U_p \), then on \(U_p \), the following holds ([3]):

\[
c_2k_1^2 + c_1k_1k_2 + c_0k_2^2 = 0,
\]

where
\[\begin{align*}
c_{20} := & (\log|K|A^2)_{uv} - (\log B)_{uu} \\
c_{11} := & (\log|K|AB)_{uu} - 4(\log A)_{uv}(\log B)_{u} \\
c_{22} := & (\log|K|B^2)_{uv}(\log A)_{u} - (\log A)_{uu}
\end{align*}\]

Noticing the equation of Gauss:

\[K = -\frac{1}{AB} \left(\frac{A_{uv}}{B} \right)_u + \left(\frac{B_{uv}}{A} \right)_v\]

we see that \(c_{20}, c_{11}, c_{22}\) in (4) depend only on \(A, B\) and their partial derivatives. In addition, if \((u', v')\) are local coordinates on \(U_p\) compatible with principal distributions such that at each point of \(U_p\), \(\partial/\partial u'\) (respectively, \(\partial/\partial v'\)) is represented as \(\partial/\partial u\) (respectively, \(\partial/\partial v\)) up to a nonzero constant, then the coefficients \(c_{20}', c_{11}', c_{22}'\) defined as in (4) for the coordinates \((u', v')\) satisfy \((c_{20}', c_{11}', c_{22}') = \lambda(c_{20}, c_{11}, c_{22})\) for some \(\lambda \in \mathbb{R} \setminus \{0\}\) at each point of \(U_p\). For a surface \(S\) in \(\mathbb{R}^3\) without any umbilical point and with nowhere zero Gaussian curvature, a neighborhood of each point of \(S\) is a canonical parallel curved surface if and only if \(S\) satisfies the following:

1. The integral curves of just one of the principal distributions on \(S\) are geodesics;
2. \(c_{20}, c_{11}\) and \(c_{22}\) in (4) vanish on \(S\)

(see [3]).

Let \(M\) be a two-dimensional Riemannian manifold and \(g\) its metric. Let \(D_1, D_2\) be two smooth one-dimensional distributions on \(M\). A Riemannian manifold \((M, g)\) equipped with \((D_1, D_2)\) is called a semisurface if \(D_1\) and \(D_2\) are orthogonal to each other at any point of \(M\) with respect to \(g\). If \((M, g, D_1, D_2)\) is a semisurface, then a triplet \((g, D_1, D_2)\) is a semisurface structure of \(M\). Let \((M, g, D_1, D_2)\) be a semisurface. Then for each point \(p \in M\), there exist local coordinates \((u, v)\) on a neighborhood \(U_p\) of \(p\) satisfying \(\partial/\partial u \in D_1\) and \(\partial/\partial v \in D_2\) on \(U_p\). Such coordinates are said to be compatible with \((D_1, D_2)\). The Riemannian metric \(g\) may be represented as \(g = A^2 du^2 + B^2 dv^2\) on \(U_p\). Suppose that the curvature \(K\) of the Riemannian manifold \((M, g)\) is nowhere zero on \(U_p\). Then for each point \(p\) of \(U_p\), a homogeneous polynomial

\[P_{M,s}(X_1, X_2) := c_{20}(q)X_1^2 + c_{11}(q)X_1X_2 + c_{22}(q)X_2^2\]

where \(c_{20}, c_{11}, c_{22}\) are defined as in (4), is determined by a given semisurface structure of \(M\) up to a nonzero constant. This polynomial \(P_{M,s}\) is called a Codazzi-Mainardi polynomial of a semisurface \((M, g, D_1, D_2)\) at \(q\). Let \((M, g, D_1, D_2)\) be a semisurface with nowhere zero curvature. Suppose that the integral curves of just one of \(D_1\) and \(D_2\) are geodesics and that a
The Gaussian curvature of a parallel curved surface

Codazzi-Mainardi polynomial vanishes at any point of M. Then there exist plural isometric immersions of a neighborhood U_p of each point p of M into \mathbb{R}^3 satisfying the following ([3]):

1. the images are canonical parallel curved surfaces such that arbitrary two in them are not congruent with each other in \mathbb{R}^3;

2. (D_1, D_2) gives a pair of two principal distributions.

Let $\Phi^{(1)}$ and $\Phi^{(2)}$ be isometric immersions of U_p into \mathbb{R}^3 as above. For $j \in \{1, 2\}$, let (C^j_x, C^j_y) be a generating pair satisfying $\Phi^{(j)}(U_p) = S(c_x^j, c_y^j)$. In the present paper, we shall prove

Theorem 1.2. Let (u, v) be compatible with (D_1, D_2). Then there exist nonzero numbers $\lambda, \mu \in \mathbb{R}\setminus\{0\}$ satisfying the following:

$$
\frac{\partial \gamma^{(j)}(u)}{\partial u^{(j)}(u)} \frac{k^{(j)}(u)}{k_{z}^{(j)}(u)} = \frac{\partial \gamma^{(j)}(u)}{\partial u^{(j)}(u)} \frac{k^{(j)}(v)}{k_{z}^{(j)}(v)} = \lambda, \tag{6}
$$

$$
\frac{\partial \gamma^{(j)}(u) - \partial \gamma^{(j)}(u)}{\partial u^{(j)}(u)} \eta_{z}^{(j)}(u) = \phi^{(j)}(v) - \lambda \phi^{(j)}(v) = \mu. \tag{7}
$$

Noticing that (6) and (7) give a relation between two generating pairs $(C^{(1)}_x, C^{(1)}_y)$ and $(C^{(2)}_x, C^{(2)}_y)$, we shall also prove

Theorem 1.3. Let $(C^{(1)}_x, C^{(1)}_y)$ and $(C^{(2)}_x, C^{(2)}_y)$ be generating pairs satisfying (6) and (7) for some $\lambda, \mu \in \mathbb{R}\setminus\{0\}$. Then the corresponding canonical parallel curved surfaces $S(c_x^{(1)}, c_y^{(1)})$ and $S(c_x^{(2)}, c_y^{(2)})$ have the same semisurface structure, i.e., there exist a semisurface (M, g, D_1, D_2) and isometric immersions $\Phi^{(1)}, \Phi^{(2)} : M \rightarrow \mathbb{R}^3$ such that for $j \in \{1, 2\}$, the following hold:

1. $\Phi^{(j)}(M) = S(c_x^j, c_y^j)$;

2. $d\Phi^{(j)}(D_i)$ is a principal distribution on $\Phi^{(j)}(M)$.

2. Proof of Theorem 1.1

We shall prove

Proposition 2.1. The coefficients of the first fundamental form $Edu^2 + 2Fdudv + Gdv^2$ of $S(c_x, c_y)$ are represented as follows:

$$
E = (1 + \phi(v)k_z(u))^2\alpha(u)^2, \quad F = 0, \quad G = \beta(v)^2.
$$
Proof. The following hold:

\[
\Phi_v = \begin{pmatrix}
\phi'(u) \\
\phi''(u) \\
0 \\
\end{pmatrix} + \frac{\phi_u(v)}{\alpha(u)} \begin{pmatrix}
\phi''(v) \\
-\phi'(v) \\
0 \\
\end{pmatrix} + \frac{\phi_v(v)}{\alpha(u)} \begin{pmatrix}
\phi''(v) \\
-\phi'(v) \\
0 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\phi'(u) \\
\phi''(u) \\
0 \\
\end{pmatrix} - \frac{\phi_u(v)}{\alpha(u)} \left(\phi'(u)\phi''(u) + \phi''(u)\phi'(u)\right) \begin{pmatrix}
\phi''(v) \\
-\phi'(v) \\
0 \\
\end{pmatrix} + \frac{\phi_v(v)}{\alpha(u)} \begin{pmatrix}
\phi''(v) \\
-\phi'(v) \\
0 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\phi'(u) \\
\phi''(u) \\
0 \\
\end{pmatrix} - \frac{\phi_u(v)}{\alpha(u)} \left(\phi'(u)\phi''(u) + \phi''(u)\phi'(u)\right) \begin{pmatrix}
\phi''(v) \\
-\phi'(v) \\
0 \\
\end{pmatrix} + \alpha(u)^2 \begin{pmatrix}
0 \\
0 \\
\phi''(u) \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\phi'(u) \\
\phi''(u) \\
0 \\
\end{pmatrix} - \frac{\phi_u(v)}{\alpha(u)} \left(\phi'(u)\phi''(u) - \phi''(u)\phi'(u)\right) \begin{pmatrix}
\phi'(v) \\
\phi''(v) \\
0 \\
\end{pmatrix}
\]

\[
= \left[1 + \frac{\phi_u(v)}{\alpha(u)} \left(\phi'(u)\phi''(u) - \phi''(u)\phi'(u)\right)\right] \begin{pmatrix}
\phi'(u) \\
\phi''(u) \\
0 \\
\end{pmatrix}
\]

Since the curvature \(k_o(u)\) of the plane curve given by \((\phi_1, \phi_2)\) is represented as

\[
k_o(u) = \frac{\phi'(u)\phi''(u) - \phi''(u)\phi'(u)}{\alpha(u)^2},
\]

we obtain

\[
\Phi_v = (1 + \phi_u(v)k_o(u)) \begin{pmatrix}
\phi'(u) \\
\phi''(u) \\
0 \\
\end{pmatrix}
\]

The following holds:
The Gaussian curvature of a parallel curved surface

\[
\Phi_v = \frac{\phi_2^2(v)}{\alpha(u)} \begin{pmatrix} \phi_2(u) \\ -\phi_1(u) \\ 0 \end{pmatrix} + \phi_4(v) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

Therefore we obtain

\[
E = \Phi_u \cdot \Phi_v = (1 + \phi_3(v)k_3(u))^2\alpha(u)^2, \quad F = \Phi_u \cdot \Phi_v = 0,
\]

\[
G = \Phi_u \cdot \Phi_v = \frac{\phi_2^2(v)}{\alpha(u)} - \alpha(u)^2 + \phi_4^2(v) = \beta(v)^2.
\]

Proposition 2.2. A unit normal vector field of \(S(\alpha, \beta)\) is represented as follows:

\[
e = \frac{\phi_4(v)}{\alpha(u)\beta(v)} \begin{pmatrix} \phi_2(u) \\ -\phi_1(u) \\ 0 \end{pmatrix} - \frac{\phi_2^2(v)}{\alpha(u)\beta(v)} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

Proof. The following hold:

\[
\Phi_u \times \Phi_v = (1 + \phi_3(v)k_3(u)) \begin{pmatrix} \phi_1(u) \\ \phi_2(u) \\ 0 \end{pmatrix} \times \left[\begin{pmatrix} \phi_1(u) \\ \phi_2(u) \\ 0 \end{pmatrix} \right] = -(1 + \phi_3(v)k_3(u))\alpha(u)\phi_3(v) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + (1 + \phi_3(v)k_3(u))\phi_4(v) \begin{pmatrix} \phi_2(u) \\ 0 \\ 0 \end{pmatrix}.
\]

Then we obtain

\[
|\Phi_u \times \Phi_v|^2 = \alpha(u)^2(1 + \phi_3(v)k_3(u))^2(\phi_3(v)^2 + \phi_4(v)^2)
\]

and

\[
|\Phi_u \times \Phi_v| = \alpha(u)(1 + \phi_3(v)k_3(u))\sqrt{\phi_3(v)^2 + \phi_4(v)^2}.
\]

Therefore we obtain

\[
e = \frac{\Phi_u \times \Phi_v}{|\Phi_u \times \Phi_v|} = \frac{\phi_4(v)}{\alpha(u)\beta(v)} \begin{pmatrix} \phi_2(u) \\ -\phi_1(u) \\ 0 \end{pmatrix} - \frac{\phi_2^2(v)}{\alpha(u)\beta(v)} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

\[
\square
\]
Proposition 2.3. The coefficients of the second fundamental form \(Ldu^2 + 2Mdudv + Ndv^2 \) of \(S_{(c_0, c_d)} \) are represented as follows:

\[
L = -(1 + \phi_3(v)k_3(u))\frac{\phi_1'(u)k_3(u)\sigma(u)^2}{\beta(v)}, \quad M = 0,
\]
\[
N = -k_3(v)\beta(v)^2.
\]

Proof. The following hold:

\[
\Phi_{uu} = (1 + \phi_3(v)k_3(u))\begin{pmatrix}
\phi_1'(u) \\
\phi_2'(u) \\
0
\end{pmatrix} + (1 + \phi_3(v)k_3(u))\begin{pmatrix}
\phi_3'(u) \\
\phi_4'(u) \\
0
\end{pmatrix},
\]
\[
\Phi_{uv} = \phi_3'(v)k_3(u)\begin{pmatrix}
\phi_1'(u) \\
\phi_2'(u) \\
0
\end{pmatrix}, \quad \Phi_{vv} = \frac{\phi_3'(v)}{\alpha(u)}\begin{pmatrix}
\phi_3'(u) \\
-\phi_1'(u) + \phi_3'(v) \\
0
\end{pmatrix}.
\]

Therefore we obtain

\[
L = \Phi_{uu} \cdot e = (1 + \phi_3(v)k_3(u))\frac{\phi_1'(u)k_3(u)\sigma(u)^2}{\beta(v)},
\]
\[
M = \Phi_{uu} \cdot e = 0,
\]
\[
N = \Phi_{uv} \cdot e = \frac{\phi_3'(v)\phi_2'(v)}{\alpha(u)\beta(v)}\phi_3'(u) - \frac{\phi_3'(v)\phi_3'(u)}{\beta(v)}.
\]

Since the curvature \(k_3(v) \) of the plane curve given by \((\phi_3, \phi_4) \) is represented as

\[
k_3(v) = \frac{\phi_3'(v)\phi_4'(v) - \phi_3'(v)\phi_3'(v)}{\beta(v)^2},
\]

we obtain

\[
N = -k_3(v)\beta(v)^2.
\]

By Propositions 2.1, 2.2 and 2.3, we obtain
The Gaussian curvature of a parallel curved surface

\[
K = \frac{LN}{EG} = \frac{(1 + \phi_1(v)k_1(u))\phi_2(v)k_2(u)k_3(v)\alpha(u)\beta(v)}{(1 + \phi_2(v)k_2(u))^2\alpha(u)^2\beta(v)^2}
\]

\[= \frac{\phi_2(v)k_2(u)k_3(v)}{(1 + \phi_2(v)k_2(u))\beta(v)}.\]

Hence we have proved Theorem 1.1.

3. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Let \(g^{(1)} \) be the first fundamental form of a canonical parallel curved surface \(S^{(1)} := \Phi^{(1)}(U) \) and \(K^{(1)} \) the Gaussian curvature of \(S^{(1)} \). Since \(S^{(1)} \) and \(S^{(2)} \) have the same semisurface structure, the following hold:

\[
K^{(1)} = K^{(2)},
\]

\[
E^{(1)} = E^{(2)}, \quad G^{(1)} = G^{(2)}.
\]

Therefore by (3) together with (8), we obtain

\[
\frac{(\phi_1^{(1)}(v)k_1^{(1)}(u))k_2^{(1)}(v)}{(1 + \phi_1^{(1)}(v)k_1^{(1)}(u))\beta^{(1)}(v)} = \frac{(\phi_1^{(2)}(v)k_1^{(2)}(u))k_2^{(2)}(v)}{(1 + \phi_1^{(2)}(v)k_1^{(2)}(u))\beta^{(2)}(v)}.
\]

From Proposition 2.1 and (9), we obtain

\[
(1 + \phi_1^{(1)}(v)k_1^{(1)}(u))\alpha^{(1)}(u) = (1 + \phi_1^{(2)}(v)k_1^{(2)}(u))\alpha^{(2)}(u),
\]

\[
\beta^{(1)}(v) = \beta^{(2)}(v).
\]

We rewrite (11) into

\[
\frac{(1 + \phi_1^{(1)}(v)k_1^{(1)}(u))}{(1 + \phi_1^{(2)}(v)k_1^{(2)}(u))} = \frac{\alpha^{(1)}(u)}{\alpha^{(2)}(u)}.
\]

Therefore from (10), (12) and (13), we obtain

\[
\frac{\alpha^{(1)}(u)k_1^{(1)}(u)}{\alpha^{(2)}(u)k_1^{(2)}(u)} = \frac{(\phi_1^{(1)}(v)k_1^{(1)}(v))}{(\phi_1^{(2)}(v)k_1^{(2)}(v))}
\]

Since the left hand side (respectively, the right hand side) of (14) depends only on \(u \) (respectively, \(v \)), there exists a nonzero number \(\lambda \in \mathbb{R}\setminus\{0\} \) satisfying

\[
\frac{\alpha^{(1)}(u)k_1^{(1)}(u)}{\alpha^{(2)}(u)k_1^{(2)}(u)} = \frac{(\phi_1^{(1)})(v)k_1^{(1)}(v)}{(\phi_1^{(2)})(v)k_1^{(2)}(v)} = \lambda.
\]

Therefore we obtain (6). From (6), we obtain

\[
\alpha^{(1)}(u)k_1^{(1)}(u) = \lambda\alpha^{(2)}(u)k_1^{(2)}(u).
\]
Therefore by (11) together with (15), we obtain

\[\frac{a^{(3)}(u) - a^{(1)}(u)}{a^{(1)}(u) k^{(1)}_b(u)} = \phi^{(1)}_b(v) - \lambda \phi^{(1)}(v). \]

(16)

Since the left hand side (respectively, the right hand side) of (16) depends only on \(u \) (respectively, \(v \)), there exists a nonzero number \(\mu \in \mathbb{R} \setminus \{0\} \) satisfying

\[\frac{a^{(3)}(u) - a^{(1)}(u)}{a^{(1)}(u) k^{(1)}_b(u)} = \phi^{(1)}_b(v) - \lambda \phi^{(1)}(v) = \mu. \]

Therefore we obtain (7). Hence we have proved Theorem 1.2.

\[\square \]

Proof of Theorem 1.3. We may suppose

\[\beta^{(1)} = \beta^{(3)} = 1. \]

(17)

By (7), we obtain

\[a^{(1)}(u) + \phi^{(1)}_b(v) a^{(1)}(u) k^{(1)}_b(u) = a^{(3)}(u) + \lambda \phi^{(1)}(v) a^{(1)}(u) k^{(1)}_b(u). \]

(18)

By (6), we obtain

\[a^{(3)}(u) k^{(3)}_b(u) = \lambda a^{(1)}(u) k^{(1)}_b(u). \]

(19)

Therefore applying (19) into (18), we obtain

\[(1 + \phi^{(1)}(v) k^{(1)}_b(u)) a^{(1)}(u) = (1 + \phi^{(3)}_b(v) k^{(3)}_b(v)) a^{(3)}(u). \]

(20)

From Proposition 2.1, (17) and (20), we obtain

\[E^{(1)} = E^{(3)}, \quad G^{(1)} = G^{(3)}. \]

Therefore canonical parallel curved surfaces \(S_{cc}^{(1)}, c^{(1)}_b \) and \(S_{cc}^{(3)}, c^{(3)}_b \), respectively, have the same semisurface structure. Hence we have proved Theorem 1.3.

\[\square \]

4. **Examples of canonical parallel curved surfaces**

Example. Let \(C_b \) and \(C_\sigma \) be ellipses. Then we shall compute the Gaussian curvature of the corresponding canonical parallel curved surface \(S_{(c_b, c_\sigma)} \). We set

\[\phi_1(u) := a \cos u, \quad \phi_2(u) := b \sin u, \]

\[\phi_3(v) := c + c \cos v, \quad \phi_4(v) := d \sin v, \]

where \(a, b, c, d > 0 \). Then since
The Gaussian curvature of a parallel curved surface

\[\phi_i(u) = -a \sin u, \quad \phi_j(u) = b \cos u, \]
\[\phi_i'(v) = -c \sin v, \quad \phi_j'(v) = d \cos v, \]

the map \(\Phi \) is represented as follows:

\[
\Phi(u, v) := \begin{pmatrix}
 a \cos u \\
 b \sin u \\
 0
\end{pmatrix} + \frac{c + c \cos v}{\sqrt{b^2 \cos^2 u + a^2 \sin^2 u}} \begin{pmatrix}
 b \cos u \\
 a \sin u \\
 0
\end{pmatrix} + d \sin v \begin{pmatrix}
 0 \\
 0 \\
 1
\end{pmatrix}.
\]

The following hold:

\[\phi_i''(u) = -a \cos u, \quad \phi_j''(u) = -b \sin u, \]
\[\phi_i''(v) = -c \cos v, \quad \phi_j''(v) = -d \sin v. \]

Therefore if we set

\[a(u) := \sqrt{b^2 \cos^2 u + a^2 \sin^2 u}, \quad \beta(v) := \sqrt{d^2 \cos^2 v + c^2 \sin^2 v}, \]

then we obtain

\[k_v(u) = \frac{\phi_i'(u) \phi_j''(u) - \phi_i''(u) \phi_j'(u)}{a(u)^3}, \]
\[k_v(v) = \frac{\phi_i'(v) \phi_j''(v) - \phi_i''(v) \phi_j'(v)}{\beta(v)^3}. \]

Therefore we obtain

\[
K = dcov \left(\frac{ab}{a(u)^3} \frac{cd}{\beta(v)^3} \frac{1}{(1 + \phi_i'(u)ab/a(u)^3)\beta(v)} \right)
\]
\[= \frac{abcd^3 \cos v}{(a(u)^3 + abc(1 + \cos v))\beta(v)^3}. \]

Suppose that \(C_\phi \) and \(C_\theta \) are circles, that is, set \(a = b = R, \ c = d = r. \) Then the map \(\Phi \) is represented as follows:

\[
\Phi(u, v) := \begin{pmatrix}
 R \cos u \\
 R \sin u \\
 0
\end{pmatrix} + r(1 + \cos v) \begin{pmatrix}
 \cos u \\
 \sin u \\
 0
\end{pmatrix} + r \sin v \begin{pmatrix}
 0 \\
 0 \\
 1
\end{pmatrix};
\]

the Gaussian curvature \(K \) is represented as follows:
\[K = r \cos v \frac{\cos v}{R} \frac{1}{r} \frac{1}{(1 + \rho(1 + \cos v) \cdot 1/R)} = \frac{\cos v}{r(R + r(1 + \cos v))}. \]

Example. Let \(C_0 \) be an ellipse, and \(C_0 \) a parabola. Then we shall compute the Gaussian curvature of the corresponding canonical parallel curved surface \(S_{C_0,C_0} \). We set

\[\phi_1(u) := \cos u, \quad \phi_2(u) := b \sin u, \quad \phi_3(v) := v^2/2, \quad \phi_4(v) := v. \]

Then since

\[\phi_1'(u) = -a \sin u, \quad \phi_2'(u) = b \cos u, \quad \phi_3'(v) = v, \quad \phi_4'(v) = 1, \]

the map \(\Phi \) is represented as follows:

\[\Phi(u,v) := \begin{pmatrix} \cos u \\ b \sin u \\ 0 \end{pmatrix} + \frac{v}{\beta(u)^2} \begin{pmatrix} b \cos u \\ a \sin u \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \]

The following hold:

\[\phi_1''(u) = -a \cos u, \quad \phi_2''(u) = -b \sin u, \quad \phi_3''(v) = 1, \quad \phi_4''(v) = 0. \]

Therefore if we set

\[a(u) := \sqrt{b^2 \cos^2 u + a^2 \sin^2 u}, \quad \beta(v) := \sqrt{1 + v^2}, \]

then we obtain

\[k_0(u) = \frac{\phi_1''(u) \phi_2''(u) - \phi_1'(u) \phi_2''(u)}{a(u)^3} = \frac{ab}{a(u)^3}, \]

\[k_0(v) = \frac{\phi_3''(v) \phi_4''(v) - \phi_3'(v) \phi_4''(v)}{\beta(v)^3} = -\frac{1}{\beta(v)^3}. \]

Therefore we obtain

\[K = \frac{ab}{a(u)^3} \frac{-1}{\beta(v)^3} \frac{1}{(1 + abu^2/2a(u)^2)\beta(v)} = -\frac{ab}{(a(u)^3 + abu^2/2)\beta(v)^3}. \]

Example. Let \(C_0 \) be a parabola and \(C_0 \) an ellipse. Then we shall compute the Gaussian curvature of the corresponding canonical parallel curved surface \(S_{C_0,C_0} \). We set

\[\phi_1(u) := u^2/2, \quad \phi_2(u) := u, \quad \phi_3(v) := -c + ccos v, \quad \phi_4(v) := d \sin v. \]

Then since
The Gaussian curvature of a parallel curved surface

\[\phi'_i(u) = u, \quad \phi'_2(u) = 1, \quad \phi'_3(v) = -c\sin v, \quad \phi'_4(v) = d\cos v, \]

the map \(\Phi \) is represented as follows:

\[
\Phi(u, v) = \begin{pmatrix} u^2/2 \\ u \\ 0 \end{pmatrix} - \frac{(c - \cos v)}{\sqrt{1 + u^2}} \begin{pmatrix} 1 \\ -u \\ 0 \end{pmatrix} + d\sin v \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

The following hold:

\[\phi_i(u) = 1, \quad \phi_2(u) = 0, \quad \phi_3(v) = -c\cos v, \quad \phi_4(v) = -d\sin v. \]

Therefore if we set

\[\alpha(u) := \sqrt{1 + u^2}, \quad \beta(v) := \sqrt{d^2 \cos^2 v + c^2 \sin^2 v}, \]

then we obtain

\[
k_\phi(u) = \phi'_i(u)\phi''_i(u) - \phi'_i(u)\phi'_i(u) = -\frac{1}{\alpha(u)^3},
\]

\[
k_\psi(v) = \phi'_3(v)\phi''_3(v) - \phi'_3(v)\phi'_3(v) = \frac{cd}{\beta(v)^3}.
\]

Therefore we obtain

\[
K = d\cos v \cdot \frac{-1}{\alpha(u)^3} \cdot \frac{cd}{\beta(v)^3} \cdot \frac{1}{(1 + c(1 - \cos v)/\alpha(u)^3)\beta(v)}
\]

\[
= \frac{cd^2 \cos v}{(\alpha(u)^3 + c(1 - \cos v))\beta(v)^3}.
\]

Example. Let \(C_\phi \) and \(C_\sigma \) be parabolas. Then we shall compute the Gaussian curvature of the corresponding canonical parallel curved surface \(S_{(C_\phi, C_\sigma)} \). We set

\[\phi_1(u) := u^2/2, \quad \phi_2(u) := u, \quad \phi_3(v) := -v^2/2, \quad \phi_4(v) := v. \]

Then since

\[\phi'_1(u) = u, \quad \phi'_2(u) = 1, \quad \phi'_3(v) = -v, \quad \phi'_4(v) = 1, \]

the map \(\Phi \) is represented as follows:
\[\Phi(u, v) = \begin{pmatrix} \frac{u^2}{2} \\ u \\ 0 \end{pmatrix} - \frac{v^2}{2\sqrt{1+u^2}} \begin{pmatrix} 1 \\ -u \\ 0 \end{pmatrix} + v \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \]

The following hold:

\[\phi_1(u) = 1, \quad \phi_2(u) = 0, \quad \phi_3(u) = -1, \quad \phi_4(u) = 0. \]

Therefore if we set

\[\alpha(u) := \sqrt{1+u^2}, \quad \beta(v) := \sqrt{1+v^2}, \]

then we obtain

\[k_\alpha(u) = \frac{\phi_1(u)\phi_2(u) - \phi_3(u)\phi_4(u)}{\alpha(u)^2} = -\frac{1}{\alpha(u)^3}, \]

\[k_\beta(v) = \frac{\phi_3(v)\phi_4(v) - \phi_1(v)\phi_2(v)}{\beta(v)^3} = \frac{1}{\beta(v)^3}. \]

Therefore we obtain

\[K = -\frac{1}{\alpha(u)^2} \cdot \frac{1}{\beta(v)^3} \cdot \frac{1}{(1+v^2/2\alpha(u)^2)\beta(v)} = -\frac{1}{(\alpha(u)^3 + v^2/2)\beta(v)^3}. \]

Acknowledgement

The author would like to express his cordial gratitude to Doctor Naoya Ando for his comments and suggestions.

References

The Gaussian curvature of a parallel curved surface

Hitoshi Kishimura
Graduate School of Science and Technology,
Kumamoto University
2-39-1 Kurokami,
Kumamoto 860-8555
Japan
e-mail: hk808@math.sci.kumamoto-u.ac.jp