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Abstract

We shall represent the Gaussian curvature of a canonical parallel curved surface in terms
of a generating pair. In addition, we shall study a relation between generating pairs such that
the corresponding canonical parallel curved surfaces have the same semisurface structure.

1. Introduction

A surface S in R® is called parallel curved if there exists a plane P such that one of the
principal directions of S at each point is parallel to P. If Sis parallel curved, then such a plane
as P is called a base plane of S. A“parallel curved surface S is called canonical if there exist
smooth functions ¢,, ¢, on an open interval I and smooth functions ®s, ¢4 On an open interval
J satisfying & :=W*0 onl, B :=W*O on J, and the condition that S is
the image of 7XJ by a map ® defined by

O(u, v) :=((u)+ ¢3(v)$2(2) Ja(u))es

(o)~ S 0) () el e)en + Belv)es+e, @

where ¢ is a vecter of R® and {e,, e, es} is an orthonormal basis of R® such that e; and e: form
a basis of a base plane of S. Parallel curved surfaces were studied in [1], [2] and [3].

Let C» and C, be simple curves in R? with a unique intersection p(C», C,) and contained
in planes P, and Py, respectively. A pair (Cs, C,) is called generating if we may choose as P,
the plane normal to Cs at p (C», Co); if (Cs, C,) is generating, then C, and C, are called the
base curve and the generating curve of (Cs, C,), respectively. For a canonical parallel curved
surface S with a base plane B, and each point ¢ of S, there exists a generating pair (Cs, Cy)
satisfying the following :

1. C» and Cy are lines of curvature in S through g,
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2. P, is parallel to P (therefore P, is a base plane of S)

(see [2]). In addition, for a generating pair (Cs, C.), there exists a canonical parallel curved
surface S satisfying the following :

1. S contains a neighborhood Os (respectively, Oo) of HCo,Cy) in C» (respectively, C;) so
that O, and O, are lines of curvature in S;

2. P, is a base plane of S

(see [2]). We say that S is generated by (Cs, Co).

In the sequel, suppose that for a generating pair (Cs», Cy), there exists a canonical parallel
curved surface S satisfying the above 1 and 2 with O»=Cs and O;=C,. The minimum of such
canonical parallel curved surfaces as S is denoted by Sic..co- For example, if C, and Cy are
isometric to R, then Sic..c is homeomorphic to a plane ; if one of C» and C; is isometric to R
and the other isometric to a closed curve, then Sc,.cp is homeomorphic to a cylinder ; if C» and
C, are closed curves, thenSic,.c,» is homeomorphic to a torus. If S is a connected, complete,
real-analytic, embedded, parallel curved surface, then S is homeomorphic to a sphere, a plane,
a cylinder, or a torus, and in addition,

1. if S is homeomorphic to a sphere, then S is a surface of revolution which crosses its axis
of rotation at just two points;

2. if S is homeomorphic to a plane, then one of the following holds:

(a) S is a surface of revolution which crosses its axis of rotation at just one point,
(b) S=Sic..co holds, where (C», Cs) is a generating pair each element of which is
isometric to R;

3. if S is homeomorphic to a cylinder, then S=Sic..co holds, where (Cs,Cy) is a generating
pair such that one of Cs and C; is isometric to R and the other a closed curve;

4. if S is homeomorphic to a torus, then S=S(c,.ca holds, where (Cs, Cy) is a generating pair
each element of which is a closed curve

(see [1]).
The first purpose of the present paper is to represent the Gaussian curvature of a canonical
parallel curved surface in terms of a generating pair. For a canonical parallel curved surface

Sienca)y WE Suppose
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Co={®(u, ); u€l}l, Co={®(us, v); vEJ])

for some uo € I and some v € J satisfying ¢s(v)=0. In addition, we suppose e, :=(1, 0, 0),
e2:=(0, 1, 0), es:=(0, 0, 1), ¢:=(0, 0, 0) in (1). Then the map @ is represented as follows :

éi(u) ¢2(u) 0
0w, 0):=| o) |+ 2D~ 5160) [+0u0)| 0 | )
0 0 1

Let ks and £, be the curvatures of C, and C,, respectively. We shall prove

Theorem 1.1. The Gaussian curvature K of a canonical parallel curved surface Sicocor S
represented as follows :

— 'ﬁd(l))kb( )kg(v)
K=10F ) huu)) o) ®

Remark. From (3), we see that if C» and C, are closed and convex, then the sign of the
Gaussian curvature of a canonical parallel curved surface Sic,,cn depends only on ¢, and that
the set of the zero points of the Gaussian curvature is represented as Co1U Coz, where Co, and
Co,2 are simple closed curves in Sic,.c, such that each of Co, and Co is contained in a base plane
of Sicuca

The second purpose of the present paper is to study a relation between generating pairs
such that the corresponding canonical parallel curved surfaces have the same semisurface
structure. Let S be a surface in R® without any umbilical point and  a point of S. Then there
exist local coordinates («, v) on a neighborhood U, of p such that two principal distributions
are given by 9/0u and 8/dv on U,. Such coordinates are said to be compatible with principal
distributions on S. The first fundamental form of S is represented as A2du®+ B*dv* on U,,
where A and B are smooth, positive-valued functions on U,. Let 4 and 4. be two principal
curvature functions corresponding to 8/d« and 3/dv, respectively. If the Gaussian curvature K
of S is nowhere zero on U, then on U, the following holds ([3]) :

Czokf +cenkike+ Cozk% = 0,

where
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¢z :=(log| K| A% (log B)u—(log B) uv.
cn :=(log| K| AB)us—4(log A)w(log B)u. €)]
cor :=(log| K| B?)u(log A) v —(log A )uv.

Noticing the equation of Gauss:

—__1 A
K=—2BW\"B

A

v u

+ Bll ) (5)

we see that ¢z, cu, ¢z in (4) depend only on A, B and their partial derivatives. In addition, if
(', v') are local coordinates on U, compatible with principal distributions such that at each
point of Up, 3/0x (respectively, 3/dv) is represented as 9/ou (respectively, 3/v) up to a nonzero
constant, then the coefficients ¢, ¢, coz defined as in (4) for the coordinates (u/, v") satisfy (¢,
i, Ciz) = A(Ca, Cn, Coz) for some A € R\(0} at each point of Up. For a surface Sin R? without
any umbilical point and with nowhere zero Gaussian curvature, a neighborhood of each point
of S is a canonical parallel curved surface if and only if S satisfies the following:

1. The integral curves of just one of the principal distributions on S are geodesics;
2. ¢, cn and cpz in (4) vanish on S

(see [3]).

Let M be a two-dimensional Riemannian manifold and g its metric. Let Dy, D: be two
smooth one-dimensional distributions on M. A Riemannian manifold (M, g) equipped with (D,
D») is called a semisurface if D, and D, are orthogonal to each other at any point of M with
respect to g. If (M, g, Dy, Dy) is a semisurface, then a triplet (g, D, Dz) is a semisurface structure
of M. Let (M, g, Dy, D:) be a semisurface. Then for each point p € M, there exist local
coordinates («,v) on a neighborhood Up of  satisfying 3/0u € Dy and 3/0v € D: on Up. Such
coordinates are said to be compatible with (D, D2). The Riemannian metric g may be re-
presented as g=Adu*+ B%dv* on U,. Suppose that the curvature K of the Riemannian
manifold (M, g) is nowhere zero on U,. Then for each point » of U, a homogeneous
polynomial

Pouo( X0, X2) :=cal @) X3+ en(g) Xa X+ col @) X3,

where cm, cu, coz are defined as in (4), is determined by a given semisurface structure of M up
to a nonzero constant. This polynomial Pem. is called a Codazzi- Mainardi polynomial of a
semisurface (M, g, D\, D) at q. Let (M, g, D, D) be a semisurface with nowhere zero
curvature. Suppose that the integral curves of just one of Dy and D, are geodesics and that a
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Codazzi-Mainardi polynomial vanishes at any point of M. Then there exist plural isometric
immersions of a neighborhood U, of each point p of M into R® satisfying the following ([3]) :

1. the images are canonical parallel curved surfaces such that arbitrary two in them are not
congruent with each other in R?;

2. (D, D) gives a pair of two principal distributions.

Let @ and ®® be isometric immersions of U, into R® as above. For j € {1, 2}, let c®, c
be a generating pair satisfying ®(Up)=S(c¢".cy». In the present paper, we shall prove

Theorem 1.2. Let (u, v) be compatible with (Dy, D). Then there exist nonzero numbers A, p
€ R\{0} satisfying the following :

a®(2) k() _ (Y () (w)
a'V(u) ki (u —i¢5§5’i‘iv;‘k,iﬁ‘%vj_"' ®)

LRGP 400 ag(0)= . @

Noticing that (6) and (7) give a relation between two generating pairs (Cf, C%) and
(CP, CP), we shall also prove

Theorem 1.3. Let (CY’, C°) and (C, CP) be generating pairs satisfying (6) and (7) for some
A ¢ € R\(0}. Then the corresponding canonical parallel curved surfaces Sics* csy and S e
have the same semisurface structure, i.e., there exist a semisurface (M, g, D, D») and isometric
immersions ®, @@ : M~R® such that for j € {1, 2}, the following hold :

1. ®9Y(M)=Scic;

2. dOYND:) is a principal distribution on @ (M).

2. Proof of Theorem 1.1

We shall prove

Proposition 2.1. The coefficients of the first fundamental form Edu*+2Fdudy+Gdv* of
Stcocor are represented as follows :

E=01+¢s(v)bo(2))’a(u)?, F=0, G=8)
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Proof. The following hold:

.(u) (u) ¢;(u)
| 00 Jo{ )|~ + 20— gi)
0
é1(x) ) ¢2(u)
| &0 ) (G0 + ) | — i) |+ S| g
0 0
#i(w) (B )+ ) a0 i) #i(u)
= ¢'z(u) —-Z%;% —(#1(2)$1(20) + ) $2(u)) () |—a(u)| — bi(n)
0 0
#(x) (¢1<u)¢z(u) F)E)B()
-\ & |- L) | (B0 )~ 810 80 i)
0

$i1(u) #1(w)
= dit) |+28k (#i(85(0) - i)} | F(a)

0 0

¢|(u)
= {1+ 28 (it - il sa)| ) |
0

Since the curvature ks(#%) of the plane curve given by(¢:,¢2) is represented as

Es(u) $r(e) b2 ( uﬁ(;?;i’(u)qﬁ}(u) ,

we obtain

#iu)
©u=(1+¢a(v)ks(2)) | $2(u) ).
0

The following holds :
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$2(u) 0
0.=L55 —diw) |+ )| 0 .
0 1

Therefore we obtain

E=u@s=(1+¢s(0)ks(u))*a(u)’, F=0u®p=0,

G=0,®,= 3()* a(u)+ ¢4(v)*=B(v)%.

Proposition 2.2. A unit normal vecter field of Sicocyy is represented as follows :

¢(z) ) 0

e=—FEaY — () ——%%l 0]

a(u)B(v B(v
1
Proof. The following hold :

#1(2) ) p2(n) 0
@ X@o=(1+ d0es(a) | i) XL — i) |+ i) | 0
0 0 1

0 ?2(u)

=—(1+ga(v) k(1)) a(2) $(v) | O |+(1+ Ba(0)leo(2e)) Fe(v) | — pize) |.
1 0

Then we obtain
[0 X ®olt=a(2)*(1+ da(v) ksl 2) Y ( S(v)?+ da(v)?)

and

@0 X ol =a(2)(1+ gs(v)ks(2))V $s(0)*+ Sl V).

Therefore we obtain

silo) b2(u) ) 0

Du X Py sV g _ v

@ x@.] = 2By | ~ ) |50y | O }
0 1

e

75
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Proposition 2.3. The coefficients of the second fundamental form Ldu®+2Mdudv+ Ndv® of
Sicorcor are represented as follows :

L=—(1+¢s(v)kb(u))ﬂzﬁﬁbé%m£ﬁ, M=0,

N=—ko(v)B(v)".

Proof. The following hold:

#i(u) #i(w)
Bu=(1+ oMol (a0 |+(1+ Do) | $2a0) |
0 0
#i(w) L2 0
D= d()k) | 1) |, @w=BE| i) |+ i) | 0 )
0 0 1

Therefore we obtain

L=@ue=(1+ da(0)ool2))— 28D ( 81 () i) — () 63(10))

a(u)p(v
=—(l+¢a(v)kb(u))mz£%‘M,
M=q)uu‘e=0,

—_ .=:|‘U ;U z_’vl;v

— _ $:(0)¢i(v) — gi(v)u(v)
8(v) :

Since the curvature %) of the plane curve given by (#s, @) is represented as

£(v) ¢'s(v)¢2'(vg(—;$§(v)¢2(v),

we obtain

N=—ko(v)B(v)".

By Propositions 2.1, 2.2 and 2.3, we obtain
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_ AN _ (1+ ¢s(v)ken(2e) pulv) fes(2e) o v) o ) B (v
EG™ 14+ @s(v)s(ue u)B(v

S v)kes(n) eo(v)
1+ @s(v) k() B(v)*

Hence we have proved Theorem 1.1.
3. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Let g* be the first fundamental form of a canonical parallel curved
surface SY :=@®Y(U,) and K’ the Gaussian curvature of S¥. Since S™ and S® have the

same semisurface structure, the following hold :

K(l)=K(2), (8)
EW=FE® GO=G®, (9)

Therefore by (3) together with (8), we obtain

sl)’vkg)uk(l)v _ 32)’vk$2)uk(2)v 10
V)Y ()8 (v) — (1+ P ()P (1)) 89 (v)" 10

From Proposition 2.1 and (9), we obtain

(1+ ¢2(0) £ () @™ (2e) = (1 + ()P (u)) (), (11)
B(v)V=g(v)*. (12)
We rewrite (11) into
1+ sl) ks’l) _ (2),
T a0 EPe)) — o %Z} 13)

Therefore from (10), (12) and (13), we obtain

()P (u) _ () (0)EM (v
aV(u) k() ~ (2 ()P (v)" (14)

Since the left hand side (respectively, the right hand side) of (14) depends only on # (respective-
ly, ), there exists a nonzero number A € R\{0} satisfying

a®(u) ke (u) _ (Y (0)eP(v) _
a'u)kb (u ) (v)kF (v

Therefore we obtain (6). From (6), we obtain

(1) kM (2)=Aa™ (2) kS (ue). Vi a4 (15)
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Therefore by (11) together with (15), we obtain

L)t ) — 49(0) - 080, (19

Since the left hand side (respectively, the right hand side) of (16) depends only on % (respective-
ly, v), there exists a nonzero number z € R\{0} satisfying

a_:::%%%)_: ¢87(v)— A8 (v) = 1.

Therefore we obtain (7). Hence we have proved Theorem 1.2. O

Proof of Theorem 1.3. We may suppose

g=go=1. an

By (7), we obtain
V() + ¢0(v) () B8 ()= 2@ () + A (v) V() k8 (). (18)

By (6), we obtain
o) ()= A" e 8 ). (19)

Therefore applying (19) into (18), we obtain
(14 ()R () a™ (u)=(1+ ¢ ()£ (u)) a® (). (20)
From Proposition 2.1, (17) and (20), we obtain
EV=E® GW=(®,

Therefore canonical parallel curved surfaces Sics,cs) and Siei.c*), respectively, have the same
semisurface structure. Hence we have proved Theorem 1.3. O

4. Examples of canonical parallel curved surfaces

Example. Let C» and C; be ellipses. Then we shall compute the Gaussian curvature of the
corresponding canonical parallel curved surface Sc..co. We set

&(u) :==acosu, ¢Au):=bsiny,

ds(v) :=c+ccosv, @(v):=dsinv,

where a, b, ¢, d>0. Then since
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$(1)=—asinu, ¢u)=>bcosu,

$3(v)=—csinv, ¢i(v)=dcosv,

the map ® is represented as follows :

acosu bcosu 0
(2, v):=| bsinu +W/+§fsirﬁ asinu |+dsinv| 0 ).
0 0 1

The following hold :

#1(u)=—acosu, ¢3(u)=—bsinx,

#3(v)=—ccosv, ¢i(v)=—dsinv.
Therefore if we set
a(u) ;== bcos’u+a’sin’u, B(v):=y/d%cos’v+ c’sin’v,

then we obtain

kb(u)_ﬁ(u)ﬁ(ug(;$7(u)¢i(u) ab

a(u)S ’

ko(v)= ¢’3(U)¢14’(12(—v)q33"(y)¢;(v) cd .

B(v)*

Therefore we obtain

_ ab__cd 1
K= deoso ot BT TF #(0)ab/ aluVIB)

_ abed*cosv
" {a(2)*+ abc(1+cosv)) B(v)*

Suppose that C, and C, are circles, that is, set a=b=R, c=d=r. Then the map ® is
represented as follows:

Rcosu cosu 0
®(u, v):=| Rsinu |+7(1+cosv)| sinu |+rsinv| 0 |;
0 0 1

the Gaussian curvature X is represented as follows :



80 Hitoshi Kishimura

K=rcosv 1.1 1 CosSY
R 7 (0+r(0+cosv)-1/R)r »(R+r(1+cosv))’

Example. Let C. be an ellipse, and C, a parabola. Then we shall compute the Gaussian
curvature of the corresponding canonical parallel curved surface Sicnco. We set

o) :=acosu, ¢u):=bsinu, ¢:(v):=v*/2, ¢(v):=v.
Then since
#(u)=—asinu, ¢Au)=bcosu, ¢:(v)=v, $(v)=1,

the map & is represented as follows:

acosu bcosu 0

®(u, v):= v

bsinu |+ = asinu |+v| 0 )
0 7 2/ b*cos?u + a’sintu

0 1

The following hold :
¢r(u)=—acosu, ¢(u)=—>bsinu, #5(v)=1, ¢i(v)=0.
Therefore if we set
a(n) :=ybcostu+ a’sintu, Bv):=V/1+77

then we obtain

Eo20) ¢'n(u)¢'z'(u)—q§'{(u)¢'z(u) ab

a(u) a(u)®’
ps(v)pe(v) —ga(w)p(v) . __ 1
kel0)= 203 B

Therefore we obtain

K= ab -1 1 ab
a(u) By (A+abv’2a(u))B(w) (a(u)’+ab?[2)B(v)*"

Example. Let Cs; be a parabola and C, an ellipse. Then we shall compute the Gaussian
curvature of the corresponding canonical parallel curved surface Sic..co- We set

dilu) =422, ¢{u):=u, ¢(v):=—c+ccosv, $(v):=dsinv.

Then since
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dlw)=u, &Au)=1, ¢(v)=—csinv, ¢v)=dcosv,

the map @ is represented as follows:

u%/2 1 0
_ _le—~ccosv) | _ .
®(u, v) u Nirat u |+dsinv (1) .

The following hold :
¢i(u)=1, ¢:(u)=0, ¢5(v)=—ccosv, ¢(v)=—dsinv.
Therefore if we set
a(u):=J/1+u?, B(v):=/d%os*v+ c’sin’o,
then we obtain

(o) = BE ) = S 1

o) ou

— $:(0)¢i(v)~ $5(v)pi(v) __ cd
ka(U)— g B(v)a = B((:v)a

)3’

Therefore we obtain

K=dcosv = ilss 1+ c(1—cosv)/a(u)) B(v)

cdcosy
(a(2)*+ c(1—cos ) B(v)*

Example. Let C, and C, be parabolas. Then we shall compute the Gaussian curvature of the
corresponding canonical parallel curved surface Sic,.c. We set

$i(2e) :=u?(2, $lu):=u, ¢s(v):=—02, Sv):=v.
Then since
$i(w)=u, ¢Au)=1, ¢:(v)=—v, ¢(v)=1,

the map @ is represented as follows:
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u*/2 \ 1 0
d(u, v)=| u _WILT?_ —u |+uv} 0]
0 0 1

The following hold:
$i(u)=1, ¢:(u)=0, &(v)=—1, ¢(v)=0.

Therefore if we set

a(u) :=y1+u%, B(v):=v1+4

then we obtain

Fs(22) ¢'n(u)¢'z'(u(3(; S;g’:'(u)qu(u) 1

a(u):l »

() i) —gs(v)pulv) 1
helo) 0

B(v)*

Therefore we obtain

K -1 1 1 1
oul By A+ 2a(uP)Bv)  (a(w)+0*/2)B(w)"
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