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Let p be a prime number and (X, Q, F) be a p-modular system such that X is algebraically
closed. Let G be a finite group and B be a (p-)block of G with defect group P. Also let By
be the Brauer correspondent of B, that is, B, is the block of N¢(P) associated with B. M. Broué
conjectured in [1] that there exists a perfect isometry between B and B, when P is abelian.
This is verified for several blocks as in [1], §5. When p=2, Broué’s conjecture on perfect
isometries is true for principal 2-blocks ([4]). Let & be a block of Co(P) associated with B.
When No(P,b)/Cc(P) is an elementary abelian 2-group or when |No(P,b)/Co(P)| is small,
Broué’s conjecture on perfect isometries is true for B ([9], [11], [10], [12], [13] and [14]). See
[5] also. In this article we show Broué's conjecture on perfect isometry is true when
[(Ne(P,b), P] is cyclic (see Corollary below). Note that the commutator subgroup [(Nc(P,b),
P] of N&(P,b) and P is a hyperfocal subgroup of a defect pointed group of a pointed group Gs
on OG. (For the definition of hyperfocal subgroups, see [8])

1. Perfect isometry

Let CFx(G) be the vector space of K-valued class functions of G and BCF«(G) be the vector
space of K-valued class functions on the set Gy of p’-elements of G. Then the set of irreducible
characters of G is a K-basis of CF«(G), and the set of Brauer irreducible characters of G is a
K-basis of BCFx(G). Similarly we define CFo(G) and BCFo(G). BCFx(G) can be regarded
as a subspace of CF«(G) canonically, and also BCFo(G) can be regarded as a subspace
of CFo(G). Further we consider CF«(G) endowed with the usual inner product. For yx, x’
€ CFx(G), we denote by (x, x')c or for short (x, ) the inner product of x and x"."

Let u be a p-element of G. Let d¥: CFx(G)-BCFx(Cc(u)) be a surjective K-linear map
defined by d&(x)(s)= x(us) for any x € CFx(G) and s € Co(u),. Let %: BCFx(Colw))~ CFx(G)
be a section of d¢ which satisfies that for ¢ € BCFx(Co(u)), e @)(g)=0 if the p-part of g is not
conjugate to « in G.

Let B be a block of G and let Irr(B) (resp. IBr(B)) denote the set of ordinary (resp.
Brauer) irreducible characters in B. Further let CF«(G, B)=XEZ‘. Kx and | «(G, B) denote

Irr(8)

the group of generalized characters in B. Set k(B)=|Irr(B)| and /(B)=|IBr(B)|. Also let



86 Atumi Watanabe

CFYG, B)=(Ker d5)NCFx(G, B) and L¥G, B)=(Ker dt)N L«(G, B). Moreover we set
CF o(G, B)=CFx(G, B)NCF o(G), BCFx(G, B)=BCF«(G)NCFx(G, B) and BCF o(G, B)
=BCF o(G)NCF o(G, B). For the further notations and terminologies, we follow [15] and [7).

For the rest of this ariticle suppose that B has an abelian defect group P and let (P, b) be
a maximal (G, B)-Brauer pair. Further we set

N=Ns(P,b), E=N/Cs(P), L=EXP
and
PI=CP(N) and Pz-_-[N, P].

By [6], Theorem 5.2.3, we have P=P,XP; and hence L=P,X(EX P;). For an N-stable
element A € CFx(P) and x € CF«(G, B), we denote by A + y the Broué-Puig’s G-central function
belonging to CF«(G, B) (see [2], and [9], 2.12 also). For a character A of P and for €
L«(G, B), A= ¢ is a generalized character regarding A as a character of P. Moreover if Aand
x are irreducible, then A *  is irreducible. We prove the following by using [91, §3.

Theorem With the above nolations, suppose that E is cyclic and that Ce(x)=1 for any x € P;
—{1). If (B)=|E|, then there exists a perfect isometry I:L (N, b")- Lx(G, B) such that
I(A+8)=2A+ I() for AcIn(P,) and L€ L «(N, b").

Let No(P,b)=Nc(P,b)/P and Ce(P)=Cs(P)/P, and denote by 5 the image of b € FCc(P).
Since FCs(P)4 is simple, the action of No(P,b) on FCc(P)b determines an F*-central exten-
sion 1~ F*—> No(P,b)> Nc(P,b)-1 such that g7'(Ce(P)) is isomorphic to F*X Cs(P). Here
for an F-algebra A, A* denotes the set of invertible elements of A. So No(P,b)/Cs(P) is an
F*.central extension of E, where Co(P) is embedded in No(P,b)by 2. Let E be the opposite
group and L=E X P, and we denote by O+L the twisted group algebra. Note that Os+L has
a unique block. Moreover if E is cyclic, then O+L is a group algebra QL. In[9], 3.2, Puig and
Usami defined a notion (G, B)-local system related to O*f,. Since the situation we treat here
is the case where E is cyclic, we state the definition of (G, B)-local system under the assumption
that E is cyclic.

Definition (Puig-Usami [9], 3.2) With the above notations, assume that E is cyclic. Let X be
an E-stable non-empty set of subgroups of P and assume that X contains any subgroup of P
containing an element of X. Let T be a map over X sending Q€ X to a bijective isometry

To: BCFr(CQ)Z=BCF(Ce(Q), 5°7).
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If T satisfies the following conditions, then T is called a (G, B)-local system over X.
(i) For any Q€ X, any 7€ BCFx(C(Q)) and any s € E, we have To(7)*=Tos(7°).
(it) For any @ € X and any 7€ [ «(C.(Q)), the sum

Y, etuoTa-<ur(dio7))

u
where u runs over a set of representatives U, for the orbits of C:(Q) in P, is a generalized

character of Ce(Q).
For any Q¢ X, let Ae: CFx(Cu(Q)) = CFx(Co(Q), 5°?) be defined by

Ad(n)= Z; eia(To <us(dia(7))).

([9], (3.3.1)) By [9], 3.3 and 3.4, A, gives a perfect isometry between the principal block of C.(Q)
and 5°? and satisfies the following

Ao(A* 7)=A+ Ao(7)

for any A€ CFx(P)*? and 7€ CFx(C.(Q)). Here CFx(P)? is the set of Cs(Q)-invariant
elements of CFx(P). Therefore if X contains the identity group, then A« is a perfect
isometry between the principal block of L and B ([9], (3.3.8), (3.4.1) and (3.3.5)). In fact, by [9],
1.6, this is an isotypy in the sense of [1].

2. Proof of Theorem

When E=1, the theorem is well known ([1], 5B). So we may assume E+1. In order to get
a perfect isometry [ it suffices to show that there exists a perfect isometry A between the
principal block of L and B such that A(A * )=A+ A(y) for A€ Irr(P,) and 7€ | «(L). Since E
is cyclic, therefore it suffices to show that there is a (G, B)-local system over the set of all
subgroups of P. Let X be an E-stable non-empty set of subgroups of P and assume that X
contains any subgroup of P containing an element of X and I be a (G, B)-local system over
X. (We use the notations in Difinition above) Such a set X exists by [9], 3.4.2. Suppose that
{1} ¢ X and let @ be a subgroup of P maximal such that Q¢ X. We will show that there is a
(G, B)-local system I extending T over the union X’ of X and the E-orbit of Q. Let

f=b0"9, CUQ)=C(Q)/Q and Cc(Q)=C(Q)/Q

and let f be the block of Cc(Q) corresponding to f. Let
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([9], (3.6.2)) By [9], Proposition 3.7 and Remark 3.8, A} induces a bijective isometry
BY: CFX (CUQ)=CFH(C(@Q), )

such that

@1 B (L% (CU@)= L%(CAQ), 7).

Let P=P/Q, Pi=P.Q/Q and P,=P:Q/Q. By [9], Proposition 3.11 and 4.3, in order to get I",
it suffices to show that A2igcwen can be extended to an Ne(Q)-stable bijective isometry

22) Ao: Lx(CUQN=L(CQ), /).
Case1 Assume |Ce(Q)|=1.

Then we see 7 is a nilpotent block of Ce(Q) with defect group P because f has inertial index

1. Also C.(Q)= P, and hence we have |Irr( C.(@))|=(Ire( P)|=|Irr(f)|. Moreover L %(C(Q))
= 7(¢ — £) where £ is the trivial character of P and L %(Ce(Q), /)= Z‘. Z(L’ ¢) by

telrr( P) t.l’e

[3]. Since (R%¢—t"), ANt —¢))=2 for ¢, ¢’ € Im(P) and A%¢—§')N1)=0 where {+¢’, Ay can
be extended to an N=(Q)-stable isometry in (2.2) by the same argument as in [9], 44. Note that
if |Irr(C.(Q))|=2, then any character in Irr(C(Q)) and in Irr(f) is Ne(Q)-invariant because
2/IN(Q): Ce(Q)l. Hence by the assumption we may assume C:(Q)=E, that is, QS P.

Case 2 Assume Ce(Q)=E.

Then Ne(Q)=C:(Q). Hence it suffices to show that A can be extended to an isometry in (2.2).
Set e=|E| and #=(|P;]—1)/e. By the assumption u is an integer and there are exactly u
E-conjugacy classes of non-trivial linear characters of D, because P is isomrophic to 2. Let
W, Vs, Vu be a set of representatives for the E-conjugacy classes of non-trivial linear
characters of P;. Put p:=1% (i=1, 2,, u) where we set L= C.(Q)=L/Q where v; is regarded
as a character of P. On the other hand let &, &,, & be the linear characters of E. Since
C.(Q)= P, X(EP;), we have

I CUQ)={Ax: | A Ir(P), 1<i<u} U (AL | A€ Im(P), 1</< e}

where E is embedded in Ci(Q). Note Aui=A* g: and A=A+ &. Moreover &y, i=1, 2,
e, are the Brauer irreducible characters of L. Let ne LXL) and set »= Zaae/ipf+ be,/lé’,

(@i, brs € Z). Then we have 2015+2bb=0 for any j and hence we have 7= Ea;./l(y. Z‘. &)
+2(b,u+2au)(/1 15.)6. Thus the following set is a Z-basis of LY L). .
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{/I(Z Ge—w) | A€ Im(P), 1<i<u} U {(15,-A)¢ | A€ I(PO\{17.), 1<j<e).

k=1

Put p=k2:}| &=Q185 M={u1<;j<u}and A=A 3cuon. From (2.1), any irreducible character
in Irr(f) appears in either A%A(p— 41.)) for some A€ Ire( Py) and i (<i<u) or A%(15,— A)&)) for
some A’ € Irr( P,) and some j (1<j<e). On the other hand by [16], Theorem 1 we have /(f)=
1(6°")=1(B) because Cc(Q)2Cs(P;). So by the assumption /(B)=e, I(f)=e. Therefore
/(f)=e. This and (2.1) imply A(F)=|Ir(D)|=| Pi|(e + x).

Case 2.1 Assume P=1.

At first suppose that #=1. Then |Irr(f)|=e+1 and any irreducible character y in  appears
in A°(p— ). Since (A%p— ), Ao—m))=e+1, x appears in A%o— 1) with multiplicity *1.
Let Irr(F)={x0, ;,~, xe}. We have 50(0—#1)=§€in, e:==*1(i=0,1,~, e). So let A be the
isometry from [ «(L) onto L x(Ce(Q), 7) defined by A(&)=cew: (i=1, 2,~, €) and A(m)=
—&oxo. Then A is a required isometry.

Next suppose that #=2. Since (A% — ), At —))=2 and (A% — 122))(1)=0, there
exists Xu,, X € Irr(f) and a sign e such that A% — )= e(xu, — Xus) = — €(2us— 2). Now since
k(f)=e+2, let 1, x2,, xe be the irreducible characters in 7 other than x., and Xue Since
A%o—12)=B8o— 1)+ A% — 112), each x; appears in A%p—z). As the inner product of
Alp—pm) is e+1, we have

e

23) 5°(.0—m)=2 exitey, ei=%1(i=1,2,~, e), €==%1,

where x € {x, xu.). From (2.3) we have

e

24) A%p— )= Z exit & x4 e(xu — xus)-

Considering the inner product of A%(p— ) and changing ¥, and ¥,,, and & and — ¢ if necessary,
we have €y=—¢&xu,. So (2.3) and (2.4) imply

©

e
(2.5) Al(p—m)= 2 eixi— xwm and Ap— )= ) eiti— xu.

i=1 i=

f

From (2.5), it is not difficult to extend A° to an isometry from [ «(L) onto L «(Cs(Q), F).
Finally suppose that %>3. Since (A%ui— ), Apter— 7)) = 84— Suyr— 830+ 83 and A%
—w)(1)=0(1<4,j, 7, j'<u), we can see At — 1) =e(tw— ) (1<3, j<u), e= 1 where xum,
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Fus, 5 Xuu € Irt(F) are pairwise orthogonal. Let x, x2,, X be the irreducible characters in f
other than Yu., Xus, ¥ Let € M\{u}. Since

Ap— p)=A"o— )+ A% — ) =80 — 1) + (e, — Xu),

%: appears in A% p— ) with multiplicity £1:
e
5"(p—ux)=2 it ey, ei=*1and ¢==%1,

where % € {xu,", Zw}. On the other hand since (A% — ), A%(a— p))=—1 for p€ M\{za} and
u¢—122, we have € x=—€xs. So we have B°(p—pl)=gc~:sx;—ex,.. and hence A%p—p)=
iZ‘.ﬂe;x;—exy (€ M). From this A° can be extended to an isometry A from [ «(L) onto
Lx(Ce(Q), 7). In fact A is defined as follows A(&)=eix: ( 1<i<e) and A(p)=cxa (1€ M).

Case 2.2 Assume P +1.

At first we note that AYA * 7)=A1+ AX7) for A€ Irr( P,) and 7 € L% C.(Q)) by the definition of
A% Let A€ Im( P)\(17,} be fixed. We have (A%(17,—A)&), A(17,—A)§))=28y and A%(15,
—A&)(1)=0 for all 7, j (1<, j<e). Hence we can see

(2-6) Ao((lr’l_A)Cl')=el'(xf—xl,l'); e==%1 (lsiS e)

where z: € Irr(f) (1<i<e) and 1€ Irr(f) (1<j<e) are pairwise orthogonal. Suppose that
Irt( PO\{15,, A} is not empty and let A’ € Irr( P)\{15,, A} be fixed. Since we have (A%(15,—A) &),
A¥(15,—A)8))=08, (1<1, j<e), by changing x; and x..: and &; and — &; if necessary, we can see

@7 A5 - =elxi—xrs) (11, j<e)

where xv.: € In(7) (1<i<e). Moreover (2.6) and (2.7) imply that x: € Irr(7) (1<i<e) and xu.
eIr(f) (1<i<e) and xv. € Irr(f) (1<i<e) are pairwise orthogonal.

If | Pi|=4, then x: must be a common irreducible constituent of A°((1—2)¢:) (A€ Ir( P\
{17.}) since (A%(15,—A) &), A5, —A)E))=64 (1<i, j<e) when A+A". Further we have

2.8) A5, — &) =elti—x00), =1 (1<i<e, A Ir( P)\{17.})

where x: (1<i<e) € Irr(f) and x.; € Ir(F) (1<j<e, A€ Ir(P))\{17,}) are pairwise orthogonal.

Now let A€ Ir{ P)\{17.} be fixed again. By the definition of A% we have (A°(A~'(17,
—AEN=A"+ (A1 5,— &) =edA™" * x;—A" » x2:) and we have also A"(A~'(15,—A)&))=
—A%(15,—ANE&)=—elxi—xs-r.s). Therefore A™' * :,=2: and hence we have y1,,=A * x: for
any i (1<i<e).
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Let z€ M. Since (A%p—y), A%(15,—A)&))=1 (1<i<e, A€ Ir( P)\{17,}), at least one of
the characters A * x: (A€ Irr( Py)) appears in A% p—z) for each i. On the other hand we have
(A%p—p), Ap—p))=e+1. Therefore for each i, exactly one of the characters A+ y: (A€
Irr( P1)) appears in A% p— ) with multiplicity 1. In fact for each i, x: appears in A%p— )
with multiplicity &: because (A%(p— ), A(17,—A)&))=1 for any A€ Irr(P)\{15.). Here we
replace x: by xi: (A#15,) if necessary when |Pi|=2. Noticing A%A(p—p))=A + (A%(p— 1)),
hence the sum of numbers of irreducible characters which appear in A°((17,—A)&) (1<i<e, A
€ Ir( P\{15.}) and A%A(p— ) (z € M, A€ Irr( Py)) is at most | Pi/(e+#). Recalling |Irr(F)|=
| Pl(e+ ), these imply

e
(2.9) Ao—u)= 2 EiXi—EnXn, En=F1,
i=1

B(i(o—p) =), ed+ x)—eud* ),

where x. € Ir(f). Moreover A+ x: (1<i<e, A€ Irr(Py)), A * xu (2 € M, A € Irr( P,)) are pairwise
orthogonal, and these are the ordinary irreducible characters in f. (As A%y—u)=A%p—¢')
—A%o— )= €uxu— wxw, we have ex=e,.) Thus we can define a bijective isometry A from
L«(L) onto L x(Cc(Q), 7) such that A(AL)=cA* ;) (1<i<e, A€ Im(P))) and A(Ap)=¢,A * %
»(2€ M, 2€Irr(Py)). Then A is a required extension of A° from (2.8) and (2.9). This com-
pletes the proof.

By the above theorem and [16}, Corollary 2, we have the following.

Corollary Let B be a block of G with abelian defect group P and root b in Co(P). If [Ne(P,b),
P] is cyclic, then B and b"*"® are isotypic.
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