On perfect isometries for blocks with abelian defect groups and cyclic hyperfocal subgroups

Atumi Watanabe

(Received January 31, 2005)

Let p be a prime number and (K, Q, F) be a p-modular system such that K is algebraically closed. Let G be a finite group and B be a (p-block of G with defect group P. Also let B_0 be the Brauer correspondent of B, that is, B_0 is the block of $N_c(P)$ associated with B. M. Broué conjectured in [1] that there exists a perfect isometry between B and B_0 when P is abelian. This is verified for several blocks as in [1], §5. When p=2, Broué's conjecture on perfect isometries is true for principal 2-blocks ([4]). Let p be a block of p associated with p. When p is an elementary abelian 2-group or when p is small, Broué's conjecture on perfect isometries is true for p ([9], [11], [10], [12], [13] and [14]). See [5] also. In this article we show Broué's conjecture on perfect isometry is true when p is cyclic (see Corollary below). Note that the commutator subgroup p is a hyperfocal subgroup of a defect pointed group of a pointed group p of p of p is a hyperfocal subgroup of a defect pointed group of a pointed group p on p is a hyperfocal subgroup, see [8])

1. Perfect isometry

Let $CF_K(G)$ be the vector space of K-valued class functions of G and $BCF_K(G)$ be the vector space of K-valued class functions on the set $G_{P'}$ of p'-elements of G. Then the set of irreducible characters of G is a K-basis of $CF_K(G)$, and the set of Brauer irreducible characters of G is a K-basis of $BCF_K(G)$. Similarly we define $CF_O(G)$ and $BCF_O(G)$. $BCF_K(G)$ can be regarded as a subspace of $CF_K(G)$ canonically, and also $BCF_O(G)$ can be regarded as a subspace of $CF_K(G)$. Further we consider $CF_K(G)$ endowed with the usual inner product. For χ , $\chi' \in CF_K(G)$, we denote by $(\chi, \chi')_G$ or for short (χ, χ') the inner product of χ and χ' .

Let u be a p-element of G. Let $d_c^u : CF_K(G) \to BCF_K(C_c(u))$ be a surjective K-linear map defined by $d_c^u(\chi)(s) = \chi(us)$ for any $\chi \in CF_K(G)$ and $s \in C_c(u)_p$. Let $e_c^u : BCF_K(C_c(u)) \to CF_K(G)$ be a section of d_c^u which satisfies that for $\varphi \in BCF_K(C_c(u))$, $e_c^u(\varphi)(g) = 0$ if the p-part of g is not conjugate to u in G.

Let B be a block of G and let Irr(B) (resp. IBr(B)) denote the set of ordinary (resp. Brauer) irreducible characters in B. Further let $CF_K(G, B) = \sum_{\chi \in Irr(B)} K\chi$ and $L_K(G, B)$ denote the group of generalized characters in B. Set k(B) = |Irr(B)| and l(B) = |IBr(B)|. Also let

 $CF_{\kappa}^{0}(G, B) = (\text{Ker } d_{c}^{1}) \cap CF_{\kappa}(G, B) \text{ and } L_{\kappa}^{0}(G, B) = (\text{Ker } d_{c}^{1}) \cap L_{\kappa}(G, B). \text{ Moreover we set } CF_{0}(G, B) = CF_{\kappa}(G, B) \cap CF_{0}(G, B) = BCF_{\kappa}(G) \cap CF_{\kappa}(G, B) \text{ and } BCF_{0}(G, B) = BCF_{0}(G) \cap CF_{0}(G, B). \text{ For the further notations and terminologies, we follow [15] and [7].}$

For the rest of this ariticle suppose that B has an abelian defect group P and let (P, b) be a maximal (G, B)-Brauer pair. Further we set

$$N=N_c(P,b), E=N/C_c(P), L=E \ltimes P$$

and

$$P_1 = C_P(N)$$
 and $P_2 = [N, P]$.

By [6], Theorem 5.2.3, we have $P=P_1\times P_2$ and hence $L=P_1\times (E\times P_2)$. For an N-stable element $\lambda\in\mathcal{CF}_K(P)$ and $x\in\mathcal{CF}_K(G,B)$, we denote by $\lambda\star\chi$ the Broué-Puig's G-central function belonging to $\mathcal{CF}_K(G,B)$ (see [2], and [9], 2.12 also). For a character λ of P_1 and for $\zeta\in L_K(G,B)$, $\lambda\star\zeta$ is a generalized character regarding λ as a character of P. Moreover if λ and χ are irreducible, then $\lambda\star\chi$ is irreducible. We prove the following by using [9], §3.

Theorem With the above notations, suppose that E is cyclic and that $C_E(x)=1$ for any $x \in P_2$ -{1}. If l(B)=|E|, then there exists a perfect isometry $I: L_K(N, b^N) \to L_K(G, B)$ such that $I(\lambda * \zeta) = \lambda * I(\zeta)$ for $\lambda \in Irr(P_1)$ and $\zeta \in L_K(N, b^N)$.

Let $\overline{N}_c(P,b) = N_c(P,b)/P$ and $\overline{C}_c(P) = C_c(P)/P$, and denote by \overline{b} the image of $b \in F\overline{C}_c(P)$. Since $F\overline{C}_c(P)\overline{b}$ is simple, the action of $\overline{N}_c(P,b)$ on $F\overline{C}_c(P)\overline{b}$ determines an F^\times -central extension $1 \to F^\times \to \widehat{N}_c(P,b) \xrightarrow{g} \overline{N}_c(P,b) \to 1$ such that $g^{-1}(\overline{C}_c(P))$ is isomorphic to $F^\times \times \overline{C}_c(P)$. Here for an F-algebra A, A^\times denotes the set of invertible elements of A. So $\widehat{N}_c(P,b)/\overline{C}_c(P)$ is an F^\times -central extension of E, where $\overline{C}_c(P)$ is embedded in $\widehat{N}_c(P,b)$ by g. Let \widehat{E} be the opposite group and $\widehat{L} = \widehat{E} \times P$, and we denote by $O_*\widehat{L}$ the twisted group algebra. Note that $O_*\widehat{L}$ has a unique block. Moreover if E is cyclic, then $O_*\widehat{L}$ is a group algebra O_*L . In [9], 3.2, Puig and Usami defined a notion (G, B)-local system related to $O_*\widehat{L}$. Since the situation we treat here is the case where E is cyclic, we state the definition of (G, B)-local system under the assumption that E is cyclic.

Definition (Puig-Usami [9], 3.2) With the above notations, assume that E is *cyclic*. Let X be an E-stable non-empty set of subgroups of P and assume that X contains any subgroup of P containing an element of X. Let Γ be a map over X sending $Q \in X$ to a bijective isometry

$$\Gamma_{Q} \colon \mathcal{B}CF_{\kappa}(C_{L}(Q)) \cong \mathcal{B}CF_{\kappa}(C_{G}(Q), b^{C_{G}(Q)}).$$

If Γ satisfies the following conditions, then Γ is called a (G, B)-local system over X.

- (i) For any $Q \in X$, any $\eta \in \mathcal{BCF}_K(C_L(Q))$ and any $s \in E$, we have $\Gamma_Q(\eta)^s = \Gamma_{Q^s}(\eta^s)$.
- (ii) For any $Q \in X$ and any $\eta \in L_K(C_L(Q))$, the sum

$$\sum_{u} e^{u}_{C_{c}(Q)}(\Gamma_{Q\cdot < u>}(d^{u}_{C_{L}(Q)}(\eta)))$$

where u runs over a set of representatives U_Q for the orbits of $C_E(Q)$ in P, is a generalized character of $C_G(Q)$.

For any $Q \in X$, let $\Delta_Q : CF_K(C_L(Q)) \to CF_K(C_G(Q), b^{C_G(Q)})$ be defined by

$$\Delta_{\mathbf{Q}}(\eta) = \sum_{u \in \mathcal{U}_{\mathbf{Q}}} e^{u}_{G(\mathbf{Q})}(\Gamma_{\mathbf{Q} \cdot < u >}(d^{u}_{G_{\mathbf{L}}(\mathbf{Q})}(\eta))).$$

([9], (3.3.1)) By [9], 3.3 and 3.4, Δ_Q gives a perfect isometry between the principal block of $C_L(Q)$ and $b^{c_C(Q)}$ and satisfies the following

$$\Delta_{\varrho}(\lambda * \eta) = \lambda * \Delta_{\varrho}(\eta)$$

for any $\lambda \in CF_K(P)^{c_E(Q)}$ and $\eta \in CF_K(C_L(Q))$. Here $CF_K(P)^{c_E(Q)}$ is the set of $C_E(Q)$ -invariant elements of $CF_K(P)$. Therefore if X contains the identity group, then $\Delta_{<1>}$ is a perfect isometry between the principal block of L and B ([9], (3.3.8), (3.4.1) and (3.3.5)). In fact, by [9], 1.6, this is an isotypy in the sense of [1].

2. Proof of Theorem

When E=1, the theorem is well known ([1], 5B). So we may assume $E\neq 1$. In order to get a perfect isometry I it suffices to show that there exists a perfect isometry Δ between the principal block of L and B such that $\Delta(\lambda * \eta) = \lambda * \Delta(\eta)$ for $\lambda \in \operatorname{Irr}(P_1)$ and $\eta \in L_K(L)$. Since E is cyclic, therefore it suffices to show that there is a (G, B)-local system over the set of all subgroups of P. Let X be an E-stable non-empty set of subgroups of P and assume that X contains any subgroup of P containing an element of X and Γ be a (G, B)-local system over X. (We use the notations in Difinition above) Such a set X exists by [9], 3.4.2. Suppose that $\{1\} \notin X$ and let Q be a subgroup of P maximal such that $Q \notin X$. We will show that there is a (G, B)-local system Γ' extending Γ over the union X' of X and the E-orbit of Q. Let

$$f = b^{C_c(Q)}$$
, $\overline{C}_L(Q) = C_L(Q)/Q$ and $\overline{C}_c(Q) = C_c(Q)/Q$

and let \overline{f} be the block of $\overline{C}_c(Q)$ corresponding to f. Let

$$\Delta_{Q}^{0} = \sum_{u \in U_{Q} - Q} e_{C_{C}(Q)}^{u} \circ \Gamma_{Q \cdot < u >} \circ d_{C_{L}(Q)}^{u}.$$

([9], (3.6.2)) By [9], Proposition 3.7 and Remark 3.8, Δ_{ϕ}^{0} induces a bijective isometry

$$\bar{\Delta}_{k}^{0}: CF_{k}^{0}(\bar{C}_{L}(Q))\cong CF_{k}^{0}(\bar{C}_{G}(Q), \bar{f})$$

such that

$$\bar{\Delta}_{Q}^{0}(L_{K}^{0}(\overline{C}_{L}(Q)) = L_{K}^{0}(\overline{C}_{G}(Q), \overline{f}).$$

Let $\overline{P}=P/Q$, $\overline{P}_1=P_1Q/Q$ and $\overline{P}_2=P_2Q/Q$. By [9], Proposition 3.11 and 4.3, in order to get Γ' , it suffices to show that $\overline{\Delta}_{k}^{0}(\overline{R}_{k}(Q))$ can be extended to an $N_{\mathcal{E}}(Q)$ -stable bijective isometry

$$\bar{\Delta}_{Q}: \ \, \underline{L}_{\kappa}(\bar{C}_{L}(Q)) \cong \underline{L}_{\kappa}(\bar{C}_{c}(Q), \bar{f}).$$

Case 1 Assume $|C_{\mathcal{E}}(Q)|=1$.

Then we see \bar{f} is a nilpotent block of $\bar{C}_c(Q)$ with defect group \bar{P} because \bar{f} has inertial index 1. Also $\bar{C}_L(Q) = \bar{P}$, and hence we have $|\operatorname{Irr}(\bar{C}_L(Q))| = |\operatorname{Irr}(\bar{P})| = |\operatorname{Irr}(\bar{f})|$. Moreover $L_k^0(\bar{C}_L(Q)) = \sum_{\tau \in \operatorname{Irr}(\bar{F})} Z(\zeta - \xi)$ where ξ is the trivial character of \bar{P} and $L_k^0(\bar{C}_c(Q), \bar{f}) = \sum_{\tau, \tau' \in \operatorname{Irr}(\bar{D})} Z(\zeta - \zeta')$ by [3]. Since $(\bar{\Delta}^0(\zeta - \zeta'), \bar{\Delta}^0(\zeta - \zeta')) = 2$ for $\zeta, \zeta' \in \operatorname{Irr}(\bar{P})$ and $\bar{\Delta}^0(\zeta - \zeta')(1) = 0$ where $\zeta \neq \zeta', \bar{\Delta}^0_0$ can be extended to an $N_E(Q)$ -stable isometry in (2.2) by the same argument as in [9], 4.4. Note that if $|\operatorname{Irr}(\bar{C}_L(Q))| = 2$, then any character in $\operatorname{Irr}(\bar{C}_L(Q))$ and in $\operatorname{Irr}(\bar{f})$ is $N_E(Q)$ -invariant because $2||N_E(Q)| : C_E(Q)|$. Hence by the assumption we may assume $C_E(Q) = E$, that is, $Q \subseteq P_1$.

Case 2 Assume $C_E(Q) = E$.

Then $N_E(Q) = C_E(Q)$. Hence it suffices to show that $\bar{\Delta}_0^0$ can be extended to an isometry in (2.2). Set e = |E| and $u = (|\bar{P}_2| - 1)/e$. By the assumption u is an integer and there are exactly u E-conjugacy classes of non-trivial linear characters of \bar{P}_2 because \bar{P}_2 is isomrophic to P_2 . Let $\nu_1, \nu_2, \dots, \nu_u$ be a set of representatives for the E-conjugacy classes of non-trivial linear characters of \bar{P}_2 . Put $\mu_i = \nu_i^F$ $(i=1, 2, \dots, u)$ where we set $\bar{L} = \bar{C}_L(Q) = L/Q$ where ν_i is regarded as a character of \bar{P}_2 . On the other hand let $\zeta_1, \zeta_2, \dots, \zeta_d$ be the linear characters of E. Since $\bar{C}_L(Q) = \bar{P}_1 \times (EP_2)$, we have

$$\operatorname{Irr}(\overline{C}_{L}(Q)) = \{\lambda \mu_{i} \mid \lambda \in \operatorname{Irr}(\overline{P}_{i}), 1 \leq i \leq u\} \cup \{\lambda \zeta_{i} \mid \lambda \in \operatorname{Irr}(\overline{P}_{i}), 1 \leq j \leq e\}$$

where E is embedded in $\overline{C}_L(Q)$. Note $\lambda \mu_i = \lambda * \mu_i$ and $\lambda \zeta_j = \lambda * \zeta_j$. Moreover $\zeta_i |_{C_{P'}}$, $i = 1, 2, \cdots$, e, are the Brauer irreducible characters of \overline{L} . Let $\eta \in L_{k}^{0}(\overline{L})$ and set $\eta = \sum_{\lambda,i} a_{\lambda i} \lambda \mu_i + \sum_{\lambda,j} b_{\lambda j} \lambda \zeta_j$ ($a_{\lambda i}, b_{\lambda,j} \in \mathbb{Z}$). Then we have $\sum_{\lambda,i} a_{\lambda i} + \sum_{\lambda} b_{\lambda j} = 0$ for any j and hence we have $\eta = \sum_{\lambda,i} a_{\lambda i} \lambda (\mu_i - \sum_{k=1}^{e} \zeta_k) + \sum_{\lambda,j} (b_{\lambda j} + \sum_{i} a_{\lambda i})(\lambda - 1_{\overline{P}_1}) \zeta_j$. Thus the following set is a \mathbb{Z} -basis of $L_{k}^{0}(\overline{L})$.

$$\{\lambda(\sum_{k=1}^{e}\zeta_{k}-\mu_{i})\mid\lambda\in\operatorname{Irr}(\overline{P}_{1}),\ 1\leq i\leq u\}\ \cup\ \{(1_{\overline{P}_{1}}-\lambda)\zeta_{j}\mid\lambda\in\operatorname{Irr}(\overline{P}_{1})\setminus\{1_{\overline{P}_{1}}\},\ 1\leq j\leq e\}.$$

Put $\rho = \sum_{k=1}^{e} \zeta_k = (1_{\bar{P}})^{\bar{L}}$, $M = \{\mu_j | 1 \le j \le u\}$ and $\bar{\Delta}^0 = \bar{\Delta}_{Q|L_{\bar{K}}(\bar{C}_L(Q))}^0$. From (2.1), any irreducible character in $\operatorname{Irr}(\bar{f})$ appears in either $\bar{\Delta}^0(\lambda(\rho-\mu_i))$ for some $\lambda \in \operatorname{Irr}(\bar{P}_1)$ and $i \leq i \leq u$ or $\bar{\Delta}^0((1_{\bar{P}_1}-\lambda')\zeta_i))$ for some $\lambda' \in \operatorname{Irr}(\overline{P_1})$ and some j $(1 \le j \le e)$. On the other hand by [16], Theorem 1 we have l(f) = $l(b^{c_c(P_1)}) = l(B)$ because $C_c(Q) \supseteq C_c(P_1)$. So by the assumption l(B) = e, l(f) = e. Therefore $l(\bar{f})=e$. This and (2.1) imply $k(\bar{f})=|\operatorname{Irr}(\bar{L})|=|\bar{P}_1|(e+u)$.

Case 2.1 Assume $\overline{P}_1 = 1$.

At first suppose that u=1. Then $|Irr(\bar{f})|=e+1$ and any irreducible character χ in \bar{f} appears in $\bar{\Delta}^0(\rho-\mu_1)$. Since $(\bar{\Delta}^0(\rho-\mu_1), \bar{\Delta}^0(\rho-\mu_1))=e+1$, χ appears in $\bar{\Delta}^0(\rho-\mu_1)$ with multiplicity ± 1 . Let $\operatorname{Irr}(\overline{f}) = \{\chi_0, \chi_1, \dots, \chi_e\}$. We have $\overline{\Delta}^0(\rho - \mu_1) = \sum_{i=0}^e \varepsilon_i \chi_i, \ \varepsilon_i = \pm 1 \ (i=0, 1, \dots, e)$. So let $\overline{\Delta}$ be the isometry from $L_{\kappa}(\bar{L})$ onto $L_{\kappa}(\bar{C}_{c}(Q), \bar{f})$ defined by $\bar{\Delta}(\zeta_{i}) = \varepsilon_{i}\chi_{i}$ ($i=1, 2, \dots, e$) and $\bar{\Delta}(\mu_{1}) = \varepsilon_{i}\chi_{i}$ $-\varepsilon_0\chi_0$. Then $\bar{\Delta}$ is a required isometry

Next suppose that u=2. Since $(\bar{\Delta}^0(\mu_1-\mu_2), \bar{\Delta}^0(\mu_1-\mu_2))=2$ and $(\bar{\Delta}^0(\mu_1-\mu_2))(1)=0$, there exists χ_{μ_1} , $\chi_{\mu_2} \in \operatorname{Irr}(\bar{f})$ and a sign ε such that $\bar{\Delta}^0(\mu_1 - \mu_2) = \varepsilon(\chi_{\mu_1} - \chi_{\mu_2}) = -\varepsilon(\chi_{\mu_2} - \chi_{\mu_1})$. Now since $k(\bar{f})=e+2$, let $\chi_1, \chi_2, \dots, \chi_e$ be the irreducible characters in \bar{f} other than χ_{μ_1} and χ_{μ_2} . Since $\bar{\Delta}^0(\rho-\mu_2)=\bar{\Delta}^0(\rho-\mu_1)+\bar{\Delta}^0(\mu_1-\mu_2)$, each χ_i appears in $\bar{\Delta}^0(\rho-\mu_1)$. As the inner product of $\bar{\Delta}(\rho-\mu_1)$ is e+1, we have

(2.3)
$$\bar{\Delta}^{0}(\rho-\mu_{1})=\sum_{i=1}^{e}\varepsilon_{i}\chi_{i}+\varepsilon'\chi,\ \varepsilon_{i}=\pm1\ (i=1,\ 2,\cdots,\ e),\ \varepsilon'=\pm1,$$

where $\chi \in \{\chi_{\mu_1}, \chi_{\mu_2}\}$. From (2.3) we have

(2.4)
$$\bar{\Delta}^{0}(\rho-\mu_{2}) = \sum_{i=1}^{e} \varepsilon_{i}\chi_{i} + \varepsilon'\chi + \varepsilon(\chi_{\mu_{1}} - \chi_{\mu_{2}}).$$

Considering the inner product of $\bar{\Delta}^0(\rho-\mu_2)$ and changing χ_{μ_1} and χ_{μ_2} , and ε and $-\varepsilon$ if necessary, we have $\varepsilon' \chi = -\varepsilon \chi_{\mu_1}$. So (2.3) and (2.4) imply

(2.5)
$$\bar{\Delta}_0(\rho - \mu_1) = \sum_{i=1}^e \varepsilon_i \chi_i - \varepsilon \chi_{\mu_1} \text{ and } \bar{\Delta}^0(\rho - \mu_2) = \sum_{i=1}^e \varepsilon_i \chi_i - \varepsilon \chi_{\mu_2}.$$

From (2.5), it is not difficult to extend $\bar{\Delta}^0$ to an isometry from $L_{\kappa}(\bar{L})$ onto $L_{\kappa}(\bar{C}_{c}(Q), \bar{f})$. Finally suppose that $u \ge 3$. Since $(\bar{\Delta}^0(\mu_i - \mu_j), \bar{\Delta}^0(\mu_{i'} - \mu_{j'})) = \delta_{ii'} - \delta_{ij'} - \delta_{ji'} + \delta_{jj'}$ and $\bar{\Delta}^0(\mu_i - \mu_j)$ $-\mu_j$)(1)=0 (1 $\leq i, j, i', j' \leq u$), we can see $\bar{\Delta}^0(\mu_i - \mu_j) = \varepsilon(\chi_{\mu_i} - \chi_{\mu_j})$ (1 $\leq i, j \leq u$), $\varepsilon = \pm 1$ where χ_{μ_i} , $\chi_{\mu_2}, \dots, \chi_{\mu_u} \in \operatorname{Irr}(\overline{f})$ are pairwise orthogonal. Let $\chi_1, \chi_2, \dots, \chi_e$ be the irreducible characters in \overline{f} other than $\chi_{\mu_1}, \chi_{\mu_2}, \dots, \chi_{\mu_u}$. Let $\mu \in M \setminus \{\mu_1\}$. Since

$$\bar{\Delta}^{0}(\rho-\mu)=\bar{\Delta}^{0}(\rho-\mu_{1})+\bar{\Delta}^{0}(\mu_{1}-\mu)=\bar{\Delta}^{0}(\rho-\mu_{1})+\varepsilon(\chi_{\mu_{1}}-\chi_{\mu}),$$

 χ_i appears in $\bar{\Delta}^0(\rho-\mu_1)$ with multiplicity ± 1 :

$$\bar{\Delta}^{0}(\rho-\mu_{1}) = \sum_{i=1}^{e} \varepsilon_{i} \chi_{i} + \varepsilon' \chi, \ \varepsilon_{i} = \pm 1 \text{ and } \varepsilon' = \pm 1,$$

where $\chi \in \{\chi_{\mu_1}, \dots, \chi_{\mu_u}\}$. On the other hand since $(\bar{\Delta}^0 \rho - \mu_1), \bar{\Delta}^0(\mu_1 - \mu)) = -1$ for $\mu \in M \setminus \{\mu_1\}$ and $u-1 \geq 2$, we have $\varepsilon' \chi = -\varepsilon \chi_{\mu_1}$. So we have $\bar{\Delta}^0(\rho - \mu_1) = \sum_{i=1}^e \varepsilon_i \chi_i - \varepsilon \chi_{\mu_1}$ and hence $\bar{\Delta}^0(\rho - \mu) = \sum_{i=1}^e \varepsilon_i \chi_i - \varepsilon \chi_{\mu_1}$ and hence $\bar{\Delta}^0(\rho - \mu) = \sum_{i=1}^e \varepsilon_i \chi_i - \varepsilon \chi_{\mu_1}$ ($\mu \in M$). From this $\bar{\Delta}^0$ can be extended to an isometry $\bar{\Delta}$ from $L_K(\bar{L})$ onto $L_K(\bar{C}_G(Q), \bar{f})$. In fact $\bar{\Delta}$ is defined as follows $\bar{\Delta}(\zeta_i) = \varepsilon_i \chi_i$ ($1 \leq i \leq e$) and $\bar{\Delta}(\mu) = \varepsilon \chi_{\mu}$ ($\mu \in M$).

Case 2.2 Assume $\overline{P}_1 \neq 1$.

At first we note that $\bar{\Delta}_{0}^{0}(\lambda * \eta) = \lambda * \bar{\Delta}_{0}^{0}(\eta)$ for $\lambda \in \operatorname{Irr}(\bar{P}_{1})$ and $\eta \in L^{0}(\bar{C}_{L}(Q))$ by the definition of $\bar{\Delta}_{0}^{0}$. Let $\lambda \in \operatorname{Irr}(\bar{P}_{1}) \setminus \{1_{\bar{P}_{1}}\}$ be fixed. We have $(\bar{\Delta}_{0}^{0}((1_{\bar{P}_{1}} - \lambda)\zeta_{i}), \bar{\Delta}_{0}^{0}((1_{\bar{P}_{1}} - \lambda)\zeta_{i})) = 2\delta_{ij}$ and $\bar{\Delta}_{0}^{0}((1_{\bar{P}_{1}} - \lambda)\zeta_{i})(1) = 0$ for all $i, j, j \in P$. Hence we can see

(2.6)
$$\bar{\Delta}^{0}((1_{\bar{P}_{1}}-\lambda)\zeta_{i})=\varepsilon_{i}(\chi_{i}-\chi_{\lambda,i}),\ \varepsilon_{i}=\pm 1\ (1\leq i\leq e)$$

where $\chi_i \in \operatorname{Irr}(\bar{f})$ $(1 \le i \le e)$ and $\chi_{\lambda,j} \in \operatorname{Irr}(\bar{f})$ $(1 \le j \le e)$ are pairwise orthogonal. Suppose that $\operatorname{Irr}(\bar{P}_1) \setminus \{1_{\bar{P}_1}, \lambda\}$ is not empty and let $\lambda' \in \operatorname{Irr}(\bar{P}_1) \setminus \{1_{\bar{P}_1}, \lambda\}$ be fixed. Since we have $(\bar{\Delta}^0((1_{\bar{P}_1} - \lambda)\zeta_i), \bar{\Delta}^0((1_{\bar{P}_1} - \lambda')\zeta_i)) = \delta_{ij}$ $(1 \le i, j \le e)$, by changing χ_i and $\chi_{\lambda,i}$ and ε_i and $-\varepsilon_i$ if necessary, we can see

(2.7)
$$\bar{\Delta}^{0}((1_{\bar{P}_{1}}-\lambda')\zeta_{i})=\varepsilon_{i}(\chi_{i}-\chi_{\lambda',i}) \ (1\leq i,\ j\leq e)$$

where $\chi_{k,i} \in \operatorname{Irr}(\bar{f})$ $(1 \le i \le e)$. Moreover (2.6) and (2.7) imply that $\chi_i \in \operatorname{Irr}(\bar{f})$ $(1 \le i \le e)$ and $\chi_{k,i} \in \operatorname{Irr}(\bar{f})$ $(1 \le i \le e)$ and $\chi_{k,i} \in \operatorname{Irr}(\bar{f})$ $(1 \le i \le e)$ are pairwise orthogonal.

If $|\bar{P}_1| \ge 4$, then χ_i must be a common irreducible constituent of $\bar{\Delta}^0((1-\lambda)\zeta_i)$ ($\lambda \in Irr(\bar{P}_1) \setminus \{1_{\bar{P}_1}\}$) since $(\bar{\Delta}^0((1_{\bar{P}_1}-\lambda)\zeta_i), \bar{\Delta}^0((1_{\bar{P}_1}-\lambda')\zeta_j)) = \delta_{ij}$ $(1 \le i, j \le e)$ when $\lambda \ne \lambda'$. Further we have

(2.8)
$$\bar{\Delta}^{0}((1_{\overline{P}_{i}}, -\lambda)\zeta_{i}) = \varepsilon_{i}(\gamma_{i} - \gamma_{k,i}), \ \varepsilon_{i} = \pm 1 \ (1 \le i \le e, \ \lambda \in \operatorname{Irr}(\overline{P}_{i}) \setminus \{1_{\overline{P}_{i}}\})$$

where χ_i $(1 \le i \le e) \in \operatorname{Irr}(\bar{f})$ and $\chi_{\lambda,i} \in \operatorname{Irr}(\bar{f})$ $(1 \le j \le e, \lambda \in \operatorname{Irr}(\bar{P}_1) \setminus \{1_{\bar{P}_1}\})$ are pairwise orthogonal. Now let $\lambda \in \operatorname{Irr}(\bar{P}_1) \setminus \{1_{\bar{P}_1}\}$ be fixed again. By the definition of $\bar{\Delta}^0$, we have $(\bar{\Delta}^0(\lambda^{-1}(1_{\bar{P}_1} - \lambda)\zeta_i)) = \lambda^{-1} * (\bar{\Delta}^0((1_{\bar{P}_1} - \lambda)\zeta_i)) = \varepsilon_i(\lambda^{-1} * \chi_i - \lambda^{-1} * \chi_{\lambda,i})$ and we have also $\bar{\Delta}^0((\lambda^{-1}(1_{\bar{P}_1} - \lambda)\zeta_i)) = -\bar{\Delta}^0((1_{\bar{P}_1} - \lambda^{-1})\zeta_i)) = -\varepsilon_i(\chi_i - \chi_{\lambda^{-1},i})$. Therefore $\lambda^{-1} * \chi_{\lambda,i} = \chi_i$ and hence we have $\chi_{\lambda,i} = \lambda * \chi_i$ for any i $(1 \le i \le e)$.

Let $\mu \in M$. Since $(\bar{\Delta}^0(\rho - \mu), \bar{\Delta}^0((1_{\bar{P}_1} - \lambda)\zeta_i)) = 1 \ (1 \le i \le e, \lambda \in Irr(\bar{P}_1) \setminus \{1_{\bar{P}_1}\})$, at least one of the characters $\lambda * \chi_i$ ($\lambda \in Irr(\overline{P_1})$) appears in $\overline{\Delta}{}^0(\rho - \mu)$ for each i. On the other hand we have $(\bar{\Delta}^0(\rho-\mu), \bar{\Delta}^0(\rho-\mu))=e+1$. Therefore for each i, exactly one of the characters $\lambda * \chi_i$ ($\lambda \in$ $\operatorname{Irr}(\bar{P}_1)$) appears in $\bar{\Delta}^0(\rho-\mu)$ with multiplicity ± 1 . In fact for each i, χ_i appears in $\bar{\Delta}^0(\rho-\mu)$ with multiplicity ε_i because $(\bar{\Delta}^0(\rho-\mu), \bar{\Delta}^0((1_{\bar{P}_i}-\lambda)\zeta_i))=1$ for any $\lambda \in Irr(\bar{P}_1)\setminus\{1_{\bar{P}_i}\}$. Here we replace χ_i by $\chi_{\lambda,i}$ $(\lambda \neq 1_{\overline{P}_1})$ if necessary when $|\overline{P}_1|=2$. Noticing $\bar{\Delta}^0(\lambda(\rho-\mu))=\lambda*(\bar{\Delta}^0(\rho-\mu))$, hence the sum of numbers of irreducible characters which appear in $\bar{\Delta}^0((1_{\bar{i}}, -\lambda)\zeta_i)$ $(1 \le i \le e, \lambda)$ $\in \operatorname{Irr}(\overline{P_1})\setminus \{1_{\overline{P_1}}\})$ and $\overline{\Delta}^0(\lambda(\rho-\mu))$ $(\mu\in M, \lambda\in \operatorname{Irr}(\overline{P_1}))$ is at most $|\overline{P_1}|(e+u)$. Recalling $|\operatorname{Irr}(\overline{f})|=$ $|\bar{P}|(e+u)$, these imply

(2.9)
$$\bar{\Delta}^{0}(\rho-\mu) = \sum_{i=1}^{e} \varepsilon_{i} \chi_{i} - \varepsilon_{\mu} \chi_{\mu}, \ \varepsilon_{\mu} = \pm 1,$$

$$\bar{\Delta}^{0}(\lambda(\rho-\mu)) = \sum_{i=1}^{e} \varepsilon_{i} (\lambda * \chi_{i}) - \varepsilon_{\mu} (\lambda * \chi_{\mu}),$$

where $\chi_{\mu} \in \operatorname{Irr}(\overline{f})$. Moreover $\lambda * \chi_i (1 \le i \le e, \lambda \in \operatorname{Irr}(\overline{P}_1)), \lambda * \chi_{\mu} (\mu \in M, \lambda \in \operatorname{Irr}(\overline{P}_1))$ are pairwise orthogonal, and these are the ordinary irreducible characters in \bar{f} . (As $\bar{\Delta}^0(\mu-\mu')=\bar{\Delta}^0(\rho-\mu')$ $-\bar{\Delta}^0(\rho-\mu)=\varepsilon_\mu\chi_\mu-\varepsilon_{\mu'}\chi_{\mu'}$, we have $\varepsilon_\mu=\varepsilon_{\mu'}$.) Thus we can define a bijective isometry $\bar{\Delta}$ from $L_{\kappa}(\overline{L})$ onto $L_{\kappa}(\overline{C}_{c}(Q), \overline{f})$ such that $\overline{\Delta}(\lambda \zeta_{i}) = \varepsilon_{i}(\lambda * \chi_{i})$ $(1 \le i \le e, \lambda \in Irr(\overline{P}_{i}))$ and $\overline{\Delta}(\lambda \mu) = \varepsilon_{\mu}\lambda * \chi_{i}$ μ ($\mu \in M$, $\lambda \in Irr(\overline{P_1})$). Then $\overline{\Delta}$ is a required extension of $\overline{\Delta}^0$ from (2.8) and (2.9). This completes the proof.

By the above theorem and [16], Corollary 2, we have the following.

Corollary Let B be a block of G with abelian defect group P and root b in $C_c(P)$. If $[N_c(P,b)]$ P] is cyclic, then B and $b^{Nc(P,b)}$ are isotypic.

References

- [1] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181-182 (1990), 61-92.
- [2] M. Broué and L. Puig, Characters and local structure in G-algebras, J. Algebra, 63 (1980), 306-317.
- [3] M. Broué and L. Puig, A Frobenius theorem for blocks, Inven. math. 56 (1980), 117-128.
- [4] P. Fong and M. E. Harris, On perfect isometries and isotypies in finite groups, Invent. Math. 114 (1993), 139-191.
- [5] P. Fong and M. E. Harris, On perfect isometries and isotypies in alternating groups, Trans. Amer. Math. Soc., 349 (1997), 3469-3516.

- [6] D. Gorenstein, "Finite groups", Harper-Row, New York, 1968.
- [7] H. Nagao and Y. Tsushima, "Representations of finite groups", Academic Press, Boston, 1987.
- [8] L. Puig, "Blocks of finite groups", The hyperfocal subalgebra of a block, Springer, Berlin, 2002.
- [9] L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and Klein four inertial quotients, J. Algebra 160 (1993), 192-225.
- [10] Y. Usami, Perfect isometries for blocks with abelian defect groups and dihedral inertial quotients of order 6, J. Algebra 172 (1995), 113-125.
- [11] L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients of order 4, J. Algebra 172 (1995), 205-213.
- [12] Y. Usami, Perfect isometries and isotypies for blocks with abelian defect groups and the inertial quotients isomorphic to $Z_4 \times Z_2$, J. Algebra 181 (1996), 727-759.
- [13] Y. Usami, Perfect isometries and isotypies for blocks with abelian defect groups and the inertial quotients isomorphic to $Z_3 \times Z_3$, J. Algebra 182 (1996), 140-164.
- [14] Y. Usami, Perfect isometries for principal blocks with abelian defect groups and elementary abelian 2-inertial quotients, J. Algebra 196 (1997), 646-681.
- [15] J. Thévenaz, "G-algebras and modular representation theory", Clarendon Press, Oxford, 1955.
- [16] A. Watanabe, Notes on p-blocks of characters of finite groups, J. Algebra, 136 (1991), 109-116.

Kumamoto University Faculty of Science Department of Mathematics Kumamoto 860-8555 Japan