Lines on Del Pezzo surfaces with Gorenstein singularities

Yasuhiro Ohshima

(Received January 31, 2005)

1. Introduction.

1.1. A normal Gorenstein projective algebraic surface X over \mathbb{C} is called the *del Pezzo surface* if the anti-canonical divisor $-K_X$ is ample. We put $d := K_X^2 > 0$, which is called the *degree* of X. Let us denote by $x := \operatorname{Sing} X = \{x_1, x_2, ..., x_k\}$ the singular locus of X, where k = 0 if X is smooth. Let $\pi : M \longrightarrow X$ be the minimal resolution with the exceptional set $C := \operatorname{Exc}(\pi) = \pi^{-1}(x) = \bigcup_i C_i$, where C_i is irreducible. Then we have $K_M = \pi^* K_X - \sum_i m_i C_i$ $(0 \le m_i \in \mathbb{Z})$ Then Hidaka-Watanabe (cf. Demazure) obtain the following:

Theorem 1. ([3], [5])

The minimal resolution M is rational or a P^1 -bundle $M \xrightarrow{\phi} T$ over an elliptic curve T. Moreover.

- (1) M is rational \Longrightarrow Sing X consists of at worst rational double points, and hence $K_M = \pi^* K_X$, in particular, $-K_X$ is linearly equivalent to an elliptic curve Γ with $\Gamma \cap \text{Sing } X = \emptyset$, hence $-K_M = \hat{\Gamma}$, where $\hat{\Gamma}$ is the proper transform of Γ in M.
- (2) M is a \mathbf{P}^1 -bundle over an elliptic curve $\mathbf{T} \Longrightarrow X$ is a cone over \mathbf{T} . In particular, $C = \operatorname{Exc}(\pi)$ is the negative section of M and $K_M = \pi^* K_X C$.

Remark 1. In case where X is rational and $d \ge 7$, one has easily the following:

- $(1) d=9 \Longrightarrow M=X=\mathbf{P}^2$
- (2) $d=8 \Longrightarrow M=X=\mathbf{P}^1 \times \mathbf{P}^1$, \mathbf{F}_1 or $X=\mathbf{Q}_0^2$, where \mathbf{F}_1 is the Hirzebruch surface of degree 1 (the blowing up of \mathbf{P}^2 at one point), and \mathbf{Q}_0 is a quadric cone in \mathbf{P}^3 .
- (3) $d=7 \Longrightarrow M$ is obtained from F_2 (resp. P^2) by the blowing up of one point which is not on the negative section (resp. two points in P^2 infinitely near points allowed).
- 1.2. Now in this paper we shall consider the case where X is rational and $1 \le d \le 6$. Since X has at worst rational double points, each component C_i is a smooth rational curve with the self-intersection number $C_i^2 = -2$, which we call the (-2)-curve. The anti-canonical divisor

- $-K_X$ is linearly equivalent to an elliptic curve $\Gamma(\cong \mathbf{T})$ with $x \cap \Gamma = \emptyset$ by Theorem 1. Moreover $-K_X$ is very ample if $d \ge 3$, Bs $|-K_X| = \emptyset$ if d = 2 and Bs $|-K_X| = \{p\}$ (one point) with $p \notin \operatorname{Sing} X$ if d = 1. We note that a normal cubic surface in \mathbf{P}^3 is a del Pezzo surface with degree d = 3.

 1.3. A curve ℓ in X is called a *line* on X if
 - (1) ℓ is smooth rational curve on X,
 - (2) $(K_X \cdot \ell)_X = -1$,

Applying the adjunction formula, we have easily

Lemma 1. A curve ℓ in X is a "line" if and only if the proper transform $\hat{\ell}$ of ℓ in the minimal resolution M is the exceptional curve of first kind, that is, the smooth rational curve with the self-intersection number $\hat{\ell}^2 = -1$ (we call simply the (-1)-curve).

Remark 2. if $d \ge 3$, then the line is a real line (in P^d) because $-K_X$ is very ample if $d \ge 3$.

- 1.4. Now let us introduce the following invariants:
 - δ : the number of lines on X.
 - $k \ge 0$: the number of singularities of X.
 - $\mu := \sum_i \mu(x_i)$ the total Milnor number, where $\mu(x_i)$ is the Milnor number of the singularity x_i .

Remark 3. In our case, the singular locus $x=\operatorname{Sing} X$ consists of at worst rational double points. Hence the total Milnor number μ is equal to the second Betti number $b_2(C)$ of C, that is, the number of irreducible components of the exceptional curves $C=\operatorname{Exc}(\pi)=\bigcup_i C_i$.

In the paper [1], Bruce-Wall find the following interesting relation among these invariants δ , k and μ :

Theorem 2. Assume that d=3, that is, X is a normal cubic surface in \mathbb{P}^3 . Then we have

$$\delta = \frac{1}{2}(8-\mu)(7-\mu) + k-1$$

Remark 4.

- (1) In Theorem 2, if X is smooth (that is, $k=\mu=0$), then we have $\delta=27$ on X, which is the well-known number of lines on a smooth cubic-surface [6].
- (2) Applying the complete list of the classification of (δ, k, μ) for cubic surfaces in \mathbf{P}^3 (see [1]), Bruce-Wall obtain the formula (\spadesuit) for cubic surfaces.

Problem 1.

- (1) Give a direct proof of the formula (A) for cubic surfaces.
- (2) Find a relation for the remaining cases where $1 \le d \le 6$, $(d \ne 3)$, especially, the interesting cases of d = 1,2.

2. Main theorems.

2.1. Now we shall give a similar relation for the cases that d=5 and d=7.

Theorem A. Assume that d=5, that is, X is a del Pezzo surface of degree 5 in P^5 . Then

$$\delta = \frac{1}{2}(5-\mu)(4-\mu) + k$$

In particular, if S is smooth, then $\delta=10$.

Theorem B. Assume that d=7. Then we have

$$\delta = \frac{1}{2}(3-\mu)(2-\mu) + k$$

In particular, if S is smooth, then $\delta=3$.

3. Proof of Theorem A and B

3.1. Assume that d=5. Let X be a normal del Pezzo surface of degree 5 in P^5 . By the classification of Coray-Tsfasman [2], one has the following:

(T1)
$$(\operatorname{Sing} X, \delta) = (\emptyset; 10), (A_1; 7), (2A_1; 5), (A_2; 4)$$

 $(A_1A_2; 3), (A_3; 2), (A_4; 1).$

This implies the following

(
$$\delta$$
, μ , k)=(10, 0, 0), (7, 1, 1), (5, 2, 2), (4, 2, 1)
(T2) (3, 3, 2), (2, 3, 1), (1, 4, 1).

One can easily check that these datum (T2) satisfy the relation (O). This proves Theorem A.

3.2. Next assume that d=7. Then one has easily (Sing X, δ)=(\emptyset ; 3), (A_1 ; 2), that is,

$$(\delta, \mu, k) = (3, 0, 0), (2, 1, 1),$$

From this we have the relation (\Diamond). This proves Theorem B. \square

4. Del Pezzo surfaces with exactly one line.

4.1. Let X be a del Pezzo surface with exactly one line ℓ (that is, $\delta=1$) and $\pi: M \longrightarrow X$ the minimal resolution with exceptional set $C=\bigcup_i C_i=\pi^{-1}(x)$, where $x=\operatorname{Sing} X$. Let $\sum_r=\{p_1,p_2,...,p_r\}$; ($3 \le r \le 8$) be the set of points (infinitely near points allowed) on \mathbf{P}^2 , which are in almost general position (cf. [3], [5]). Then we have $M=B_{\Sigma r}(\mathbf{P}^2)$, that is, M is the blowing up of \mathbf{P}^2 with center \sum_r . We have $K_M=-\hat{\Gamma}$ by Theorem 1.

Theorem C(cf. [4]). The singular locus $x = \operatorname{Sing} X \neq \emptyset$.

- (I): The type of the singularity is as follows:
- (1) $d=1 \Longrightarrow \operatorname{Sing} X$ is of E_8 -type
- (2) $d=2 \Longrightarrow \operatorname{Sing} X$ is of E_7 -type
- (3) $d=3 \Longrightarrow \operatorname{Sing} X$ is of E_6 -type
- (4) $d=4 \Longrightarrow \operatorname{Sing} X$ is of D_5 -type
- (5) $d=5 \Longrightarrow \operatorname{Sing} X$ is of A_4 -type
- (6) $d=6 \Longrightarrow \operatorname{Sing} X$ is of $A_2 + A_1$ -type
- (II): Let ℓ be such a unique line on X, then we have $x \in \ell$ and $X \ell \cong \mathbb{C}^2$.

Proof. The proof is done by dividing into severl steps.

Claim (a). The (-2)-curve on M is an irreducible component of the exceptional set C.

In fact, let E be a (-2)-curve on M. Then, by the adjunction formula, one has $(K_M \cdot E) = 0$, hence $(\pi^* K_X \cdot E) = 0$. This proves the claim. \square

Let ℓ be such a unique line on X and $\hat{\ell}_r$ the proper transform of ℓ in $M_r := M$. By definition the curve $\hat{\ell}_r$ is a unique (-1)-curve in M_r . Let

$$\phi: M_r \xrightarrow{\phi_r} M_{r-1} \xrightarrow{\phi_{r-1}} M_{r-2} \cdots \longrightarrow \cdots M_1 \xrightarrow{\phi_1} \mathbf{P}^2$$

be the sequence of blowing ups of P^2 with center Σ_r . Then $\Gamma^* := \phi(\widehat{\Gamma})$ is a smooth cubic curve on P^2 passing through all the points of Σ_r .

Claim (b). $b_2(X)=1$ and $b_2(C)=r$.

In fact, we may assume that $\phi_r(\hat{\ell}_r) = p_r$. If there is a (-1)-curve $\hat{\ell}_{r-1}$ in M_{r-1} , then we must have $p_r \in \hat{\ell}_{r-1}$ since M_r contains a unique (-1)-curve. Similarly there is a (-1)-curve $\hat{\ell}_i$ in M_i

such that $p_{j-1} := \phi_j(\hat{\ell}_j) \in \hat{\ell}_{j-1}(2 \le j \le r-1)$. This shows that $\hat{\ell}_{r-1} \cup \hat{\ell}_{r-2} \cup \cdots \cup \hat{\ell}_1$ is a linear tree of (-2)-curves. Then the starting point $p_1 \in \Gamma^*$ must be a point of inflexion since M_r contains a unique (-1)-curve. Let ℓ_0 be a tangent line of Γ^* at the point p_1 with $(\Gamma^* \cdot \ell_0)_{p_1} = 3$, which always exists. Then the proper transform $\hat{\ell}_0$ in M_r is the (-2)-curve. Since the second Betti number $b_2(C)$ is equal to the number of exceptional curves, by Claim (a), we have $b_2(C) \ge r$. On the other hand, since $b_2(M) = b_2(C) + b_2(X)$ and $b_2(M) = r+1$, we have the claim. \square

Claim (c). $H_1(\partial T; \mathbb{Z}) \cong \mathbb{Z}_d$.

In fact, let ∂T_i be the boundary of a sufficiently small contractible Stein neighbourhood T_i of x_i $(x_i \notin T_i \text{ if } i \neq j)$ in X and set $\partial T = \bigcup_{i=1}^k \partial T_i$. Applying the Mayer-Vietoris exact sequence, one has The Poincaré exact sequence:

$$0 \longrightarrow H^{2}(X; \mathbb{Z}) \xrightarrow{p_{2}} H_{2}(X; \mathbb{Z}) \longrightarrow H_{1}(\partial T: \mathbb{Z}) \longrightarrow 0$$

We have $H^2(X; \mathbb{Z}) \cong \mathbb{Z} \cdot c_1(O_X(\Gamma) \text{ and } H_2(X; \mathbb{Z}) \cong \mathbb{Z}\ell$. Since $P_2(c_1(O_X(\Gamma)) \sim d\ell \text{ in } H_2(X; \mathbb{Z})$, we have the claim. \square

By Theorem 1, every singular point x_i is a rational double point, that is, x_i is one of the type E_8 , E_7 , E_6 , $D_{n+2}(n \ge 2)$, $A_{n+1}(n \ge 1)$. An easy computation shows that

- (1) $H_1(\partial T_i; \mathbb{Z}) \cong 0$ if E_8 -type.
- (2) $H_1(\partial T_i; \mathbf{Z}) \cong \mathbf{Z}_2$ if E_7 -type.
- (3) $H_1(\partial T_i; \mathbf{Z}) \cong \mathbf{Z}_3$ if E_6 -type.
- (4) $H_1(\partial T_i; \mathbb{Z}) \cong \mathbb{Z}_4$ (resp. $\mathbb{Z}_2 \oplus \mathbb{Z}_2$) if D_{n+4} -type with odd n(resp. even n).
- (5) $H_1(\partial T_i; \mathbf{Z}) \cong \mathbf{Z}_{n+1}$ if x_i is of A_n -type.

Taking into account that $b_2(C) = 9 - d$, one can easily show the assertion (I) of Theorem C. Show the assertion (II). Since

$$\hat{\ell}_r \cup C_i = \hat{\ell}_{r-1} \cup \hat{\ell}_{r-2} \cup \cdots \cup \hat{\ell}_1 \cup \hat{\ell}_0.$$

we obtain that

$$X - \ell \cong M - (\hat{\ell}_{r-1} \cup \hat{\ell}_{r-2} \cup \dots \cup \hat{\ell}_1 \cup \hat{\ell}_0)$$

$$\cong \mathbf{P}^2 - \ell_0$$

$$\cong \mathbf{C}^2.$$

This completes the proof of Theorem C.

Finally we shall propose the following

Problem 2. Assume that $\delta \le 4$ and $\ell_i, \ldots, \ell_\delta$ the lines. Then is $X - \bigcup_{i=1}^{\delta} \ell_i \cong \mathbb{C}^2$, $\mathbb{C}^* \times \mathbb{C}$, or $(\mathbb{C}^*)^2$?

References

- [1] J. W. Bruce and C. T. C Wall, On the classification of cubic surfaces, J. London Math.Soc.. 19 (1979), 245-256.
- [2] D. F. Coray and M. A. Tsfasman, Arithmetic on singular del Pezzo surfaces, Proc. London Math. Sci.. 57 (1988), 25-87.
- [3] M. Demazure, Surfaces de del Pezzo, Lect. Note in Math.. 777 (1980), 23-69.
- [4] M. Furushima, Singular de del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³, Nagoya Math. J.. 104 (1986), 1-27.
- [5] F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anticanonical divisor, Tokyo J. Math.. 4 (1981), 319-330.
- [6] Yu. I. Manin, *Cubic Forms*, North-Holland Math. Library, North-Holland, Amsterdam-New York-Oxford, (1972).