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Abstract. Let X be a metric space and let G be a group acting on X such
that for each g in G, the map from X to X given by z — gz is an isometry.
We investigate various properties of the distance between G-orbits on X and
of the associated quotient space.

1. Introduction

It is well known that the canonical valuation on a local field K has a unique ex-
tension to a fixed algebraic closure K of K. This metric rigidity offers one the
possibility to define and study various metric invariants associated to algebraic
elements over K . By natural limiting procedures one may quite often also asso-
ciate analogous metric invariants to elements from the topological completion of
K which are transcendental over K. Moreover, the fact that any continuous au-
tomorphism of this completion over K is an isometry allows one to produce such
metric objects, which are either Galois invariant, or at least behave nicely under
the action of the Galois group. With this context in mind, below we proceed to
develop some metric notions in a more general framework. We start with a metric
space X, and denote by dx, or simply by d, the corresponding distance function.
We assume the action of a group G on X is given in such a way that for each g
in G, the map from X to X given by z +— gz is an isometry. With X and G as
above, we define an equivalence relation on X as follows. If z,y € X we say that
z,y are equivalent and write z ~g y, or z ~ y if G is understood, provided there
exists a sequence (gn)nen of elements of G such that lim,_ . d(z,g,y) = 0. Let
Z denote the quotient space X/~¢, and let % : X — 2 be the canonical map
which sends each element z € X to its equivalence class. On 2" we introduce a
distance dg by

da(u,v) = inf{dx(z,y) : z € ¥~ (u), y € v~ (v)},

for any u,v € 2", which makes 2" a metric space. As an example, let p be a prime
number, @, the field of p-adic numbers, K a finite field extension of Qp, K a fixed
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algebraic closure of K, and C, the completion of K with respect to the p-adic
absolute value. The group Gk = Galeont(Cp/K) of all continuous automorphisms
of C, over K is canonically isomorphic to the Galois group Gal(K/K), and any
automorphism g € Gk is an isometry on C,. We may then take X =C, and
G = Gk. Note that in this case G is compact, any G-orbit Gy, where y € Cp, is
a compact subset of Cp, and the above condition limp—.co d(z, 9»y) = 0 from the
definition of equivalence forces z to belong to the Galois orbit Gy. Thus in this
case & coincides with the space of Galois orbits. One has more flexibility here,
in the sense that X may be replaced by any of its subsets which are invariant
under the action of G, such as any finite or infinite normal field extension of K
contained in C,. Also, one may choose G to be any subgroup of Gk. Returning
to the general case,‘ in what follows we investigate some basic properties of the
canonical map %, the quotient space 2 and the distance function dor.

2. The quotient space Z

Let X be a metric space, d : X x X — [0,00) the distance function, and let G be
a group which acts on X in such a way that for each g € G the map from X to X
given by z — gz is an isometry, that is,

d(gz, gy) = d(z,y),

for any z,y in X and any g in G. If 2,y € X we write z ~ y provided there
is a sequence (gn)nen of elements from G such that lims oo d(z, gny) = 0. Note
that in this case we also have d(y, g7 z) = d(gny,z) — 0 as n — oo, hence if
z ~ y then y ~ z. Clearly z ~ z for any z € X. Let now z,9,2 € X such
that = ~ y and y ~ z. There are sequences (gn)neN and (¢m)men in G such that
My oo A(, gny) = liMm—co d(¥,tmz) = 0. Let us put 7, = gatn € G for all
n € N. Then

d(z, Tnz) < d(2, gny) + d(gnY: Tn2)
= d(z, gny) + d(y, g n2) = d(z, gny) + d(¥, tn2)-

Here the far right side tends to 0 as n — co. It follows that z ~ z, and therefore
(~) is an equivalence relation on X. We denote the set of equivalence classes by
Z . Let us denote by 9g x, or simply by %, the canonical map ¥ : X — Z which
sends each z € X to its equivalence class. For any u,v € Z we set

dgr (u,v) = inf{d(z,y) : z € ¥~ (u), y € ¥~ (v)} € [0,00).

Let us show that dg is a distance on 2. Clearly dar(u,v) = dar (v,u) for any
w,v € . Assume now that u,v € Z are such that da-(u,v) = 0. Let (er)ren
be a strictly decreasing sequence of real numbers with limr_.cc &r = 0. By the
definition of da- (u,v), for each r € N there are z, € ¥~1(u) and y, € ¥~ (v) such
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that d(z;,yr) < &,. Let us fix clements z* € ¥~'(x) and y* € ¥~'(v), and choose
an r € N. Since ¥(z*) = u = 9¥(z,) we have z* ~ z,, so there exists a sequence
(grn)nen of elements from G such that lim,—co d(Z*, g nZ,) = 0. Similarly, there
is a sequence (tr,n)nen in G such that limp_o d(¥*, trny-) = 0. Choose an n, for
which we have simultaneously d(z*, g,.z,) < €, and d(y*, trn,.Yr) < &r. Then

d(z*, gr'nrt:',lh_y') <d(z”, grn, zr) + d(grn, Zr, Grin,Yr) + d(gr.nryragr,nrt:,iry‘)

= d(ib",gr,n.-xr) + d(xr, yr) -+ d(yr, t:',]_"ry»)
< 2er +d(trn,yr,¥") < 3¢,

It follows that the sequence (gr,n,t;3 )ren in G satisfies lim, _o, d(z*, Grm trn Y*)

= 0, therefore z* ~ y*, and hence u = ¥(z*) = ¥(y*) = v, as desired. Lastly, let
u,v,w € Z and choose a real number ¢ > 0. By the definition of dg (u,v) and
do (v, w) there are elements z € ¥~(u), y,3' € ¥~'(v), and z € ¥~1(w), such
that d(z,y) < da-(u,v) + € and d(y',z) < da-(v,w) + €. Since y ~ y', there is a
sequence (ga)nen in G such that lim,—e d(y, gny’) = 0. Fix an n, € N for which
d(y, gn. ') < €. The element g,, z belongs to ¥~ (w), and we have

da (u,v) < d(z,9,2) < d(z,y) + d(y, gn¥') + d(gny’, gn2)
<dg(u,v) +2 +d(y,2) <da(u,v) +de(v,w)+ 3¢.

Letting € — 0, it follows that do (u, w) < da (u,v) 4+ d2 (v, w). We conclude that
(Z',da) is a metric space.

Next, we discuss some properties of the canonical map % : X — 2. First of
all, note that 4 is continuous, in fact it is 1-Lipschitzian, that is,

dg(d)(l'), ¢(y)) < dX(xa y)a

for any z,y € X. Another basic property of ¥ is that it is an open map, thus
for any open subset U of X, 4(U) is an open subset of 2. Indeed, let U be an
open subset of X, and fix a point u in ¥(U). Choose an element z € ¥~!(u), and
a real number § > 0 such that the open ball in X centered at z, of radius 4, is
contained in U. Then the open ball of radius § in 2" centered at u is contained
in Y(U). For, let v € Z with dar(u,v) < 8. By the definition of dg (u,v), there
are elements =’ € ¢~!(u) and y € ¥~ (v) for which d(z’,y) < 4. Since z ~ ',
there is a sequence (gn)nen in G such that lim,_o d(z,gn2’) = 0. Each element
gnYy belongs to ¥~1(v), and

d(z, gny) < d(z, gnz’) + d(gn2’, gny) = d(z, gnz’) + d(z', y).

Here for n large enough the far right side is strictly smaller than 6, so gny belongs
to the open ball of radius & centered at z, and hence it belongs to U. Thus v
belongs to ¥(U), which completes the proof that %(U) is open.
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The notion of quasi isometry naturally appears in some questions of a metric
nature involving local fields (see |5}, [6], [7]). If (X, dx), (Y,dy) are metric spaces,
amap ¢ : X — Y is said to be a quasi isometry provided that for any z,y € X

nf  dx(z,2).

dy (p(z), o(¥)) = zElp'il(‘P(y))

Let us say that a map ¢ : X — Y is a strong quasi isometry provided it is
1-Lipschitzian, and for any z,y € X there exists a z € ¢~} (¢(y)) such that

dy (o(z), ¢(y)) = dx(z, 2).

Clearly any strong.quasi isometry is a quasi isometry, and any quasi isometry is
1-Lipschitzian. Also, a quasi isometry is an isometry if and only if it is injective.

Returning to our context, let us note that the map ¢ : X — Z is a quasi
isometry. Indeed, fix z,y € X and denote u = ¥(z), v = %(y). Then

dgr(u,v) = inf{d(z’,y') : &’ € ¥} (u), ¥ €97 (v)}
< inf d(z,z).
z€yp~1(V)
The last inequality is in fact an equality, because for any z’ € P~ (), ¥y € v~ 1(v),
and any real number € > 0, there exists g in G such that d(z, gz') < ¢, thus if we
put z = gy’ € ¥~ 1(v), we see that

d(z, 2) < d(z,92") +d(97’,2) < e +d(z’, ).

In conclusion, ¥ is a quasi isometry.
We collect the results of this section in the following theorem.

Theorem 1. Let G be a group acting on a metric space X such that each map
z — gz, with g in G, is an isomelry on X. Then

(1) (Z,da) is a metric space.
(ii) The canonical map ¢ : X — Z is an open map, and it is a quasi isometry.

Remark 1. Let (X,dx), (Y,dy) be metric spaces and let ¢ : X — Y be a quasi
isometry with the property that for each element y € X the set {zeX :9(2) =
©(y)} is compact. Then for any z,y € X the infimum inf{d(z,2) : z € o )}
is attained, so dy (@(x),(y)) = dx(z, 2) for some z € X with ¢(z) = ¢(y), and
hence ¢ is a strong quasi isometry. In particular, if one applies Theorem 1 with
X = C, for some prime number p, and G = Gk for some finite field extension K
of Q,, then for each element y of Cp, the set {z € Cp : ¥(z) = ¥(y)} coincides with
the Galois orbit Ggy = {oy : o € Gk} which is compact. Therefore in this case
the map 9 is a strong quasi isometry.
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3. Change of space

As a mater of terminology, if X,Y are sets and a group G acts on each of the
two sets X and Y, we say that a map F : X — Y is G-equivariant provided that
F(gz) = gF(z), for any z € X and any g € G.

As an example, in the above particular case when X = Y = C, for some
prime number p and G = G for some finite field extension K of Qp, let F be a
polynomial function in one variable with coefficients in C,. Then one sees that F
is G-equivariant if and only if all the coefficients of F belong to K.

Let now (X,dx) and (Y,dy) be metric spaces, and let G be a group which
acts on X and on Y such that for any g € G the maps X — X, ¢ — gz, and
Y - Y, y — gy, arc isometries on X and respectively on Y. Denote by 2
and # the scts of cquivalent classes X/~¢ and Y/~¢ and by vex : X - Z
and Yy : Y — & the canonical projections respectively. We are interested to
sec under which circumstances one can associate to amap F : X — Y, a map
f & — % such that foyc x = Ygy o F, and what continuity or metric
properties of F' are inherited by f. Some such properties are collected in the
following result.

Theorem 2. Let (X,dx), (Y,dy) be metric spaces, let G be a group acting on
X and on Y such that for each g € G the maps X - X, z— gr andY = Y,
Y gy are isometries, and let F: X — Y be G-equivariant.

(i) If F is continuous, then there is a unique map f : & — ¥ such that
fove x =va,y o F, which moreover is continuous.

(ii) If F is a topological homeomorphism, then f is a homeomorphism.
(ii) If F is A-Lipschitzian, for some real number A > 0, then f is A-Lipschitzian.
(iv) If F is an isometry, then f is an isometry.

Proof. (i) Let X,Y,G and F be as in the statement of the theorem. If there
isan f: Z — & such that f o9 x = Yo,y o F, then f is uniquely deter-
mined by this condition. Thus, given an clement u of 2, we choose an element
T € wa,lx(u), send it to F(z) € Y, and then project it to g y(F(z)) € #.
Then define f(u) := ¢ y(F(z)). We need to prove that the map f is well
defined. In order to do this, let v € 2 and z,2’ € ¢5‘lx(u). We need to
show that ¥,y (F(z)) = ¢,y (F(z')). Since z ~g 2’ in X, there exists a se-
quence (gn)aeN in G for which lim,_.co dx (7, gnz’) = 0. The continuity of F
implies then that lim,_.. dy (F(z), F(gnz')) = 0. Here F(gnz') = g.F(z'),
80 limy_.co dy (F(z), 9, F(z')) = 0. This means that F(z) ~¢ F(z') in Y, so
Yo,y (F(z)) = e,y (F(z')) as required. Thus the map f is well defined. In or-
der to show that f is continuous, fix an element u of 2 and choose a sequence
(um)men in Z which converges to u. Fix an clement z in zp(';'lx(u). By Theorem
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1 (ii} the map ¥¢,x is a quasi isometry. As a consequence, for each m € N there
exists an element z,, in 1/)(';‘1)< (um) for which

1
dx(.’L’,:L‘m) < dx(‘u,um) + ;i

Therefore the sequence (Tm)men converges in X to x, and by the continuity of F,
the sequence (F(Zm))men converges in Y to F(z). Since ¥¢,y is continuous, it fol-
lows in turn that the sequence (¥g,y (F(Zm)))men converges in & to g,y (F(z)).
In other words, this says that the sequence (f(2m))men converges in % to f(u).
Thus the map f is continuous, which proves part (i) of the theorem.

(ii) We need to show that the map f : 2" — &, which exists, is uniquely de-
termined and continuous by part (i), is also bijective and its inverse is continu-
ous. Looking at the way f was defined, it is clear that f is surjective. To see
this, one simply takes an arbitrary element v of &, lifts v to one of its repre-
sentatives z in wafy(v), sends z via F~! to an element z := F~!(z) € X, and
projects z to its image u := ¥g, x(z) in 2. Then f(u) = v. In order to show
that f is injective, let u,u’ be two elements of 2~ for which f(u) = f(u'), and
choose representatives z and z’ for u and u’ in ¢c_;,1x('“) and wa}x(u’ ) respec-
tively. Then ¢oy(F(z)) = f(u) = f(') = Yoy (F(z'), so F(z) ~¢ F(z')
in Y. It follows that there is a sequence (gn)nen in G for which the sequence
(gnF(z'))nen converges in Y to F(z). Since F is G-equivariant, the sequence
(F(gnx"))nen converges in Y to F(z), and since F is a homeomorphism we derive
that the sequence (gn2')nen converges in X to z. Thus z ~¢ z’ in X, and so
u = Pg,x(z) = ¥e,x(z') = «'. This shows that the map f is injective. It remains
to show that f~! is continuous. Recall that f is the unique map from Z° to & sat-
isfying the equality foyg x = ¥g,yoF. Then f —1is the unique map from # to Z
satisfying ¥ig, x oF ~* = f~lo(foyg,x)oF~! = f~lo(yg,yoF)oF~! = f~loygy,
and the continuity of f~! follows from part (i) applied to F~!:Y — X.

(iii) Assume F is A-Lipschitzian for some real number A > 0. Thus

dy (F(z1), F(z2)) < Mx(z1,22),

for any z;,z2 € X. Let uj,u; be two arbitrary elements of 2. We need to
show that da (f(u1), f(u2)) < Ada(u1,uz). Fix a real number ¢ > 0, and
choose representatives z; and z; for u; and up in 1/15,1){ (uy) and 11:5}X (ug) re-
spectively, such that dx(z1,z2) < da(u1,u2) + €. Since F is A-Lipschitzian,
dy (F(z1), F(z2)) < Mx(z1,22) < Ma(u1,u2) + Ae, and using the fact that
Ye,y is 1-Lipschitzian we find that

do (Yo,y (F(z1)), ¥,y (F(x2))) < dy (F(1), F(z2)) < Mar(u1,u2) + Ae.

Here ¥g v (F(z1)) = f(u1) and yg,y (F(22)) = f(uz). Letting € — 0, we deduce
that do (f(w1), f(uz2)) < Mg (u1,u2). In conclusion, f is A-Lipschitzian.
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(iv) Assume that F is an isometry (not necessarily surjective). Let u;, us be arbi-
trary elements of 2. We need to show that dg (f(u1), f(u2)) = dar (w1, u2). Ap-
plying part (iii) with A = 1 we see that f is 1-Lipschitzian, so dg (f(u1), f(u2)) <
dar(u1,uz2). In order to prove the reverse inequality, fix an € > 0 and choose a
representative z; for u; in wg}x(ul). Here F(z,) € z/:&fy( f(u1)), and using (ii)
of Theorem 1, which shows that %g y is a quasi isometry, it follows that there
exists an element z in '(/}a'ly(f(u2)) for which dy (F(z1), 2) < da (f(u1), f(uz))+e.
Since we are not assuming that F is surjective, we can not conclude, and in gen-
eral it is not true, that z necessarily comes from an element of X via the map F.
Therefore what we do is the following. We choose a representative zo for us in
¢5}X (u2), send it to & via F, and since both F(z;) and z belong to 'qba,ly (f(u2)),
we obtain an equivalence F(z2) ~¢ z in Y. There is then a sequence (gn)nen in
G with the property that lim,_.o dy (F(z2), gnz) = 0. Now the point is that each
element g ' F(z2) is the image of an element of 2 through F, and these elements
971 F(z2) approach z in Y, so their distance to F(z;) will approach the distance
from z to F(z;). More precisely, using our assumptions that F is G-equivariant
and that it is an isometry, we deduce that for each n € N,

dx (21,95 ' 22) = dy (F(z1), F(g;, ' 72)) = dy (F(z1), 957 z2)
< dy(F(z1), 2) + dy (2, 9, ' z2)
<dg(f(w1), f(u2)) + € + dy (22, gn2).

Here the left side is larger or equal to dg(u),uz) for each n, while the far
right side tends to da (f(u1), f(u2)) + € as n — co. Therefore, dg(u;,us) <
do (f(w1), f(uz)) +2¢, and since € > 0 was arbitrary, we conclude that
da (f(w1), f(u2)) 2 da(uy,u2). Combining this with the reverse inequality ob-
tained above, we see that f is an isometry, and this completes the proof of the
theorem. a

We end this section with several remarks.

Remark 2. Let Y be a metric space and G a group which acts on Y in such a way
that for each g € G, the map Y — Y, y — gy is an isometry. Further, let X be
a subset of Y which is closed under the action of G, in the sense that gz € X for
any z € X and any g € G. Then onc may apply (iv) of Theorem 2 to X, Y, G, and
the map F given by the injection of X into Y. Although, as sets, the equivalence
class of an element z € X in X may differ from the equivalence class of z in Y, it
follows by the above theorem that 2" injects isometrically in 2 in a canonic way.
One may then identify 2~ with a metric subspace of #. Moreover by the equality
fovg x =g,y o F from the statement of Theorem 2 we see that in the above
identification the map ¢, x will be given by the restriction of ¥g,y to X.

Remark 3. In the context of Remark 2 above, for any element z of X, the
equivalence class of z in Y, as a subset of Y, coincides with the topological closure
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in Y of the equivalence class of z in X. Indeed, on the one hand any element of
X which is equivalent to z in X is also equivalent to z in Y, and on the other
hand if y € Y is equivalent to z in Y then y is the limit of a sequence of the form
(gnT)nen With g, € G for all n . Here each g,z belongs to X and is equivalent to
z in X, hence y belongs to the topological closure in Y of the equivalence class of
zin X.

Remark 4. In the same context, as a consequence of Remark 3, we see that if
the equivalence class of an element = € X is a complete metric space with respect
to the metric obtained by restriction from X, then this equivalence class remains
unchanged under any extension of X to a larger metric space Y on which one has
a G-action with the required properties as above.

Remark 5. In light of Remark 4 above, a natural question that arises would be
to see under which circumstances all the equivalence classes in a metric space X
with a G-action for which all the maps = — gz are isometrics, are complete metric
spaces. A sufficient condition for this to happen is to start with a metric space
(X,dx) which is complete. Indeed, each equivalence class is the inverse image
through ¢, x, which is continuous, of a point in 2. Therefore cach equivalence
class is a closed subset of X, and hence it is a complete metric space if X is
complete.

Let us remark that the above condition is not also sufficient, in the scnse that
there are metric spaces which are not complete, on which one has G-actions with
the required properties, for which all the equivalence classes are complete metric
spaces. For example one may take X to be the algebraic closure K of a local field
K, and let G be the Galois group Gal(K/K). Then X is not a complete metric
space while each equivalence class is a complete metric space, being in this case a
Galois orbit, which is finite.

Remark 6. In connection with Theorem 2 it would also be interesting to study
the possibility of lifting a given map f: 2 — # toamap F : X — Y as in the
statement of the theorem. Let us remark that it is not always possible, given a
map f: Z — %, to find a G-equivariant map F : X — Y satisfying the equality
fovex =ve,y oF, even if we do not impose on F further continuity or metric
properties.

As an example, let p be a prime number, K a finite field extension of Q, K
an algebraic closure of K and C, the completion of K with respect to the p-adic
absolute value |-{. Then let G = Gk, Y = C, and X a finite union of Galois orbits
in C,, G = U}_,Gz; say. Denote u; = ¥(z;), so that 2 = {u1,...,un}, and let
f: & — #%. Given this data, is there a G-equivariant map F : X — Y such
that f o, x =Yg,y © F7 Let us consider the simple case when all the clements
z1,...,Zn belong to K. If such an F exists, then for any j € {1,2,...,n} and
any automorphism o € G one has o(F(z;)) = F(o(z;)) = F(z;). This forces
F(z;) € K for each j. We conclude that if at least one of f(u1),..., f(un) docs
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not lie in the image of K in & then there is no map F : X — Y with the required
properties.

Let us consider now a case when such an F exists. With Y and G taken as be-
fore, let X = U}-,Gz;, where zi,...,2, are arbitrary elements of C,. With
u1,...,un having the same meaning as above, let f : & — %, and choose
representatives y1,...,yn for f(ui),..., f(u,) in wa,ly(f(ul)),...,¢5,1Y(f(un))
respectively. If we try to construct an F with the required properties by as-
signing to z1,...,Zn the values F(z1) = wy1,...,F(zn) = yn, F is uniquely
determined. More precisely, any z € X is of the form z = o(x;) for some
7€1{1,2,...,n} and o € G, and by the condition that F be G-equivariant we must
have F(z) = o(F(z;)) = o(y;). The question is whether F is well defined. This
is so, provided for any j € {1,2,...,n} and any 0,7 € G for which o(z;) = 7(z;5),
one has o(y;) = 7(y;). This is equivalent to the condition that the closed sub-
groups of G, ¥z, = {0 € G:ox; =25}, I, = {0 €G:0oy; =y;}, L <j<n,
are such that 9, C 56, for any j € {1,2,...,n}. Recall that by Galois theory in
Cp (14, [1], [3]), there is a canonic one-to-one correspondence between the closed
subgroups of G and the closed subfields of C, which contain K. In our case, the
above condition states that, if one denotes by E1,..., E, the topological closure
of the fields K(z1),...,K(zn) in Cp, then y; € E; for any j € {1,2,...,n}. We
conclude that, given z,...,z,, for any elements y; € E),...,yn € E,, the map
f: & — & which sends the equivalence class (Galois orbit) of z; to the equiva-
lence class of y;, for 1 < j < n, can be lifted to a G-equivariant map F: X — Y.
Let us remark that if each z; is a generating element of C, (see [2]), so that each
Ej coincides with C,, then any map f: 2Z° — % can be lifted to a G-equivariant
map F': X — Y such that fovg x =¢¢,y o F.

4. Completion

Let X be a metric space and G a group acting on X such that for each g € G,
the map z — gz is an isometry on X. Denote as usual Z = X/~¢ and let
¥ =1vg,x : X = Z be the canonical projection. Let us assume that (X,dx) is a
complete metric space. Then we show that (2, dg) is a complete metric space.
In the case when X is an ultrametric space, that is, when the triangle inequality
holds in the stronger form

dx(:b‘, Z) S max{dx(.'c. y)v dX (y’ z)}a

for all z,y,z € X, the proof follows casily from the fact that 1 is a quasi isome-
try. More precisely, if (%, )nen is a Cauchy sequence in 2, then using repeatedly
the defining property of a quasi isometry one can find inductively representatives
L1 22,3 Tny. .. fOT up, U, Un,y. . in Y (wg), ¥ (u2), .. Y ), -,
such that for any n > 1 one has

dx(xn!xn+l) < 2d.2'(un, un+1).



10 M. Vajaitu and A. Zaharescu

In the ultrametric case it follows then that (zy)-en is a Cauchy sequence in X.
This sequence will then converge to an element z € X. Denoting u = (z), from
the continuity of 1 it follows that the sequence (un)nen converges to u in 2. This
completes the proof in the ultrametric case. In the general case we modify the
above argument as follows. Let (un)nen be a Cauchy sequence in 2. For each r €
N choose an N, € N such that dg (un,um) < 3= for alln,m > N,. Put n; = 1and
select a representative z, for u; in ¢~ (u1). Let k > 2 and assume that positive
integers 1 = n; < n2 < --- < ny_1 are chosen and representatives i, %2, .- ., Tk-1
fOr Un,, Ungs - - - » Uny_, are selected in ¥ (un, ), ¥ (%n,), - -, ¥ ™" (tn,_, ) Tespec-
tively such that dx(z;,zj—1) < 2dg (Un;,un;_,) for 2 < j < k-1 Then let
n = max{ng_; + 1, Ni} and select a representative zi for un, in P~ (uy,, ) for
which dx (zk, Tk—1) < 2d2 (Un,,Un,_,)- We construct in this way a scquence of
positive integers 1 =n; <np < -+ <Ny < ... and aSEqUENCC T, L2, -, Thy- -+ of
representatives for %n,,Un,,- - -, Ung,--- in X. Note that for any positive integers
n < m one has

m m
dx(-'l?mxm) S Z dx(xk)xk—l) S Z 2d£'(ungyunk_1)
k=n+1 k=n+1

=1 1
<> 72 < gz
k=n+1

This shows that the sequence (zx)ren is a Cauchy sequence in X and hence it
converges to an element z € X. Denote u = ¥(x). We derive that the sequence
(tn, )xen converges in 2" to u. Since (un)nen is a Cauchy scquence in Z, it
follows that the entire sequence (un)nen converges in 2 to u. This proves that
Z is complete.

Recall from Remark 5 above that if X is a complete metric space then each
equivalence class is a complete metric space. Let us see whether, conversely, if
each equivalence class is complete and if £ is complete, then X is complete.
Assume that 2 and all the equivalence classes are complete metric spaces, and
let (zn)nen be a Cauchy sequence in X. Denote u, = ¥(zn) for each n. Since
4 is 1-Lipschitzian, (un)nen is @ Cauchy sequence in 2 and so it converges to
an element u € 2. Using the fact that ¥ is a quasi isometry one can choose for
each n an element 2, in ¥~ (u) such that d(zs,2s) < 2da (2n,u). We claim that
(zn)nen is a Cauchy sequence in X. Indeed, let us fix an € > 0. The sequence
(n)nen converges to u, so there is an N, such that dar (tn,u) <€ forall n > Ne.
Also, (z,)nen being a Cauchy sequence, there is an N! such that dg- (Zn,zm) <€
for any n,m > N.. Then for all n,m > max{N,, N;} one has dx(zn,2m) <
dx(2n,Tn) + dx(Tn,Zm) + dx(Tm, zm) < 2da (uq,u) + € + 2d g (um,u) < Se.
This proves the claim that (z)nen is a Cauchy sequence in X. Each 2, belongs
to ¥~1(u), which is a complete metric space, therefore {2n)nen converges to an
clement z € 9~Y(u). Morcover, since dx(Tn,2n) < 2dar (un,u) for cach n and
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since u, — u as n tends to infinity, it follows that the sequence (z,)aenN converges
in X to z. In conclusion X is a complete metric space.
We record the result in the following theorem.

Theorem 3. Let G be a group acting on a metric space X such that each map
z > gz, with g in G, is an isometry on X. The following are equivalent:

(i) X is a complete metric space.
(i) Z and all the equivalence classes are complete metric spaces.

We now consider the problem of completing a metric space X with a given action
of a group G. Assume as usual that for each g in G the map z — gz is an
isometry on X. Then one has a canonical way of extending this action from X to
the completion of X, call it Y. More precisely, the action of G on Y is defined by
taking each g in G and extending by continuity the map X — X, z — gz to a
map Y — Y, y — gy, which is clearly an isometry on Y. Denote & = Y/~¢g and
let ¢,y be the canonical projection. By Remark 2 above, we may identify 2
with a metric subspace of %. Moreover, the canonical projection Yo x X —-Z
identifies with the restriction of ¥,y to X. Since Y is the completion of X,
a natural question is whether the metric space % is the completion of 2. By
Theorem 3 we know that & is a complete metric space. Also, each element of
¥ is the limit of a sequence of elements from 2. Indeed, if u € ¥, choose a
representative y for v in Y and a sequence (zn)nen in X which converges to .
Then each ¥,y (z5) = ¥, x (2x) belongs to 2, and by the continuity of %¢,y the
sequence (YgG,y (Tn))nen converges in & to u. It follows that % is the completion
of Z as stated. We collect the results in the following theorem.

Theorem 4. Let G be a group acting on a metric space X such that each map
z — gz, with g in G, is an isometry on X. If Y denotes the completion of X,
then one has a canonical action of G on Y, and the metric space ¥ = Y/~g is
the completion of ' = X[/~¢.

As an example, if p is a prime number, K a finite field extension of Qp, X =K an
algebraic closure of K, and G = Gal(K/K), then the canonical action of G on the
completion Y = C, of K is obtained by taking each automorphism ¢ € G, which
is an isometry on X, and extending by continuity ¢ to a continuous automorphism
of C, over K, which is then also an isometry. In this example each element of %
is a G-orbit, which as a subset of Y is compact, and the space of these compact
subsets of Y is the metric completion of the space of G-orbits of elements of the
form K, which are finite subsets of K.

In the above example the elements of 2 are finite subsets of X and the elements
of & are compact, although not finite, subsets of Y. This phenomenon holds in
more generality: If all the equivalence classes in X are finite then all the equivalence
classes in Y are compact. One has in fact the following result.
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Theorem 5. Under the assumptions from Theorem 4, if all the equivalence
classes in X are compact, then all the equivalence classes in Y are compact.

In order to prove the theorem, recall that a metric space is compact if and only if
it is complete and totally bounded. By Theorem 3 all the equivalence classes in ¥
are complete metric spaces. As for the total boundedness, let us fix an equivalence
class 1[)5’1,, (u), where u € &. We need to show that for any & > 0 one can cover
1/)5,1,, (u) with finitely many open balls of radius J. Fix such a § and choose an
element ¢ in 2 for which dg (t,u) < -g-. Select a representative z for ¢t in X. Since
the equivalence class of = in X, which by Remark 4 coincides with the equivalence
class of z in Y, is compact, it can be covered by finitely many open balls of radius
g-, call them By, By, ..., Bs. Choose elements z;,%s,...,Z; in ¢5,lx (t) such that
z; € Bj, for each j € {1,2,...,s}. Using the fact that ¢,y is a quasi isometry
one can choose elements ¥1,¥2,--.,¥s in 1/)5,1,, (u) such that dy(z;,v;) < 2da (t,u)
for all 1 < j € 5. Then the union of the open balls of radius ¢ centered at
Y1,¥2,...,Ys COvers the entire equivalence class q/)c’;,y(u). Indeed, let w be an
arbitrary element of 1/15,1,, (u). Using again the fact that ¢,y is a quasi isometry
choose an element z in ¥g 'y (t) = ¢5,1Y(t) for which dy (z,w) < 2dg (¢, v). There
exists an i € {1,2,...,s} such that dx(zi,z) < g—. Then

dy (w,y:) < dy (w, 2) + dx(z,z:) + dy (i, 1) < 2dg (¢, u) + 'g + 2dy (t,u) < 4,

which shows that the open balls of radius & centered at ¥1, ¥, - . ., ys COver ngfy (u).
Thus each equivalence class in Y is complete and totally bounded, and hence
compact, which completes the proof of the theorem.
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