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On the middle convolution and birational
symmetries of the sixth Painlevé equation

Galina Filipuk*

(Received October 11, 2005)

Abstract. In this paper we apply the Dettweiler and Reiter algorithm of
middle convolution for a linear Fuchsian system with four singularities the
isomonodromy deformation of which leads to the sixth Painlevé equation.
We obtain Okamoto’s first degree birational transformation as a result of
the middle convolution with a special choice of the parameter.

1. Introduction

Recently Dettweiler and Reiter gave a purely algebraic analogue of Katz’ middle
convolution functor in [5, 6, 7] and presented an algorithm for the construction
of Fuchsian systems corresponding to irreducible rigid local systems under the
Riemann-Hilbert correspondence. Earlier in [11] Katz described all irriducible
and physically rigid systems on the punctured affine line and introduced a middle
convolution functor on the category of perverse sheaves which preserves important
properties of local systems such as a number of singularities, the index of rigidity
and irreducibility but in general changes the rank and monodromy group. By
Katz’s algorithm one can obtain any irreducible rigid local system on the punctured
affine line from rank one local system by applying a suitable sequence of middle
convolutions and scalar multiplications. The main approach in (5, 6] was the
generalization of normal forms of the Pochhammer equation. Dettweiler and Reiter
not only reproduced Katz’ main result, but also presented both the multiplicative
and additive versions of their algebraic analogue, studied their main properties,
gave a cohomological interpretation and applied their theory for the construction
of explicit algebraic solutions of the sixth Painlevé equation in (7).
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The sixth Painlevé equation
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@, B, 7, 6 being arbitrary parameters, describes monodromy preserving deforma-
tions of 2 x 2 linear Fuchsian system with four singular points on P! [10]. The
Dettweiler and Reiter algorithm can formally be applied to any Fuchsian system,
not necessarily the rigid one. It guarantees that after applying the middle con-
volution functor a new linear system has the same number of singularities and is
irreducible. However, the dimension of the matrices of the Fuchsian system may
change. In case the dimension remains the same, i.e., we get 2x2 matrices after the
middle convolution transformation, we automatically get, as a deformation equa-
tion, the sixth Painlevé equation possibly with different values of the parameters
which gives rise to birational transformations [14]. In this paper we show how to
calculate explicitly Okamoto’s birational transformation via middle convolution.

Recall that birational transformations for the sixth Painlevé cquation were dis-
covered by Okamoto by studying the associated Hamiltonian system. He gave
explicit forms of canonical transformations of the Hamiltonian system associated
with the affine transformations of the space of parameters and obtained a nonlin-
ear representation of the affine Weyl group of the root system of type Dil). Ina
series of papers [2, 3, 4] Conte and Musette studied an extension to ODEs of the
singular manifold method originally introduced for PDEs. They showed that by
considering truncated Laurent series of the solution of the sixth Painlevé cquation
it is possible to recover the first degree birational transformations. Their method
is direct in a sense that it is based only on the singularity structure of the dif-
ferential equation. The Schlesinger transformations of the Fuchsian linear system
under which monodromy data are invariant were studied in [10, 13, 15|. These
transformations conserve two monodromy exponents and shift two others by an
integer. The Schlesinger transformations of the linear system generate transforma-
tions for the solutions of the Painlevé equation and their relation to the repeated
applications of Okamoto’s birational transformations was studied in [8]. However,
to find the Schlesinger transformation explicitly it is also necessary to examine lo-
cal behavior of solutions of the linear system and solve a certain Riemann-Hilbert
problem. The main feature of our approach presented below is its simplicity. One
needs to know only the Fuchsian system related to the sixth Painlevé equation
since the algorithm [5, 6] operates on the matrices of the system in terms of linear
algebra. Another treatment of Okamoto’s birational transformations is given in
[12] where they are related to a simple gauge transformation of the system with
irregular singularity associated to the sixth Painlevé equation.

To obtain Okamoto’s first degree birational transformation equivalent to ws
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[14] (see also [2]) via middle convolution we use the additive version of the middle
convolution transformation me, for a specific value of 1 equal to one of the eigen-
values of the matrix of the Fuchsian system at infinity. In case the dimension of
the matrices of the new linear system increases by one, we may apply the approach
given in [1, 9] and get explicitly the Hamiltonian of the original equation.

2. The middle convolution functor mc,

In this section we briefly outline the Dettweiler and Reiter algorithm following
[5, 6, 7] as it is necessary for our construction. The multiplicative version of
middle convolution functor denoted by MCj is a functor of the category of finite
dimensional C[F;]-modules of the free group F, on r generators to itself (local
systems), where A € C* is a parameter. It is a transformation sending r matrices
in GLn(C) to another r matrices in GL(C), where usually m is not cqual to
n. Up to a simultaneous conjugation in GL,,(C) this transformation commutes
with the Artin braid group [6]. There exists a parallel functor in the category
of the Fuchsian systems, mc,, which is related to MC) via the Riemann-Hilbert
correspondence by a monodromy map.

Let A = (Ay,...,Ar), Ax € C™*", For u € C one defines the convolution

matrices B = mcﬂ (ll‘) = (Bly e )Br) as fOHOWS:
0o ... 0 0 0 ... 0
B.=14, ... Ay Arp+ p Agyr ... A, | ecrrxnr (2)
o ... 0 0 0 .. 0

such that By is zero outside the k-th block row.
There are the following invariant subspaces of the column vector space C™":

[0

0

% = | Ker(Ay) | (k-thentry), k=1,...,r, ®3)
0

and .
A = () Ker(Bi) = Ker(By + ... + B,). (4)
k=1
Let £ = @}_,-% and fix an isomorphism between C /(X + Z) and C™ for
some m. The matrices C = mc,(A) := (B,..., B ) € C™*™ where By is induced
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by the action of By on C™ =~ C* /(X + £) are called the additive version of the
middle convolution of A with parameter u.

3. Main result

The sixth Painlevé equation (1) can be obtained [10] as the compatibility condition
of the linear system

A
—~t

0 0 0
8.7 = (ﬁ+_{&_+i)z, 8z =-—t2, (5)
T - z

z—1 t
where
pw_( =+ 6y  —uz o= at 6 —vz
0 uNz+0) -2, ! vz +6) -z )’

0 _ 2t+9t —wz 0 _ _(AO 0 o\ _ kl 0
At_(w-l(zt_*_et) "Zt)’ Ao = (AO+A1+At)"‘(0 ks

and k; — ka2 = Ooo, k1 + ko = —(f0 + 01 + 8;), Tr(As) =05, s=0,1,¢.
To simplify computations we apply the following gauge transformation to the

system above
1 0
Z= (0 ) W,

and get the Fuchsian system which we denote by D4 following the notation in

(5, 6]
AO Al At
W= (2o ’
> (x+$—1+x—t)W (6)
with
_ zs+es —UsZg _ _ ’l_l _ B g
As“(us—l(zs+03) —2zs )y s=0,1,¢, u()—v, u; =1, ut_’u.

The formulas by which the solution y = y(t) of the sixth Painlevé equation (1)
is related to the coefficients of the Fuchsian system (5) can be found in [8, 10] and
arc given by

Bootzo/y = yFIFF + (01 F, + t0,Fy — 2ko F1F2)Z + k3(F, — 1) — k(61 + 161),
—8ooTi21/Fy = yFLFeZ + (61 + Oco) Fs + t0.Fy — 2k FYF)Z + K3 F,
- k2(91 + t0t) — kiks,
O0otT12:/Fe = yFLFZ + (01 F: + (0; + 0o0) Fi — 2ko F1F3)Z + K3
— ko (6 + t8,) — thyk2,
tzou = k(t)y, Tiziv=—k(t)F, thzw=k(t)F,
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where

Z=z—-0y/y—6,/F - 6,/F,,

tTydy/dt = yF\Fy(2z — 6o/y — 6,/ F, — (6, — 1)/F),

tTidz/dt = (-3y* + 2Ty — t)2% + ((2y — T2)00 + (2y — £)6) + (2y — 1)(6, — 1))z
—ki(k2 + 1),

tTid(logk(t))/dt = (0o — 1)Fy, Fy=y—~1, Fo=y—t, Ty =t—1, To=t+1,

and the parameters are given by
a=(000_l)2/2v ﬁ=_0g/21 '7=0f/2) 6=(1_9?)/2

We first apply the additive version of the Dettweiler and Reiter algorithm to
(6) and get 6 x 6 convolution matrices B, of the new Fuchsian system with the
same singularities Dp = D, (4) for any x4 € C using formula (2). It is easy to
check using (3) that there are the following invariant subspaces of the vector space
spanned by A,:

0
0
&, = (uszs)/(as + 24)
1
0
0

(s-th entry),

where s corresponds to 0,1,¢ in our numeration and by (4)

& =("\Ker(B,) = Ker(Bo + By + By).

If 4 # 0, then it is not difficult to see that the subspace .% is spanned by the
following vector (¢,4,¢), ¢ € Ker(Ag + A; + A; + 1), where "v stands for the
transposed vector.

It is clear that the subspace % is not empty in case u coincides with one of the
eigenvalues of Ao, = —(Ap + A; + A;). We need to distinguish two cases when
g = k1 and p # 0,k1, k2. In the following we discuss in detail the case u =k,
which leads to the Okamoto transformation, and at the cnd we bricfly discuss the
other cases.

Next we construct the quotient space C®/(J¢ + %) by adding the vectors
(1,0,1,0,1,0),%(0,0,1,0,0,0),*(0,0,0,0, 1,0) to the basis. We obtain the fol-
lowing Fuchsian system as the result of the middle convolution transformation
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D¢ = Dme,, (B) with 2 x 2 matrices Cg:

Co = ot cF?
cdt 32’

Up 20 (0: + Zf_)

n_ (Bot+zo—uz)bi+2)  aa_ o _
“ = 6o + 2o y o =hmad ug(Bo + 20) ’
C, = ((—-90 +6) +0 — 9:)/2 0+ 2z — (Z] 6. + zt))/(u¢(91 + 21)))
0 0 ’

_ 0 0
Ce = (91 + 21 — (upze(61 + 21))/ (e + 2¢)) (60 — 01 + 60 + 0t)/2) '

We note that the eigenvalues of matrices C, are 0 and k; + ;. The eigenvalues
of matrix Coo = —(Cp + C1 + C}) are —ky and —ky + k2.

Let o o c
6IU=(?°+ : +—‘)U

z—-1 -t
be the Fuchsian system obtained after the application of the middle convolution
transformation and U = SY such that for a new system

My My | M,
Q,Y—( T +:c—1+:1:—t)y Q)

the matrix at infinity Moo = —S~}(Co+C1+C)S = —(Mo+ M, +M,) is diagonal.
By direct computations we obtain that matrices M, can be parametrized by

2L 40, + K —ulzl

M, = S o7 =0,1,¢, uj=-1
g ((u;)-l(z; o, +k) -z ) M

coefficients being expressed in terms of rational functions in us, zs, 0s.

Theorem 3.1. The isomonodromy deformation of middle convoluion system (7)
gives the sizth Painlevé equation (1) for the function

tubzd
(t+ L)upzd — tz +ulz
—y— (6o +61 — 8o +6:)(t —y)(y — 1)y
(B0 + 0: — 1+ (80 + 61))y — (60 + 61 + 6: — 1)y — (8o + (¢t — 1)dy/dt)

v1(t) = mex, (y(2)) =

and parameters
1 1
o = 5(00+ 0+ 0o+ 8. = 2%, B = —5(f0 — 01 + 00 = 60",
1 1
n= g(“eo +01+60 —6:), &= 5(1 —(fo + 61 — 0o — 8:)*/4),

which coincides with Okamoto’s birational transformation ToweTs.
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Remark 1. Okamoto [14] found birational transformations by considering the
Hamiltonian of (1). The action of ws, one of the generators of W (Dy), on param-
eters and a solution of the sixth Painlevé equation is given by

wa (b1, b2,b3,b4) = (b1, b3,b2,b4), w2 :y(t) — yalt),

where

— 2(b2 — b3)(t —y)(y — L)y
Y Y 0y + b5 — b — by + 2bgt)y + <26y + b3 + ba)y? + H(=b1 — b3 + (£ = 1))

and in our notation

_90-!-91 _00—9] _9°°+0t—2 _0:—900
b = 7 bz——T, bs—Ty by = 5

Thus, it is easy to check that mcy, = zowsza, where
T2(b1, b2, b3, b4) = (b1 ~ba+bg—by, bp—by +b3 by, by +ba+b3+by, —by —ba+b3+b,)/2

and
z2: y(t) = y~1(1/¢).

Remark 2. It is proved in [5] that the convolution is compatible with the Euler
transformation where the integration is with respect to the Pochhammer contour.
An interesting observation due to A.V. Kitaev is that the Laplace transformation
and a simple gauge transformation studied in [12] give the same transformation
z2w2x2 for the solutions of the sixth Painlevé cquation.

Remark 3. In case u = 0 we also get 2 x 2 system. However, we do not obtain any
shift of exponents and, hence, any transformation for the sixth Painlevé equation.

It remains to discuss the general case ¢ different from 0, k; and k.
Similar calculations of middle convolution transformation for system ( 5) show
that we get 3 x 3 matrices of the Fuchsian system Dg = Drne, (A°) of the form

botu Otz —SEUTSL 64z - pletn)
0

Go=| 0 0 ,
0 0 0
0 0 0
Gr= |60 +2~ IR g 4y 6,42 — 21020 |
0 0 0
0 0 0

0 0 0
90 + 25 — 7£—w:'9!03:‘z;’) 01 + 2y — ——@—w‘f‘(:’_"::;) 9{, + »
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and the residue matrix at infinity has the eigenvalues —u, ki — i, k2 — p. The
Schlesinger equations in this case are equivalent (see [1, 9] for details) to the
following system:

d_ f@t) dy __fz1)

dt  t-1" dt t
where £ = Tr(GoGy), ¥ = TY(G1Gy), f(z,y) = Tr(Go[G1, Gi])- Introducing a new
variable by H = z/t+y/(t—1) we reduce the system above to second order second
degree differential equation. Comparing H with the Hamiltonian function given
in [14] for the sixth Painlevé equation, we see that they coincide.
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