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A generalization of Sandor’s theorem using
iterated logarithms *
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Abstract. The paper deals with a criterion for certain sums of the series
to be linearly independent numbers. The proof uses the idea of Sandor’s
theorem.

1. Introduction

There is a nice book of Nishioka [8] where there are many results concerning
the irrationality, transcendence, linear and algebraic independence of the sums of
infinite series. Other criteria for linear independence can be found in [1], [3] or
[10].

For series consisting of rational numbers and converging very fast it is convenient
to define linearly unrelated sequences.

Definition 1.1. Let {a:n}5%, be sequences of positive real numbers for i =
L2,...,K. If for every sequence {cn,}3%, of positive integers the numbers
Yoo Va1 nen), 20, 1/(a2,n¢0), .., Yome11/(axncn) and 1 are linearly in-
dependent, then the sequences {a;n}3%, are said to be linearly unrelated for
i=1,2,.. K.

This definition is taken from [2]. In the same paper there is also a criterion for
sequences of Cantor type to be linearly unrelated. Recently Hanél and Sobkova
[5] proved the following theorem.

Theorem 1.2. Let K be a positive integer and let o and ¢ be positive real numbers
such that 0 < o < 1. Let {a;n}32; and {b;n}32, be sequences of positive integers
fori=1,2,..., K with {a1,,}3, nondecreasing, such that

1
limsup a{<¥7" = oo,
n—oo '

Mathematics Subject Classification (2000): 11J72
Keywords: Linear independence, infinite series
*Supported by the grants no. 201/04/0381 and MSM6198898701



26 J. Hangl, P. Ruckiand J. Sustek

that
a1n 2 n*
that
b,-,.sz(logzﬂm)", 1=1,2,...,K,
that
. 04 nbjn
lim =22 =0, 4j=12,...,K, i>}j
n—0o0 0; nQjn
and

0;,n2” (9B 200)" < gy o < g 20082 1"

hold for every sufficiently large n. Then the sequences {ain/bin}nz, are linearly
unrelated fori=1,2,..., K.

Other criteria can be found in [6] and [7]. The main result of this paper is Theorem
9.2 which deals with linear independence of special infinite series. The terms of this
series consist of rational numbers and converge very rapidly to zero in comparison
with the terms of series in Theorem 1.2. The proof makes use the ideas of the
proof of Sandor’s theorem in [9] and of the proof of Theorem 1.2. This paper also
includes two corollaries which are consequences of Theorem 2.2.

2. Main results

Definition 2.1. Let t be a nonnegative integer. We define the function Li(x) by
Li(z) :=loglog---logz  fort>0
[

t-titnes

Lo(z) :==.

Theorem 2.2. Let K and s be positive integers. Let {€i;}j=, be a sequence
of positive real numbers. Let {ti;}3=1, {ain}oz1 and {bin}3L, be sequences of
positive integers for i =1,2,..., K. Suppose that

lem(a 1 QKn) = nllm :: nts
< L1 n 3=1,...,8 Pin _
lg!_l_ggf( min Lel Jf8n+j ) Z mln L5l+l i (a-+l g ) ) =0 (1)

G=1,08 61,5 \ By ntj i=1 j=1,. Cit1,5 \bit1,nts
and that
Qi nd-s+j
bi nts+j H:c:l Lk(:::+::,) Lf:; (:::::,)

Qi n+tj
> eyrreverauE SO
b‘l RS k—- L (E: ::J ) Lii ; ( b: n+j )
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fori=12,...,K, j =12,...,s and for every sufficiently large n. Then the
numbers Y07 bin/G1n, Yoor bonf2n, -, Yo bkn/ak n and the number 1
are linearly independent over rational numbers.

Example 2.3. Let {a;n}e2; and {bin}2, be sequences of positive integers for
i=1,2 such that @11 = a2, =1, a1 2 =az2 =2 and bin=0b2n =1 forneN.
Also suppose

301.1 a),2...82,n41 + 2’ ifn = 2/6, k = 2m
g o = Jorn+Blog’(arn +1)), ifn=2%k  k#£2m
1,n42 = [42(111., 01‘2.4.02.,,)]0801."] + 1, zfn — 2k " 1’ k= 22m
a1, + [log® log?(an + log ai1,n)), ifn=2k+1, k # 22
and
75301.1 8)2.-02 ny41 + 2’ zf'n — 2k, k=9™
az,n + [5285 log* log(a , + vaza)] +2, fn=2k  k#2m
a2 nt2 = 531181, 2 °2 nt1
¥ +1, ifn=2k+1, k=22
azn + [77%_‘_4 log® log" log(az.» -+ 5log log @2n)], fn=2k+1, k£ 22m
for each n = 1,2,.... Let us take K = 2, s = 2, €110 =2, €612 =1, g5 = 3,

€,2=2,t,1=1t12=2, ) =2, to2 =3 in Theorem 2.2. Then we obtain the
fact that the numbers

n=1 Q1,n a2 n
and the number 1 are linearly independent over rational numbers.
Taking the special values of the integers K and s we get the following corollaries.

Corollary 2.4. Let K be a positive integer. Let €y,¢,...,6x be positive real
numbers and let ¢1,1z,...,tx be positive integers. Let {a;,}., and {bin}32, be
sequences of positive integers for i = 1,2,..., K. Suppose that

]cm(a a ) -1 m n+1
i . 1,1,---18K.n bint1
llnn_l.lolgf( Ly (ax n+l + Z L5+t (a.+1 nt1 )) 0

b, n+l i=1 t:+l Bit1,ntl
and that
Qint1 > Qin +1
bima Tl Li (3222r) - L) (52222) = b TR, L (322) - L3 ()

Jor i = 1,2,...,K and for every sufficiently large n. Then the numbers

Yo binfa1n, T2 banfazn, ..., Yoo brn/ak n and the number 1 are lin-
early independent over rational numbers.
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Example 2.5. Let {a: o}, and {bin}ol, be sequences of positive integers for
i=1,23suchthatay1=1,0a21=2,bin=1,b2n=1 foreveryn=1,2,.
Let us define

a1n + [logayn loga/ 2 logay» + log3 log ay x), ifn#Tm
a'l, +1 = n{a) 18] 2---23.n 2 )
n 34 (a1,10]1,2---23,n) +1, otherwise,
a2.n + [log az » loglog az,, log log? logaz » log®logloglogasn), ifn# 7™
azn+l = 223‘(01'xn1'2...a3_n)3
2 +3, otherwise
and
as,n + (3 log*" a3.n}, fnET
a3 ni1 = . 34"(n|-l“l.2"'“3,n)3
2% +11, otherwise.

Let us take K =3, g1 = 1/2, €g = 1, €3 = 1/4, ) = 2, ta = 4, tz3 = 1lin Comllary
2.4. Then we obtain the fact that the numbers

o0 o0

I I I
1 R 1
el A,n el a2,n Q.

n=1 3.n

and the number 1 are linearly independent over rational numbers.

Corollary 2.6. Let s be a positive integer. Let {€;}3-, be o sequence of positive
real numbers. Let {t;}5-1, {an}nzy and {bn}3%, be sequences of positive integers.

Suppose that
lim inf _____lcm(al, :,a")
n—00 mm L o)
i=1,... n+j

aond that

An+s+j > An+j
tj n ; i N = -
B [lomy Le(f222td) - L33 (52222) ™ by [Ty Le(528) - L] (b——L

fori=1,2,...,s and for every sufficiently large n. Then the series Y oy bn/Gn
is an irrational number.

Example 2.7. Let {a,}32, and {b,}32; be sequences of positive integers such
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thata1 =1, a; =2 and b, =1 for everyn = 1,2,.... Let us suppose that

[5 ymermramanrimra] 4 q, fn=3k 501k
an + [2log* ay), ifn=3k, 5011k
tns = 4 gememnintl 4 g, ifn=38k+1,503|k
an + [log ax log® log? ay), fn=3k+1,5031k
g™ ) ifn=3k+2 505 | k
 @n + [loga, log log? a, log® log log ay, ifn=3k+2, 5051%k.

Letustake s =3,61=3,e2=2,e5=1, 1, =1,t, =2, t3 =3 in Corollary 2.6.
Then we obtain the fact that the series

s an trrational number.

Remark 2.8. If we put K = 1 in Corollary 2.4 then we obtain Theorem 2.2
from [4].

3. Proofs

We need the following two lemmas to prove the Theorem 2.2. The first one gives
us basic properties of the function f(z) defined as a product of the functions L; (z)
occuring in Theorem 2.2.

Lemma 3.1. Let t be a positive integer and € be a positive real number. Let f(x)
be a real function such that

T
[Ties Li(2) - L(2)

Let F(y) denote the inverse function of f(x). Then

y=f(z) =

t
i) F(y) > H Li(y) - Li(y) for sufficiently large z,
k=0

ii) f(z) > z°, 0<B<1 for sufficiently large = and
i) Li(z) = o(x).
Proof. [Proof of Lemma 3.1| ad i) It is obvious that y < z. Then

T x

T L@ Li@) Lo In() L)

y
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Multiplying both sides of the inequality by the product in the denominator we get

t
[l Lcw) - Liw) <z =F(y).
k=0

ad ii) The inequality is an immediate consequence of the limit

f() = 09, 0<B<1l.

z—too a:ﬂ

ad iii) It is clear. O

The second lemma yields a special estimate of the relation between terms of a
positive real sequences z; and iterated logarithms L§(z:)-

Lemma 3.2. Let K and s be positive integers. Let {Zin}ox, and {€i;}j=; be
sequences of positive real numbers such that llm Tin = 00. Let {tij}i=) be a
sequence of positive integers for i = 1,2,. K Suppose that there exists a real
number M € (0,1) such that

min IE‘;,,-H. 3

j=1,...,8

J—qlnn Lti+1 ] ($i+1,n+j)

<M 3)

for every i and every sufficiently large n. Then the inequality

min :c,,,,..,. 7

_1, '
J <M

J_rrlnn L,” (Tun+s)

holds for each pair u,v satisfyingl <v<u < K.

Proof. [Proof of Lemma 3.2] Let J(i) be a positive integer depending on i such
that Zy4inta6) = . rrlnin sa:,,.,.,-,ﬂ_H- for eachi=1,2,..., K. Then using (3) we get
i=1,..,

u+|
+
P mm Ltu g (wu n+J) =1 —lm Lt:+:;'($1,+, n+.1) _nlnn Ty+intj
s =

Cuti,i
u—v—1 mln Ltu.p. j (fl:«u.*., n+J)

< MUY, H j=l,...

u—v-1 Lev+- (i)

<m ] trsae (Botint (@) @
a Ty+i,n+J(i)

Tyti,n+J(i)

i=1
Using the assertion ii) of Lemma 3.1 we obtain that the last product in (4) tends
to zero, thus

mm Ty, u—v=1 pEvtid) . .
i Eoss e T B i) s gy
min Lt ](:cu,n+,) i Tyti,n+J(@) = <

=18



A generalization of Sandor’s theorem using iterated logarithms 31

Now we can prove Theorem 2.2.

Proof. [Proof of Theorem 2.2] Suppose to the contrary that there exists a. K-tuple
of integers a1, s, ..., ax not all equal to zero, an integer p and a positive integer
q such that

p K oo bs .
- = Q; hi i .
q ; ' ; ik
Let L be the first index with ap # 0. Without loss of generality assume that

ay > 0. Then

Multiplying both sides by glem(ay,;,...,ak,») we obtain that

n

plem(ay 1, ...,axn0) = qglem(ay,q,...,ak,n) Z Za, -
L k=1 ik

K oo
+qlem(ay,y,...,axn Z Z
i=L k=n

)

This implies that the number

B, =glem(ayy, .. ,aKn)Z Z

i=L k=n+1 ik

(%)

is an integer for each n € N. The idea of the proof is simple. Show that 0 < |B,| <
1 for infinitely many n. The proof consists of three parts.
Firstly, rearrange the assumption (2) in the following way

Qin j
fi.j (,—4—3-*-1) f;]( ,'n+_1) +1
bi,n+s+j bz n+j
x
ITi2, Le(@) - il ()

for each i = 1,2,...,K, j = 1,2...,s and for every sufficiently large n. The
incquality can be gencralized using mathematical induction. So we get that

where

fij(x) =

S i
T G EX ) R ®
bz,n+rs+] bt,n+_7

for every positive integer 7 and for sufficiently large n. It is easy to show that
fi,j(z) is an increasing function for sufficiently large z and for each ¢ and j. That
means that there exists a function F; ;(x) which is inverse to f; j(z). Note that the
function f; j(x) is the same as the function f(z) defined in Lemma 3.1 for given
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numbers i and j. This implies that the assertion i) in Lemma 3.1 is valid for the
function F; () as well. As well as f;;(z), the function F;;(z) is increasing for
sufficiently large z. This fact, the relation (6) and the assertion i) in Lemma 3.1
yield that

Qi ndtrs+j 2 y (fz,] (az n+3) + ’I‘)
bi,n+1‘s+j bt n+j
ti;
>l (ro(mst) or) iy (s (F222) +r) - @
1 n+3 i, n+]
foreachi=1,2. ..,K, j=1,2,...,s and for every sufficiently large n.
Secondly, prove that By, # 0 for infinitely many n. To do this we need to find

the upper bound and the lower bound of the series Y ;2 ., bik/aik. Use the
following integral inequality to obtain the upper bound.

i 1 <[ dz _ 1
S Moo Lz + ) - Li(z+1)  Jem1 [hhimo In(2) - Li()  €Li(z—1)

where € > 0, ¢ is a positive integer and z is a sufficiently large real number. Using
this, (7) and the fact that llm ai /b = oo for each i = 1,2,..., K, which is

implied by assumption (2), we get, that

Z =35 Dtmers

k—n+l ]-'1 m=0 Gin+ms+j

1
< Z Z TTk: o Lie( ftya(a_"ﬁi) m) - Ls”(fid(ai Fenti) 4+ m)

j=1m=0 k-' Binti ti,j bintj
<3 > 1 o 1
E"J Ltt g (ftv] ( b, n+i ) 1) —1 E"-’ Lti,j (f""J (bi.n+j ))
for i = 1,2,...,K where ¢;,¢2,...,Cx are suitable positive real constant not

depending on n. As mentioned above, the assertion ii) in Lemma 3.1 holds also
for the function f; j(z) for given indices i and j. So we obtain that

i b‘lk < - cz C,',
kmny1 S0k 5o BRI f: (f"J(;: ::,)) j=1 E4d LE'J ((a_':_:f)ﬁ)
8
G 1 —€; -(ai.n+j>
< R L, | —— 8
< e ’YLf.'f(Z—:'ﬁf) jmhins 40\ bynag ®

where 8 and 7 are real numbers with 0 < 8,7 < 1 and R is a suitable posi-
tive real constant not depending on n. This is the upper bound for the series
S nt1 bik/aik. It is trivial to find the lower bound of the series, thus

= bik bin+j ,
—= > max —— fori=1,2,...,K. )]
k=n+1 ai-k J=ls ai,"+j
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We have defined the number oy as the first index with oy # 0. To prove that
B # 0 it suffices to show that B, has the same sign as ¢, for infinitely many n.
It is obvious that the sign of B, depends only on the sign of the double series

>3

t=L k=n+1

t!

look at (5). Without loss of generality we have supposed that a > 0. Then using
(8), (9) and the fact that (b;x/a;x) — 0as k — oo fori = 1,2,..., K we obtain
that

§§4 map 3 bk 5 3 b

ik k=n+1 t—L+1 k=n+1

2 e Z bi: Z o] Z a;k

k=n+1 i=L+1 k=n+1

be e
>aqp max —=t _p E lai] jmax L,f‘ ol e
F=1,.,8 QL n+4j i=L+1 =1, bi,n+j

_Cf.j(axxn-i-z)
= max _”L-"ﬂ'( R Y o S e )
max

=8 QL naj 2Lty

azk

t=L+1 =1,...,s GLin+j

Jj=
b K rrl1in —'—1:: e
— L,n+j [ i
= . max _ ar — R Z 'all 1n L€1 oJ (G:,n-l-l) (10)
i=L+1 tij \b; ntj

for sufficiently large n. Now we use the condition (1). It asserts that there exist
infinitely many n such that

min Qintj
lcm(al 1y-«+, K n) + S [ < M
51: c'-lxn-‘kl Z el+1) Qitlntj
mm L (bl.n+j i=1 =mm L‘-H g (b-+1.n+j )
for every real number M with 0 < M < 1. Hence
lem(ay1,...,a8K0)
. €1, [/ Q1,n4j < M (11)
min L, (b—'—l)
j=1,...,s ‘1 \OlLin4j

and
min Sinti
J=1,...,s Vints

€it1,5 a|+lln+z
mln Ltt+ll( ,+1 n+j

<M fori=1,2,...,K —1.

Note the important fact, that the positive number M can be chosen arbitrarily
small for infinitely many n. We will use this fact several times. The latter inequal-
ity, showing the relation between terms of the successive sequences a;n/b;, and
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@i+1,n/bi+1,n, can be generalized so that the relation holds for each two sequences
Gun/bun and @y 5 /by with1 <v < u < K. To do this we use Lemma 3.2 putting
Tin = Ginfbin for i=1,2,..., K and we obtain that

F=1yn,s Buinti

min Lg* (%Z;"-f,‘)

i=1l,...,s

<M forl<v<u<gkK. (12)

Let us put v = L in (12). Then this and (10) imply that

Z Z o max bLm “(al, RM Z la,)

a =1,...,8 Q@
i=L k=n+1 ik J »® GLintj i=L+1

> max bLnts (ap —1) > 0.
j=1,..8 QL n+j
Ifoa; =0fori=L+1,L+2,...,K then the second inequality is evident.
Otherwise it suffices to take the number M sufficiently small, ie. M < min(1,
1/(R Zfi 41 || ). From this and (5) it follows that B, is a positive integer.
In the case ar < 0, the procedure is analogous. So we have proved that B, is a
nonzero integer with the same sign as oy.
Thirdly, prove now that |B,| < 1. From (5) we obtain that

0 < |Ba| < glem(ays, .-, ak,n) Z Z (13)
i=L k=n+1
Setting v = 1 in (12) and using the upper bound (8) we have that
k _ a-' .
Sled 35 55 <RY o e 175 (222)
i=L k=n+1 Qi ke i=L tntg
_ Rla|
- €1,j (B1,n+j
J_nlun Ltl g (bl mti )
t—ex‘.j (ac.n+i)
i Y
1 3 i3 i,ndj
+ max —tt RZ|a,| et T
J=1,...,8 Q1 n+j 24ndj
1.-max(2 L) j=1,..-,$ Ql,n+j
_ Rlea|
- €1, (G1,n+j
._.l.linn L‘l W7 (b| '.,+J)
b K ] nilin —'—L‘;: 2t
1,n+j j= ,§ “Lintj
+ ,_l’_I{a.Xs —_a n+{ . R Iatl rnin |L€i ] (a. "+Z)
I=1,..., 1,n4-j i=max(2,L) G=1eens tij \bintsj
K
R|e| b1,n+j
i
min Lé‘l.J (ﬂ) n+z) ma'xs a . ' RM z |a1|
jolys t13 \Bints mt Pt mmax(2,L)
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K
RM Y ol
R Ial| i=max(2,L)
€1,j {C1,n4 . Q1 n4j
Jmin L (g jduin gl
R |C!1| 1

< 51 i (a, n+)") + @) nij!
tl i b1 it bl ntj’

where M is a sufficiently small positive real number and j’ resp. j” are indices
with 1 < j',5” < s in which the minima

1 . ay
min SLnti resp. _min Lz Shantd
i=l.,s by R J=ly..,8 b1 n+j

occur. Using this and assertion iii) in Lemma 3.1 we get that

S -
Q; a, G1,n4j El Jll(al n+ -u)

t=L k=n+1 [ 50 bl,n+j”
Rl&ll
51 3 Onj! el G (B neit
tl Ny (bl ntit ) tl 3 (bl',”_j/r)
y 1 o Rl __ 1+Rje]
= TE& 91, nt5 51 G (81t - €1,; 01 n
Ltl.j" (bl'“_"’.,, ) t’ R (bl i ) mln Lt! g _'_t'zbl i

From this, (11) and (13), we obtain that

0 < |Ba| £ qlem(ay y, - )aKn)Z Z e I—
i=L k=n+1
(1+Rla1|)qlcm(a“, QK,n)

€1 j G1,n+4
_nlnn L '_'_J'b, nﬂ)

<(1+Rla|)gM < 1

for infinitely many n. So we have finally proved that 0 < |Bn] < 1. However, this

contradicts the fact that B, is an integer. O
Proof. [Proof of Corollary 2.4] Put s = 1 in Theorem 2.2. a
Proof. [Preof of Corollary 2.6] Put K =1 in Theorem 2.2. a
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