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On the singular Fano threefold Vj;, with a small
Gorenstein singularity : (an example)
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Abstract. Let V be a Fano 3-fold of p(V) = 1 with at most Gorenstein

terminal singularities. Assume that V is indecomposable (see [11]). Then

one has the genus g < 10 ( g < 12if V is smooth). On the other hand, in the

case that V' is decomposable, there can be a Fano 3-fold V5, of ¢ = 12. In

this paper, from the viewpoint of compactifications of C3, we shall construct

a Fano 3-fold V35 of genus g = 12 with

(i) V2 has a small Gorenstein singularity of A;-type.

(ii) b2(V22) =1 and ba(V3h) = 2.

(iii) There exists a reducible Cartier divisor A2 C Vg5 such that W :=
Via — Az & (C* x C2) UC? (disjoint union).

Notation

Ny|x : normal bundle of Y in X

c1(F) : first Chern class of F

h¥(L) := dim¢ Hi(+; L)

Bs|L]| : base locus of the linear system |£|
b;(X) = dim]g Hi(X; R)

p(X) : Picard number of X

mult 4 X : multiplicity of X at a general point of A
Kx : canonical divisor of X

~ : linear equivalence

2 : isomorphism

F, : Hirzebruch surface of degree n

Q? : quadric cone in P®
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@3 : quadric hypersurface in P* with an isolated singular point

Vs : smooth Fano threefold of index two and degree 5 in P®

Vi*: singular Fano threefold of index two and degree 5 in IP® with
small Gorenstein singularities

Vs : smooth Fano threefold of index one and degree 22 in P13

Vy»: singular Fano threefold of index one and degree 22 in P!3 with
small Gorenstein singularities

1. Introduction

Let (X,Y) the analytic compactification of C3, that is, X is a 3-dimensional
compact complex manifold and Y an analytic subset of X such that X — Yis
biholomorphic to €3. The compactification (X,Y) is said to be projective (resp.
Moishezon) if X is projective (resp. Moishezon). Then we have the following

Theorem 1.1 (cf.[1],[2])- Let (X,Y) be a projective compactification of C? with
the second Betti number by(X) = 1. Then Y is an ample divisor and —Kx ~
rY (r € N,1 < r < 4), that is, X is a smooth Fano threefold with p(X) =1
Moreover,

(1) r=4=> (X,Y) = (P*,P2).

(2) r=3= (X,Y) = (Q%Q}).

(8) r=2=>(X,Y) = (Vs, HY) or (Vs, H).
(@) r=1=>(X,Y) = (Vao, H,) or (Vaz, H),
Notation:

- HY (resp. HE®) is a normal (resp. non-normal) hyperplane section of V5 such that
Sing H? = {a rational double point of A4 type} (resp. Sing H$® = £ (a line)
with the normal bundle Ny, = O(—1) ® O¢(1)).

. HY, and H§ are the non-normal hyperplane sections with Sing HY), =
Sing H$S = L, where L is a line on Va, which has the normal bundle
Ny, = Or(—2) @ Or(1). In particular, one has multy HY, = 2 and
multy H$S = 3.

On the other hand, in the case that X is non-projective, we have the following:

Theorem 1.2 (cf.[3},[4],[5],[7])- Let (X,Y) be a smooth analytic compactification
of C3 with ba(X) = 1. Asuume that X is non-projective. Then

(1) X is Moishezon.
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(2) Y is a non- projective non-normal irreducible divisor.
(8) —Kx ~rY (r=1,2).

Moreover assume that Y is nef. Then there ezists a small birational contraction
®: X — V* of X onto a Fano threefold V* with small Gorenstein singularities
such that

(a) the exceptional set of ® consists of finitely many smooth rational curves C;
supported in Y, and the normal bundle Ng, x of C; in X is isomorphic to
Op1(—1) ® Op1(~1), Op1(—2) ® Opr or Op1(—3) & Opi (1).

(b) A := @.Y € PicV* is ample and —Ky. ~ rA, in particular, PicV* =
Z0Oy-(A).

() V' ~A=X-Y 2C? with by(V*) =1.
This yields the following problem.

Problem A. Determine all the singular compactifications (V*,A) of C3 such
that

(1) V* is a Fano threefold with (non-empty) small Gorenstein singularities,
(2) ba(V*) =1, and
(3) Ae|Oy-(1)].

Let (V*,A) be as above. Then we have Ky. ~ —rH (0 < r € Z) for H €
|Ov-(1)|. The integer r is called the Fano-index of V*. If 7 > 4, then V* = Pp3 (in
fact, 7 = 4). Since V* has singularities, this case can be excluded, that is, we have
only to consider the case of 1 < r < 3. We remark that the condition " ba(V*) = 1"
does not necessarily imply "bs(V*) = 1" even if V* has mild singularities. In fact,
there exists an example such that ba(V*) =1 and bs(V*) = 2. We note that he
fourth Betti number bs(V*) is equal to the number of irreducible components of
the boundary divisor A.

On Problem A, we obtain the following.

Theorem 1.3 ([4],(7]). Assume that r > 2. Then

(D) Ifr =3, then (V*,A) = (Q}, Az), where Ay ~ AL+A} (as a Weil divisor) is a
hyperplane section consisting of two planes such that A3NAE is a generating
line passing through the verter of Q.

(IX) Ifr =2, then d = (A)® = 4,5. Moreover,
(a) d=4=> (V*,A) 2 (V;, Ay), and ba(Vy) = ba(V7) = 1.
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(b) d = 5 = (V*,A) = (V§,As), where V' has a small hypersurface
singularity of Ay-type,and ba(Ve') = 1 and ba(Vg') = 2. As = A} + A
is a reducible hyperplane section. Moreover, there is a compactification
(Ve,As) of C3 such that AL 22 Fy, A is a normal rational surface with
a rational double point of A,-type.

(IIT) If r = 1, then there exists a Fano threefold Vig C P of degree 18 (that is,
the genus g = 3(—Kv,)® +1 = 10 and a non-normal hyperplane section Nig
of Vi such that

(c) bao(Vis) =ba(Vip) = 1.
(d) Vi3 a small Gorenstein singularity p € Ais.
(e) Vig— A= CB.

Remark 1.1. Now let V be a normal Gorenstein Fano threefold, that is, —Kv
is ample. We call the integer g := 4(—Kv)® + 1 the "genus" of V. Then V is
decomposable if | — Kv | is a sum of two movable Weil divisors, ie. —Ky ~ Hi+H>
with dim |H;| > 0 for i = 1,2. V is indecomposable if V' is not decomposable. Then
Mukai [11] classifies the indecomposable Fano threefold with at most Gorenstein
terminal singularities by the vector bundle method. He also proves that the genus
g of V satisfies g < 10 if V' is singular and indecomposable. On the other hand, if
V is smooth, then it is shown that g < 12, (# 11). It is known that Fano threefold
Va2 of g = 12 actually exists and is a compactification of C3. Thus the problem
will be the existence of singular and decomposable Fano threefold of the genus
g = 12. Now, in this note, we shall construct such a decomposable Fano threefold
Vs, (g = 12) with a small Gorenstein terminal singularity.

Finally we shall propose the following
Conjecture 1. Let (V*,A) be as in Problem A and assume that 7 = 1. Then
ba(V*) £2 and
(1) V*=Viifby(V*) =1

(2) V* 2 V3, if be(V*) =2 and C* C V5.

2. Singular Fano threefolds Q} and Vg as a compactification of c3
2.1.

We recall the Fano threefolds Q3 and Vg constructed in the paper [7]. First let P4
be the 4-dimensional complex projective space with the homogeneous coordinate
system (Zo : Z1 : Z2 : T3 : T4) and Q3 a quadric cone defined by Q3 := {zoz3 =
172} in P4, Then the singular point of Qf is the vertex p:=(0:0:0:0: 1) e
of the cone. Let Qo be the hyperplane section defined by Qo = {zs = 0}
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Then Qoo (= P! x P') is a smooth quadric hypersurface in P3. Let A, := {zo =
0} be the hyperplane section of Q3. Then we have Ay := A(l) + A(z) , where
A = {zo = z; = 0} (i = 1,2) is a smooth Q-Cartier divisor isomorphic to P2.
We put g := A(l N A(z) = P! ( a generating line of QF). It is easy to see that
Q3 — A2 = C3. Let & : X — Q3 be a small resolution with the exceptional
set C := &7!(p) = P'. Let o : By(P*) — P* be the blowing up of P* with the
center p and QTS the proper transform of Q3. Then the restriction o : @f — Q3
is a resolution of the singularity p with exceptional set a~!(p) = @, = P* x P!.
Let B8 : Bo(X) — X be the blowing up of X with the center C. Then we
have Bo(X) = 6"- and the birational morphism a is factorized as o = @ o 8,
that is, o : @ Lx 2 Q3. In particular, one has the normal bundle Neix =
Op1(-1) ® Op1(—1). From Q} — A, = C3, one has b;(Q3) = bi(A,) for i > 0.
On the other hand, since b;(A2) = b; (A(l)) + b; (A(2)) — b;(g), one has easily
b1(QF) = b3(QF) = 0, b2(QF) = 1 and by(QF) = 2. Thus we have

Theorem 2.1. (Q}, A2) is a singular Fano compactification of C? of indexr =3
with a small hypersurface singularity of A;-type, in particular, ba(Q3) = 1 and
ba(Q}) = 2.

2.2,

Next we shall give a constructlon of a singular Fano threefold V;* as a compact-
ification of C3. Let (Q3, AQ,A2 ,Q@co,9) be as above. Let us consider a twisted
cubic curve v : P! — Qo C P® defined by y(u : v) = (u3 : u2v : ww? : v3).
We set s := {29 = 7, = 24 = 0}, f = {20 = 22 = z4 = 0} and
¥ 1= ¥(P') C Q. One seces that s, f are two different rulings of Q. = P! x P!
with PicQo = Zf & Zs Then we have a linear equxvalence v~ s+2f. By
construction one has A n'y =f ﬂ'y = q and A2 Ny = sN+vy = 2q, where
g=(0:0:0:1: O)-—sﬂfﬂg Let w: Qo — Q} be the blowing up of Q3 along
7 with the exceptional set § := 7~1(y).
Then we can prove that

Proposition 2.2. (1) h’(0O (S +20)) =7
(2) Bs|S + 20| =

Let & : Q3 — P bea morphlsm defined by the linear system |5 + 2Q0o|. We

put Vg = <I>(Q0) CP®and S:=3,5. Since (S+2Q°°) =5, one has deg V' =5
in P®. We can see that the exceptional set Exc(fb) Qoo. Then we also have

Proposmon 2.3. V' is a Fano threefold with o small Gorenstein singularity

= &(n~'(p)) of A;- -type and smooth along the line E := ®(Qoo), in partic-
ular, SingS = E and @ : Q3 — Vg is the blowing up of V' with the center
E.
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Remark 2.1 It is easy to see that the restriction v := zI;I 5 § — Sis the
normalization with »~1(E) = Z. By construction v|g : & — E is a double
covering. It is easy to verify that ba(Vg") = 1, bs(Vg) = 0, ba(Vs) = 2, in
particular, Pic V' 2 ZOv; (S). The birational morphism & := Por~1:Q} --» V&
is given by the lincar system |Oggz(2) — 7| since 542000 ~ 27*(Qoo) — 5. We
set AD == F(AP) fori =1, 2 and A5 = AL UAP. Then AY is an effective
Q-Cartier divisor on V7. By construction one sees that Agl)(resp. A?)) is a
smooth rational surface (resp. rational surface with a rational double point of
Ay-type). In particular, As is a hyperplane section of V¢. In fact, we obtain
3*A5 ~3*'S ~ § +2Qc0.
Finally we have the following

Theorem 2.4 ([7]). (V&', As) is a singular Fano compactification of C? of index
r = 2 with a small Gorenstein singularity of Ai-type, in particular, b2(Vg') = 1
and ba(V5') = 2.

Remark 2.2. Let V be a Fano threefold of degree 5 in IP® with at most Gorenstein

terminal singularities. Then one can prove that V' is smooth if ba(V) = by (Vy=1

3. Fano threefold V3, of degree 22 in P! with one small singularity of
A;-type.

First we shall study the detailed structure of the non-normal del Pezzo surface S
constructed in the section 2. Let us recall the normailization v := 3| §° 55— 38
and the analytic inverse image v~!(E) = L. We have the anti-dualizing sheaf
wg! = Os(S), which is an ample invertible sheaf.

Lemma 3.1. (1) h%(©Oz) =1, h'(Og) =0.
(2) x(©3) =1, ('wy -5) = -2,
(3) (ws - E) = —1 and E is irreducible reduced, in particular, E = Pl
Lemma 3.2. h%(r*w3') = h%(w5!) + 1.
Proof. Let us consider an exact sequence (cf.{10, (3.34.2)]):
0—-)05—»1/.0§—»w§1®w5- —0
By operating ®uwjs ', we obtain
0 —wg! — 10z Qws' — ws' @wg — 0
By the projection formula and the Serre duality theorem, we have:
HO(S; .05 ® ws'.l) ~ H(S; V,Og(u*wgl))

=~ H(S; v w3t)
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and

H(S;w5! @ wg) = HY(E; O ® ws)
= H!(E; Og(-1))
=4 HO(E; Og)
= H(P'; Op1)
>C.

Since H'(S;w§™") = 0 for n > 0 by Goto-Mori-Reid (cf.[10]), we have the
following;:
0 — H(S;w5!) 25 HO(S; v w3t) — HO(E; Og) — 0
This proves the lemma. (]
We set £ := 2Qo + 5. From the following exact sequence
0 — 05(20w) 5 O (£) — Og(L) — 0,
we obtain the following:

00— H°(Q3, & (0) — H°(5,05(L)) — H(Q}, Qa(ono)) —0 (#)

Claim (3.a.) H'(S,05(L)) = H(S, 05(S + 3F)) = H*(S, v*w3!) = CT.

In fact one has L]z = (2Qc0 + S)lg ~ ¥+ 3F. On the other hand, since
vwglis ample on S = F; with degv* wg =5, one has v*wz' ~ O5(T + 3F).
Since HY(S, 04 5(c+3F)) =0fori>0, by Riemann-Roch theorem, we have the
claim. a

Claim (3.b.) Hl(Qg,o@(zéw)) ~ HO(E, OF).
In fact, let us consider the following exact sequences:
0 — O — 0 (@) — O5_(-f) — 0
0— 0630(Q°°) — 063;(2Q°°) — O0g_(~2f) —0
0—0g, (-f) — 05, — 07— 0
0 — 0p_(-2f) — O5_(-H) — OF—0
Since @w =~ P! x P!, we have

-~

LA _ 0,2 (®l7). 0
H'(Qui Op (-2/) 2 HU(F,07) = H(E;0p).
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On the other hand, since H* (@,063 (Qoo)) =0, we have
0

HY(@}, 0g3(2Qe0) = H! Qi Og,, (=21)-
This proves the claim. O
Thus by (#) ,(3.2) and (3.b) , we obtain the following

Lemma 3.3. o H(@3, Og3(£0)) & v* H'(S;w5") = C°

Finally we shall give a basis {v*ho,v*h1,...,v*hs} of v* HO(S;wg!) =2 C8 ex-
plicitly below. Let U; := {(ui,v:;) € C*} (i =0,1,2,3) be coordinates covering of
S =T, with: ’

u1=u51 vg=v1'1 u3=u2-1 ’Uo=‘Ua_1
v=uv, |(w=wu, [(v=uiv, (v=us,
on U;NUip =C x C*, (i=0,1,2) and U3 N Up = C x C* respectively.
Let F, Fo, (resp. £, o) be the fibers (resp. sections) defined as follows:

FNU;={u; =0} (=0,3) and Foo NU; = {u; =0} (i = 1,2).
AU, = {v; =0} (i =0,1) and Teo N U = {v; =0} (: =2,3).

Taking into account that v* H*(S;wg?) C HY(S : O(S + 3F)), we may assume
that v*h;’s are given by

vhe =udvp=v =1=1u}
v'hy =udvg =uv = up = uj
vhy =ugug=ulvy =uf=us
V"h,;; =V = u‘fvl = ug =1
vhy =ud=1=vy =ulvs

vths =1 =‘u,f =u§vg =v3

\

Then the normalization map v = EI;|§ 8§ —S=Vn{x=0cPis
given by (v*ho : v*hg : v*hy i ... : v*hs : 0), where (20 : 21 : ... : 25 ¢ zg) is the
homogeneous coordinates of PS. We set z; := E—'- (0 < i £ 4). Then we have the

5

local defining equation

SO . =8n {7.5 #0} = {(:1:2,:1:3.:1:4) € C3|Z§ = $§$4}
E(o) :=FEN {25 -',é 0} = {(12,33.214) (3 C3|:L'2 =3 = 0}
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First we take a smooth rational curve ' ¢ S ¢ Vg C P8 of degree 5 satisfying
FNE = {t*} (double points), where v~1(t*) N Uy = {(-1,0),(1,0)}. Such a
rational curve T always exists. In fact, take a smooth rational curve T ~ & +3F
on § defined by

Tnu, = {vo = (up + 1)?}
Tnuy = {uor = (w +1)%)
Fnu, = {3 = va(us + 1)}
TNU; = {1 = vs(uz +1)?)

and set I' := u(f) C S. The local defining equation of T is given by
(0) ~ 1 1 2
r :=PnUo={:L‘2=5(.’1}2—1’3—1):23,:64:Z($3—£C4—l) }
in the affine part Uy = C2. Take the coordinate transformation below:

:z:=a:2—--;-(a:3—x4—-l):c3
b2: qy=13(zs—z4—1)

z=24— §(z3 — 24 - 1)%,

on C3, then the defining equations can be written as follows:

5 ={(z,4,2) € C*l2® + 2zy{z + (y + 1)?} — {z + (y + 1)*}2 = 0}

E® ={(z,y,2) € Clz =z + (y +1)* = 0} (##)
I® ~{(z,3,2) € Clz = z = 0}
t* =(0,~1,0)

Now, there exist two lines Fy, Fy in S passing through t* given by

z=2(1-y2 z=-2(1+1y)?
(Fl):{ 1=y (Fz):{ (1+3)
y=1-9%, y=1-y
Then one sees that Fy NT = {(0,1,0), (0, -1,0) = t'} and FoNT = {t*}.

Let o : V5 — Vg be the blowing up with center I and D — Exc(o) the
exceptional set. Let S (resp. E) be the proper transform of S (resp. E)in V,
and let F; (i = 1,2) be the proper transform of F; in .

Lemma 3.4. SingS = E U {I"}, where the isolated singular point * € 5 is the
rational double point of A, -type.
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Proof. We look at the local defining equation (##). Let oo : Brw (C3) — C3
be the blowing up of C? along ['® = {z = z = 0}. Let {W; = C{, ,, .} bea
chart of B (C3) = W1 U W, with the relation:

T = Uy = UW2
y=un="1u
Z=uUW = U2
wwe =1

on Wi N Wa. An easy computation shows that the local defining equations of S
and E are given by

(S) : uy + 201 [urwy + (v +1)3] = wifwwy + (v +1)*]> on Wi
" [uz + (v2 + 1)? — vaws]® = wi(uz +v3) on W

and
(—E-) 'wg=u2+(v2+1)2=0 on Wy

It is easy to check that
Sing SN W, = {we = ug + (v2 + 1)2 = 0} U {(ug, v2,w2) = (0,—1,2) := t*}.

Next we shall show that S has an (isolated) rational double point of A;-type.
To prove this, we shall recall the local defining equation of S on W,. The following
coordinates transformation

u_‘u.z-l-(‘02+1)2
w2
V=12

w = Wa

yields the following:
wi(z —y)? = wi(uw — 2v - 1).

Hence the defining equation of S near the point (u,v,w) = (0,-1, 2) is given by
(w—v-1)2=u(w-2)

This shows that S has a rational double point of A;-type at ¥ € Wi. This
proves the lemma. 0

Corollary 3.5. S| = T + 2Go, where T is the closure of Sno~ YT - {t*}) in
D, and Gy is a fiber of P*-bundle D — T over a smooth rational curve T'.

Proof. Set us = 0 in the above defining equation (S) in Wa. O
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Lemma 3.6. On the surface S one has

(1) FinGo = {F}, in particular (F, - Co) = 1
(2) (F.-T)=1,

(3) EnF, =0.

(4) T ¢F,.

Proof. The defining equation of the pull back F? := o*F; of F; is given by

(Fl‘) . {ul = 2(1 —‘U?) U {ul =0
' 1

w =3 v = -1
=21 — 2 -
(F;);{z(l_(;)zl;(lm):() v {::=—0-1
where
Go={ui=v:+1=0},
F1={u1—2(1—vf)=w,———0} {we —2=1up —1+v2 =0},

Fy ={'u.1+2(v1+1)2=2w1(v1+1)+v1 -1=0}
= {u2 — 1+ 95 = wa(1 —v2) + 2(1 + v,) = 0}

Since F; and Gg mtersect,s at the rational double point &* € § — E of A,-type,
one has (F, - Gg) = 1 via the minimal resolution. The rest follows directly from
these defining cquatlons O

Lemma 3.7. D = Fs, Nyy; & Opi(4) & Op (6).

Proof. Since S ~ ¢*S —D, one has Ky: =0*Kv; + D ~ -25-D. By (3.5) one
has S| ~ 2Go + T. This implies that

K= (KV.-: + D-)IE = —2?'5 = —Z(F + 260).

Smce T is a smooth ratlonal curve in D, by the adjunction formula, we obtain

=(Kg+T)-T = i L 4, that is, ) Thus we obtain D 2 F,.
On the other hand, since ¢ (Nrp;) = 10, we get the normal bundle Nry, =
Op1(4) & Op:i(6).

Lemma 3.8. (1) (D-E)=2
2) §-E)=-1
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(3) (-Ky:-E)=(-Ky; - F1)=0
(4) Dy =-8

(5) (5)°=-2

(6) 52 -D=2

(7) §-(D)*=3

(8) (~Kp;)® =18

Proof. (1): Since I is tangent to E at the point ¢*, we have the claim.
2): §-E)=(0"S-D)-E=1-2=-1.
(3): Since (—~Ky; - E) = (205 - D)-E=2—-(D-E) =0, we have the claim.
On the other hand, one has

(—Kvg Fl) = (20"5—5) '.F-l =2- (—D.'Fl)
- (—.D_I§F1)3-= 2 - ('f'-+260 Fl)'g
=2—(1+2(%))=0

(4): Cl(NT-'IV)—( —Ky; - rNn-2=@25I-2=10-2=38.

(5): (§)*=(0*S - DB =(0*S)®+(¢*D-D-D)-(D)*=5-15+8=-2.
(6): (5)2-D = (c*S-D)?%- E——2(a*s D-D)+(DP=10-8=2
(1): §-(D)?=(¢*S—-D)- D'=-5+8=3.

(8): (—Ky;)* = (25+D)* =18. O

Proposition 3.9. Bs|20*S — D| =

To prove Proposition (3.9), we need sublemmas. Let A : Ve — V5 be the
blowing up with center E and A~}(E) := L the exceptional divisor. Let S (resp.
D) be the proper transform of S (resp. D).

Sublemma 3.10. S has a unique isolated singularity £* = A~1(¥"), which is ra-
tional double point of A,-type.

Proof. SingS = E U {I*}. We have only to show that Sing § = {£*}. In fact, in
the chart Wp = C?, ., we put

ug = ug + (vo + 1)2
U2 = VU2

Wy = wa.
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then the local defining equations of S and E are written as follows:
(S) :={uz — vow2)? = wi(uz — 2v, — 1)},
(E) :={us = wp = 0}.
Thus the proper transform § of S can be written as follows:
(u2 — v2)? = ugwy — vg — 1.

This shows that S has only a rational double point of A)-type as an isolated
singularity. We note that § is smooth near N §. a

Sublemma 3.11. Bs|20*S - D| =0 on S.

Proof. Let o : M — S be the minimal resolution with Exc(y) = B, where
B is a smooth rational curve with B> = —2. Weset A := M|z : § — S and
Ti=Xou:M — S. Weput £ := (255 — D)|z. There cxists a ]Pl-rulmg
¥ : M — P over P! with only one singular fiber 3~1(0) = FfuBu GF. We
have

PicM = Z[E*| @ Z[G}) ® Z|F) @ Z[B],

where G, i, T |, E+ are the proper transforms of Go, F1, T, E in M respec-
tively. An easy computation yields that

(FF)P =(G$)?=-1,(B)*=-2, (B-F)=(B-Gf) =1, (FF- &) =0.

Now we have a linear equivalence £ ~ 20 — (2G, + T), where we may assume
that © := 0*S|g is irreducible. Let 8* be the proper transform of ©. Then
we have a linear equivalence 7L ~ 20+ - 20+ —~ B~ T*. Since 8+ ~ T+ ~
E* +5G} +4B +3F}, we have 7L ~ B+ + 3G+ +3B+3FF, and (r*L-E+) =
(r*C- F"‘) =(r*L-B) =0, (r*£-G}) = 1. This shows that Bs |7*L] =0 on M,
hence Bs|L| =0 on S.

Next let us consider the following exact sequence:

0 — O(0*S) — 0(20*S - D) — 05(20*S — D) — 0
Since H!(V; O(0*S)) = 0, one has a surjection
| H(V5;0(20*S — D) — H(3; 0(20* S — D)) — 0
Since Bs|£| = Bs|Og(20*S — D)| = 0, we have the claim. O

Sublemma 3.12. —Ky: ~ 20*S — D is nef and big on V.
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Proof. Assume that there is a curve R on Vg with (20*S — D - R) < 0. Since
20*S—D =0*+35, one has (5-R) <0, that is, R C S. By (3.11), £ is semi-ample
on S, hence 0 < (£-R)g = (20*S— D)- R, which is a contradiction. Thus 20*S—D
is nef. On the other hand, one has (20*S — D)3 = 18 by (3.8)-(8), hence 20*S —D
is big. a

We continue the proof of Proposition (3.9).

First we have ho(Ovc (2) ® Ir) > 17 by the counting method. In fact, take
general 11 points of . Then any smooth quadric hypersurface in P® passing
through these 11 points always contain T, since I is of degree 5 in IPS. The general
member Z of the linear system |20*S — D| is a smooth K-3 surfaces. We may
assume that |20*S — D| has no fixed component on Z. Thus the nef big divisor
(20*S — D)|3 has no base points on Z. Since H' (V5,O— .} = 0, from the exact
sequence

0 — O — O(20*S — D) — 05(20*S - D) — 0,
we have an surjection
HO(V;; O(20*S — D)) — H(Z; 05(20°S - D)) — 0.

Thus |20*S — D| has no base points on Z. Since Z is general, we have finally
Bs[20*S — D] = 0. 0
Proposition 3.13. (1) Ngy: = Op1(—1) ® Opr (—1)

(2) N-F—llv,:, =~ Op:(—2) & Ops

Proof. (1): We have § ~ A5 —2L , D ~ 3D and Ky, ~ XKy, + L~
—25—3L—D. Weset £ := §|; ¢ SN L, which is a smooth rational curve. Since
a(Ngy;) = -2 + (-Ky: - .E) = —2, one has (L)® = —2. Thus one has

()2 =Sl =(5-20)? L
= —ax5.- LR+ 4Ly =-4G-E)T -Ly+8=4,

where ’f: is a general fiber of the ]Pl-bund-le L — E. On the other hand, since
Kg.+L=-25-2L~- D =—(A0*9 +5), one has
=-X0"S|; -8y =—(c*S- BT -E£=-T-%.
In particular, we have (T-5)=-T-(K;+ T) =2.
Let Ap be the negative section of the P'-bundle L — E. Then we can write
as & ~ 2A¢ + aT for some 0 < a € Z. Since (E) = 4, one has A2 + a = 1. From
the relation (£ - Ag) = 253 +a>0and 02> A% =1 —a, one has a =1, 2, hence

[Pt xPt ifa=1
T\ F, if a=2
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Since a(Ngy:;) = Op(m)@®0pi (n), (m <n € Z)withm+4n=-2, L=F,_,
Fo := P! x P!, hence m = n = —1 and a = 1. This proves the (1).

(2) Now F passes through the rational double point (of A;-type) " € S—E C

— {p*} and (- Ky: - F1) = 0. Thus by the similar arguments in [8], we have

the claim. O

Let i (resp. Go, I') be the proper transform of F, (resp. Gy, T'). Then we
have the following

Corollary 3.14. (1) (£2); = -3
(2) (F))z =(G)s = -}

(3) (F1-Go)z =}
(4) D|z~T +2G,

"" (Ill

Proof. We have (£2); = (Llz - Llg)s = (£2-§) = 3T —2L(I)? = —(5 -
E) - 2(L)3 = 1-4 = -3. This shows (1). By construction there is a P!-
ruling ¥ : § — P! which has a unique singular fiber ¥~1(0) := F, UG,. Since
Sing S = £* = F1nGy is the rational bouble point of A;-type, one has the claims (2)
and (3) via minimal resolution. The claim (4) follows from the fact DNS = FuGe.

Corollary 3.15. There zs a birational contraction ¢ : V& — V5 of L toa
smooth rational curve BT = o(L).

Proof. Since K. v~ ~28 — 3L — D, we obtain that

—2A0-2T ~ K} ~ (Ky; + L)) = —28|; — 2L|; — 2T
= —4Ao - 4T - 2L|; - D|; = —28 - 2f};

This yields L|; ~ —Ao — . Thus L 2 P* x P! contracts to another direction,
that is, Ag-direction. This contraction morphism ¢ is desired one. a

We set 5+ = e(8),D" = <p(f)), = (L), F 1 = ¢(F) and Go := (Go).
We set x1 := @ oA~ : Vg --» V7, which is & birational map with V; — E &

V5 —E". On the other hand we have easily §&£3* Thus we have
Lemma 3.16. (1) (Kyp+ - E') = (Kps - F')=0.
o+ Tt

3) T -EFH=1
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(4) (§+ 75'-+) = —2, hence Ef D"
(5) multg+ D' =2.

(6) D'lgs =2E" +2G; +T" , where T" =E" + 5Gy +3Fy inS" .

(7) §'lg+ = —(E* +2G7)

. — —— s =
8) @2 = () =4, @ Fig =4 @ F)=1 (5 =3
© G F)=-1,0 F)=2
Proof. (1)_:, This follows from (3.8)-(3). (2): This follows from the fact that
Kg: ~ 235 -D. (3): (5 -F") = ~(8-F) = 1 by (381(2). (4): 0= (~Kp; -
E)=E"EN+@ E)=2+D E)

(5): ‘P'Kv; = K‘;.s. — L = —25 — 4L — D. On the other hand, since KV} =
—925" — D" and ¢*S" = § + L, one has oDt = —20*F" - ¢ Kyr = D+2L.
This shows the claim.

(6),(7),(8): The first part of (6) follows from (5), (3.14)-(4) and the fact that
St is smooth along E . Now let u: M — 5 be the minimal resolution with
the exceptional set B := p~1(F"), where tt := p(f*). Since 3 & S, M can be
considered as the same one as in (3.11), via, M 3" £ 5. So we use the
same notation as in (3.11). Let Fif, G§, E*, T'* be the proper transforms of
-F'T, 63' JENTT in M respectively. Then M is a ruled surface over lP‘i with only
one singular fiber F;" UB UG and has Pic M = Z[E¥] @ Z[GT] Z(Ff)® Z(B],
where

(Fr2= (Gt =-1, (B))=-2, (B- Fry=(B-G) =1, (Ff-G§H) =0.

Since § 2 57, we have also (F+)%+ = —3 by (3.14)-(1). Moreover, taking into an
account that p*Fy = Fff + 1B, 1*Gy = G + 1B, one has the claim (8). Next,

since p* Kg+ = Ky ~ —2E+ —5G§ —4C - 3F, one has Kg+ ~ —2E+ —5GF —
3F;F. On the other hand, one has easily that Kg+ = (KV: +§+)|§+ = —(§+ lg+ +
75+|§+). Since ﬁ+|§+ ~2E" +2G7 + T, we have §+|§+ ~ 3Gy +3F; - .
From the relation T = E*+ +5G7 +4B + 3F", one gets T~ ET +5Gs +3F;.
This proves the second part of (6) and (7).

(9): One has

@ -F) ="l F)=—(F" +26;) - F} = -2Gs -Fi) = -1

and

— — - ot b, =+ T 3
O F) =D |5+ F')=@E +7Cy +3F)) - F| = S-3=2
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Lemma 3.17. (1) (§7)% = 1.

(2) (0")2-5" =7.

Proof. (1):(§+)3 =(E" + 25;
(2:(D7)* 5" = (2E" +2G
(357 D" = (D]

(4),(5): Since

18 = (—Ky:)* = (—Kps )
we have (D)3 = —16.

By an argument similar to (3.13)-(2), we obtain

Lemma 3.18. NF+|V; o2

Gy +T)1=Tby B16(1)8).
5+ 5 |g+)=-(BE" +7G, +3F, )E +G,) =0.

Op: B Op (—2).
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857 +12(37)2. D + 65" - (D)2 + (D),

m —+ =+ y
Thus we have a birational map y, : Vi --» Vs and a smooth rational curve

71 such that

T+ =t Tt
(1) xz: V5 —F; =Vs

S -
(2) V. is smooth near the curve FIL"_

The birational map x5 is called the flop (or E+~ﬁ()p, [9]) along Fr. Let S*+, D++,

be the proper transform of 5, D™ in Vet*. We set yaof
E**. Then one can sce that S*+ is smooth and S++ = Fs (

=+
Fy) = Ff*, xo(EY)
see Pagoda in [8],

{12}). By (3.16), taking an account, of elementary properties of the flop , we obtain

the following

Lemma 3.19. (1) K+
(2) D¥t|giy =3B+ + TGS_+.

(3) S++[ges = —E++ —aGH+,

(@) (§*+ Ff+)y=1.

(5) (D**+ - F**) = -2.

(6) (S*++ E++)=1.

§54+.. gt
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(7) (S**-Fi+) =1, in particular, S** intersects with F* transversally at one
point.
We put X := X2 © X1. Then we obtain finally the following:

Proposition 3.20. There is a projective threefold Vgt* and disjoint smooth ra-
tional curves E++, Fit and o birational map x : V5 --» Vgtt such that

Ve - (FLUE) £ Vgt — (Ff* U E**), the birational map X is called the D-
flop along E, F.

Corollary 3.21. Bs|D*+ 428+ =0.

Proof. By (3.12), Bs| — KV;| = |D +25] = 0. Since x.(—KV;) = —Ky++ ~
D++ 4+ 28++, Thus we have the claim. (]

Lemma 3.22. (1) (S**)® =1
(2) (D++)2 . §++ =15.
(3) (S++)2 .Dtt = —4.
(4) (Kyp+)* =18,
(5) (D*++)* = —32.
Proof. (1): (S*+)? = (§++]ses)? = (~B*+ ~2G§*)? = 1. (2): (D**)?-8** =
(D**|s++ )2 = (3E++ + 7G3-+)2 = 15.
(3): (S++)2 -Dtt = (S++|g++ -D¥F|g+s) = —(E++ + 2G3-+)(3E++ + 7G3‘+)

= —4. (4): (KV5++)3 = (sz)s = —18 by (3.17)-(5). (5): 18 = (-K V:“)a =
(D+* +25++)2 =50+ (D¥*)3. a

Proposition 3.23. There is a birational contraction ¥ : Vit — Vg with
Exc(¥) = S+* such that

(1) Vg is smooth near £:= ¥(S+*) = P!,
(2) (-Kvg -0 =1,

(3) mult, D* =3,

(4) —Kv,, = —D*, where D* := ¥.D*¥,
(5) (—Kv;)® =22

In particular ¥ : V;Tt — V3, is a blowing up of V3 with the center £.
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Proof. First we recall that E*+ (resp. G§*) is the negative section (resp. a fiber)
of the Hirzebruch surface S*+ = F3. By (3.19)-(3), we have (S*++ . GF*) = 1.
Thus we have the contraction ¥ : V;"* — V3, of S*+ in the fiber direction. In
particular, V35 is smooth neat £ := ®(S++). Since

—25** ~ D** = Kyps = 'Ky, + S+ = —0°D* + 5+,
one has ®*D* = D*++38*++, which says mult, D* = 3. We also have (=Kv,, )} =
(®*D*)3 = (D++ 4+ 381%)3 = 22. Since
—1=(D*F +35%) - (S**)? =&"D* - (§*+)2 = (D* - ) - (S** - GFH)
= —(D*-¢), :

we obtain (—Kvy, -€) = —(D*-¢) =1. O
Lemma 3.24. (1) dimHY(VgH; O(D*+ +35++)) = 14

(2) Bs|D** +35**| = 0. In fact, the birational morphism ¥ : Vit —s Vy is

given by the linear system |D++ + 35++|,

Proof. (1): First we will show that D** + 3S*+ is nef and big. In fact, assume
that there is a curve R such that (D*+ +3S++). R < 0. Since D** + 28++ is
semi-ample, one has (S** . R) < 0, that is, R C S**. On the other hand, since
(DF*+ +35%%)|s4+ = Gg* on S*+ = Fy, one has (S+*-R) = (G3+-R) > 0,
which is a contradiction. Hence D*+ + 35*+ is nef. Since (D++ + 35++) = 22,
one sees that it is big.

Take a general member Z*+ € |[D*+ + 25**|, which is a smooth K-3 surface.
Consider the following exact sequence:

0 — O(§**) — O(D¥* +35+) — Oz44 (D +35++) — 0
Since h°(o‘,5++(s++)) =1, hl(OV5++(S+"')) =0, one has
WOy 4+ (D¥* +354F)) = 1 + hO(Oz44 (DF* +35+H)).

Now since D** + 35+ is nef big on Z**, h*(Oz++(D** +35++)) = 0 for i > 0.
The Riemann-Roch theorem says

BO(Ogs+ (D +35++)) = %(D*"' +3SHF)2(DH fastt) 42 =13,

hence ho(OV'H(D"“‘” +38t+)) =14,

(2): Since D** + 28++ is semi ample, one can take a general member Z++ €
| D** 4-25*+*| such that Z*+* contains no fixed component of |D** 4+28++|. Thus
the nef and big line bundle Oz++(D*+ +35+*) has no fixed component on Z ++,
hence has no bascpoints. A surjection

HY(O(D* +35++)) — HY(Oz++(D** + 35t*) —0

implics the claim. a
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Thus we have finally the following

Theorem 3.25. There exists the Fano threefold Vi, C P'3 of indez v = 1 and
the genus g = 12 with a small Gorenstein singularity p of Ay-type. In particular,
ba(V33) =1 and ba(V3) = 2.

Remark 3.1. SingVyy = p:= U(x(0™ (p). We set Agz := ¥(x(07'(As))) and
W := Vi — Agg, which is an smooth affine threefold. By construction one sees
that Vs — As — Fy = V35 — Age — F{'*. In particular, W D C2xC*and W hasa
decomposition W = (C2 x C*) UC? (disjoint union).

Conjecture 2. W = C3.
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