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Relative norms of Gauss sums for characters of
2-power order
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Abstract. Let p be a prime number such that p = 9 (mod 16) and ¢ a
natural number bigger than 3. We evaluate the relative norms of Gauss sums
for characters of order 2°~*,0 < s <t — 1, on the finite field For, f=273,

1. Introduction

In this note we treate to evaluate the relative norms of a special class of Gauss
sums over finite fields. Let p be an odd prime number. Let m be a natural number
bigger than 1 and f = ord,,p the multiplicative order of p modulo m. For a
multiplicative character ¥ of order m on the finite field Fy,q = pf, extended with
x(0) =0, the Gauss sums G5(x"),1 < r < m — 1, are defined by

Gs(x") = Y x" ()¢

acF,

where ¢, = €™/? and Tr is the trace map from F, onto F,,.

In general it is difficult to evaluate explicitly Gauss sums over finite fields, and
only in the special cases the values of them are known. When m = 2,itis a
classical theorem of Gauss that

p—1
G(x) =) x(a)s = {
a=1 i/P, P =3 (mod 4).

Ifm=4andp=1(mod4),then f=1and xisa quartic character on Fj, (cf.
(1, Chap.4]). If m =4 and p = 3 (mod 4), then f = 2 and we have

Ga(x) = ) x(a)Pe = (-1)%'p

a€F,2

VP, p =1 (mod 4),
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by Stickelberger’s theorem [1, Chap.11], since —1 €< p >, the subgroup generated
by p in the multiplicative group (Z/4Z)%. In the case m = 2° with ¢t > 3 and
p=3or 5 (mod 8), the evaluations of G;(x?’),0 < s <t — 1, have been recently
given by Meijer and van der Vlught [4].

We consider the case m = 2t with ¢ > 4,p = 9 (mod 16) and hence f = 2¢73.
We see that Gf(x) is in the 8p-th cyclotomic number field K;. So, we treate to
evaluate the relative norms of G(x*),0 < s <t —1, from K to its subfield Ko,
the 4p-th cyclotomic number field.

2. Preminaries

Let k be the m-th cyclotomic number field; then k has ko = Q(3) and k1 = Q(%, v2)
as subfields, Q being the field of rational numbers. Let K = k((p), which has
K; = ki((p),i = 0,1, as subfields. We see that

[k:k,]:[K:Kﬂ:f:%,

[k : ko] = [K : Ko] =2 =%”.
Let G = (Z/mZ)* be the Galois group of k over Q; for a rational integer a prime
to m, let o, denote the automorphism of k sending (. to ¢, where ¢, = e2ni/m,
The order of o, is equal to f. We write o simply for o5; then the order of o is
equal to 2f, since < 52 >=< p >C (Z/mZ)*, and ko and k; correspond to the
subgroups < ¢ > and < 02 >=< g, > of G, respectively.

Since p = 1 (mod 8),(p) splits completely in &k, and hence so in kp. Let
po = (a + bi), where a and b are rational integers such that p = a® + b?, be a
prime divisor of (p) in ko, and further let p and p” be a prime divisor of pg in &,
and its conjugate by o, respectively: (p) = poPo in ko and po = pp?,pp = pp° in
k1, the bar indicating the complex conjugate. All of these prime divisors of (p) in
k; remain prime in k, and may be considered as prime ideals of k, and all prime
divisors of (p) in k; are totally ramified in K;,2 = 0,1 : po = 5'1 in Ko and
p =P~ ! in K, ete.

We identify F, with the residue class field Ok /p, Ok being the integer ring of
k, and define a multiplicative character x of order m on Fy by

x(¢) mod p = o, o € Fy. (1)

Let x* denote the restriction of x on Fp; then, since the multiplicative groups
of finite fields are cyclic, the order of x* is equal to m/(m, (¢ — 1)/(p— 1)) = 8.
For 1 <r <m-—1 we have

p—1 p—1
G =S (S X (@)= x"(@G > X@+ Y x(@
a=0 a€Fy a=1 a€Fq a€Fy

Tra=a Tra=1 Tea=0
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and

p—1 p—1
2 X(@==-33 x(@=-3x"( 3 x¥()
a=1

a€Fg a=]1 a€¥F, a€Fq
Tra=0 Tra=a Tra=1

0, X" #1,

-p-1) > x(e), x7=1,

aEFq,
Tra=1
which implies
GIX'MEf(x7), x#1,
Gs(x") = { (2
—pEs(x"), X" =1,

where

Ef(x") = ) x"(a).

a€Fg
Tra=1

Since Tra = Tro?, it follows that Ef(x") = E§(x") is in k; and hence G;(x") =
Gs(x®) is in K. So, we evaluate the relative norm N K /K.Gr(XT).

3. Ng,/k,Gs(x*?) and Lemma
For any rational integer e not divisible by m, we denote the least positive residue
of a modulo m by Ri,(a) : @ = Ryn(a) (mod m),1 < Rm(a) < m — 1. Define
s(a) =ss(a) =ao+ay+-- +as.y,
t(a) = ts(a) = aolas!...az_y!

with rational integers a;,0 < j < f — 1, which appear in the p-adic expansion

-1
Rm(a)qm =ap+ap+---+as1pf
It follows that ,o1
-1 .
s(@) = 2= Run(ap’). 3)
Jj=0
Stickebrger’s congruence theorem [1, Chap.11] shows that
- (G —1)%=) (a)+1
ay — 3(a
Grlx*) = =2l —  (mod pr) )

and in particular G¢(x™°) is divisible exactly by §3°(®); P || Gp(x—2).
Now, we have
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P2 || G5 (2), PO || GrO0), PP N G(x?), PO N G-

Appling 0=!,0_1,07} = o_107" respectively to these last three divisibility rela-
tions by prime ideals yields

BoYC0 | Go03),  BOUGHA), B0 G

Thercfore the prime idcal factorization of (G (x?)) is given as follows:

(G502)) = P2 (e O P ()00,

Also, we have

(C5(0)) = P19 (poy =D ().

These two factorizations imply

(Nie, oG () = (CrOAIG (%) = (BIP?) CH(-10) GFTT)e2)+00). (5)

Lemma. For any rational integer a not divisible by m = 2t put
f-1 )
S5(@) = 3 Rm(ap).
=0
If a0 (mod 4), then for f =273 witht > 4
S50 = L5:(e) + (£~ 1)m.
Proof. To obtain the desired equality it suffices to show the recurrence formula
_ f
Sy(a) = 254(0.) + i

for f = 2¢~3 with ¢ > 5. We have that

pf=142f=1+ (mod%),

p451+4f=1+ (mod m).

SIERRE

If a0 (mod 2), then for 0 < j < f/2 -1
ap’ = aph*i + % (mod m)
and hence

Rm(ep’) + Rm(aph*) = 2Ry (a) + 7,
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from which we obtain
Lo

51(@) = 3" (Rm(ap?) + Rn(ap#*9))

=0
{-1

=Y (Rz(ap) + )
J=0

= 25'% (a) + %m.

If a = 2 (mod 4), then

apisap£+j+% (mod m), OSj_<_£—1,
g Cf
ap’ =ap*™ (mod m), 03155—1,
and hence
j L45y — iy ™ f
Brn(ap’) + Rn(ap®¥) = 2Rg (ap)) + 7, 0<j<d
Rr(ap’) = Rm(ap®+9), 0<j< %
from which we obtain
{1
Ss(a) =2 Rm(ap)
j=0
{1

=2 (Rm(ap’) + Rn(apt+i))
ij=0

L

=23 @R () + D)

=0

{1
=4Z Rzg.(apj)-l-%m

j=0

= 2Sé(a) + {m.

63
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Putting Lemma together with (3) gives

s@) =22 (L sy@)+ (£ - 1ym)

= -0+ 2500 -1).

Note
Sz(a) = Ris(a) + Ris(ap)-
Hence,
s +s(-10= - + T D+ - +3-1)

= (-1 +3).

Since s(a) = (p — 1)f — s(—a), we also see that

(2) +5(10) = (o~ 1/ - 3)

It then follows from (5) that

1) o \ f
(Nk, koG5 (%)) = (PP2)P-DU+D) (FPT)P-DU-2) = (P_) Po.

VP
Since G4(x*2) is in Ko and Ef(x?) is in kj, from (2) we have
Nk /koGrOP) = Gr(x**)*Niy o Er (x°)-
For the quartic character x*? on F,, we know that
Gr(x)? = J(x"%x")Gs (") = I x**)vP

where

p-1
J(x*%x?) =Y x?(alp+1-a))

a=1

(6)

()

(8)

(9)

(10)

is in ko. It follows from (8), (9), (10) that there exists a unit # of ko such that

a+bi
pf 7( )

NKl/Kon(XZ) = \/T—’

(11)
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Remark.
I x) =23 xalp+1-a)) + (B2

a=1

521’_;_3_,_(3) =p-2=-1 (mod 33,

where 3 = (1 + 1) is a prime divisor of (2) in ko (cf (1, Chap.3|, [3, Chap.6]). By
Stickelberger’s congruence we have

(Gr(x™?) = ’130 ‘,Bo
and so
(Gr(x*)?) = ‘ﬁo = (v/P) po,
from which together with (10) G;(x*?)? can be written as
Gs(x™?)? =¢(a + bi)\/p
with a unit € of ko satisfying e(a + i) = —1 (mod 3).

Now, put
= t(—2)¢(—-10).
Then, from (4), (6) we have
(¢ — 1)U+
t2

Nicw/:Gr0¢) = Gr(x*)Gs (x') = (mod "~/ * P+

and so from (11)

—1)(f+§)+1
- T (o g,

which implies

. Bt
7712\55 = (¢ —tzl) " (mod ‘13&7“),

because ((,—1)P~! = —p (mod B}) and p = (a+bi)(a—bi) = —2bi(a+bi) (mod p3).
But noting (¢, — 1)P~1/2 = 44 /5 (mod ‘.‘B(”'l)/”l), after change of a,b by
multiplication of £7 to a + bi, we obtain that

a+bi
VP

with p = a? + 6%, 2b+ ¢, = 0 (mod p), po = (a + bi).

Nk, /k,Gr(x*) =p (12)
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4. Ng,/k,Gs(x) and Theorem

Next, we evaluate Ny, /x,Gs(x)- By the product formula of Davenport-Hasse
[1,Chap.11],[2] we have

G5 (G0 %)
GG (xF)

Here x*3(2) = %1 [L, Chap.7), [3, Chap.5], Gs(1) = —1,G;(x™?) = —p'"* [,
Chap.11} and, since 1+m/2 €< p/2 >c<p>C (Z/mZ)%, G;(x”"‘”) = Gs(x)-
Hence, we have

Gs(x®) = —x"*(2)

G(x)? = —x"2 (21 G;(x?),

which implies from (12)

a+bi
N1 /K Cr(x)? = PNk, /16, G s (X%) = p 7
and so
Vva+bi
Nk, /koGs(x) =P 7 (13)

with ambiguity of sign. Put
ty = t(—1)}t(-5).
Then, from (4)

(¢ — 1)P-DU+32)
h

- 1
Ni,/k.G1(X) = Gr(X)Gs(x°) = (mod P~V +HDHY).

because
(-1 +o(-8) = G- DL+ 2 -+ E-1E +5-
= -1+
Hence, from (13) we have

: —1){P-1(f+3) _ N
o Va+bi _ (G -1) (mod m‘()p 1)(!+})+1)

VP ty
and so
va+bi -1)= p=t
7 = (G tl) (mod Py * +l).

For 2 < s < t — 3 by the product formula of Davenport-Hasse we have
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2°-1 .
[1Gr(x+7)

3 *23 S J=0
Gr(x*') = —x*'(2) ZL

16/
=0

Here x*#'(2°) = 1,G4(1) = —1,G5(x™?) = —p//2, G4 (x? ~7)Gy (32~ "@ D) =
p/,1 < j <21 —1, and, since 1 + 2t~%j €< P >C (Z/mZ)*,Gs(x'+27"7) =
Gf(x),0 < j < 2° — 1. Hence, we get

o _ G
Gi(x*) = —m

and so from (13)

3 1 rs _—— “wos—1
Nk, /x,Gr(x*¥) = FE-T Nk,/keGr()¥ =07~ (a+ bi)2 "

For s =t — 2 we have also

2°—1
H Gf(xl+2"j)

Cr(x®) = —x% (2°) S

1 G:09)
j=0

Hore x*%(2°) = 1,G4(1) = -1,G,(x™?) = —p//2,G;(x*"7)G; (x> @ - =
P/, 1 < j <207 1, and Gy(x!*2) = Gr(x) or Gy(x®) according as j = 0
orl (mod 2), because 1 +22j €<p>or < 5> — <p> accordingas j=0or 1
(mod 2). Hence, from (13)

Nk, /k,Gr(x)?™

G D = - - _ é_zn—s +b1' 2:-2.
06 = =L = 5k a4 bi)

Thus, our results can be summarized as follows:

Theorem. Suppose that p is a prime number such that 7 =9 (mod 16),m = 2¢
with t > 4, and X is a character of order m on the finite field F,,q=p*"", defined
by (1). Then the relative norms Ny, /k,Gf(x%’) of the Gauss sums Gs(x*') are
given by

= +
i) N koGrlg) =p? " Y212
(i) N, /k,Gr(x)=p 7

- b
i) Ni, k,Gr(x?) =p* > 4+
(i) Ng,/k,Gr(x?) =p 7

(#43) Ng,ieGr(x*) =p* 7~ (a+b)?"™", 2<s<t—3,
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and further
(@) Gy ) =P a+b)*T,

() G ) =-p"""
Herein p = a2 + b%,2b + t2 = 0 (mod p),po = (a + bi), and Va+b/{p =
(¢ — D@V/4/t; (mod D44,
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