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Two-stage procedure for estimating a linear
function of normal means under an asymmetric
loss function
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Abstract. This paper considers a sequential point estimation procedure to
achieve a bounded risk when estimating a linear function of normal means
under an asymmetric loss function. A two-stage estimation procedure is
introduced to achieve the goal and its asymptotic property is examined.

1. Introduction

We consider a sequential point estimation of a linear function of normal means
under a LINEX (Linear Exponential) loss function. The LINEX loss function
was first proposed by Varian [8] when it is appropriate to use an asymmetric loss
function. See also Zellner [9] for its theoretical development. The sequential appli-
cations of the loss function were considered by Chattopadhyay [2], Chattopadhyay
et al. [3], Takada [4],[(5] and Takada and Nagao [7]. The present paper proposes
a two-stage procedure to the multisample problem treated by Chattopadhyay et
al. [3]. It turns out that the proposed proceure is more efficient than that of
Chattopadhyay et al. [3] in terms of the total sample size. See Remark in Section
2.

Let 7; be a normal population with unknown mean #; and unknown variance
o?,i=1,...,k(k > 2). Having observed X1, ..., Xin, from each m;, we want to es-
timate p = Zf=1 Aipi by 8, where ;s are known constants and n = (n1,...,mk).
We suppose that the loss incurred is LINEX,

L(6n, ) = exp (a6 — p)) — a(fn — p) — 1 (1.1)

where a(# 0) is a known constant. For a preassigned positive constant W, we
want to determine the sample size n; from 7;, i =1, ... , k so as to construct such
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an estimator 4, that
EgL(8p,p) < W forall 0 = (p,..., Bk 01y -+ ,Ok): (1.2)

It is well known that if n;’s are predetermined before the experiment, then there
is no estimator which satisfies (1.2). Hence it is necessary to consider a sequential
procedure to meet the requirement. We propose a two-stage procedure to asymp-
totically satisfy (1.2) as W — 0. For the squared error loss, see Aoshima and
Takada [1].

If o;’s were known, we would estimate u by 0, = Zf_l )\-X’,-(,, -3 Zf_l '\::'z
with Xi(n,) = 7 2joq Xij» since the risk of the usual estimator Y5, Xi Xi(n,) is

improved by 6,. under (1.1). It is easy to see that EgL(dn,p) = Zf___l iii::-
Hence (1.2) would be satisfied if and only if

AZ 2
—Z 2% <w. (1.3)

It is not difficult to see that the values of n;’s which minimize Z:;l n; subject to
(1.3) are given by

k

. at .
n; = WV- (2 I)‘.'i |0’j) |)\,-|cr,-, i=1,... ,k. (14)

=1

Motivated by (1.4), we propose the following two-stage procedure.  Let
Xi1,- .., Xim be the initial sample of size m(> 2) from =; and let

’("‘) Z XIJ Xz(m) ,i=1,..., k.

Then the total sample size N; from =; is determined by

(51 i1 Viem) ) INilVigm)
Ni=max{m,[ (Zh 1, ) #1%, i=1,....k (15)

2w

where (z] denotes the largest integer less than z and £,(> 1) is called a design
constant and satisfies

Zm—1+e°+o(:1)asm—>oo. (1.6)

The design constant is used to asymptotically assure (1.2). If N; > m, take N;—m
additional observations from ;. Then we estimate p by

k A?Vtz
Z,\ Xiwy - 2 _Ww (L7

i=1
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with N = (Ny,..., Ni), which mimics 4, used if o;'s were known.

The asymptotic results of the two-stage procedure are contained in Section 2.
Section 3 conducts simulations to see the moderate sample size performances of
the proposed two-stage procedure.

2. Two-stage procedure

This section derives the asymptotic expansions of the risk function and the ex-
pected sample size, which enable us to determine the design constant asymptoti-
cally assuring (1.2) and to see if the asymptotically second-order efficiency of the
sample size is satisfied.
Substituting (1.7) into (1.1) and using the fact that the event {N; = n;,i =
.,k} is independent {X,,,i = 1,...,k}, we have

. a? a2 a? g~ AVEy
EgL(0n,u) = Eg {eXP (—7 ; _1\-;‘ ( (V) )) ?g N }
a? &
= EWn+ Z=: ) (2.1)
where
2 k 4o k
Wi = exp (-% 3 ﬁ (Vin, - a,?)) + 322- v ’\—2 (V,."(’Ni) - a,?) -1. (22)
i=1" "' i=1" %
From (1.4)
Ao?

aw? { (N —ni)® _
" )

4 k 2
a (Zj:l |Aslo;

which is substituted in (2.1) to yield

- 22 k N: —n*)2 k
EoL(Sn,p) = W+ - . {ZEg(‘T”* - > " Eo(N: —n}
a? (L5 los) Ui i =
+EoWh. (2.3)

We assume that the initial sample size m is determined according to W such
that for some d(> 0)
a_ 2%
v{}mo mWwe = R (2.4)
where ¢ is a positive constant. It is casy to see that if d > 1, then
limw_o Eg(N;)/n} = o00,i = 1,...,k, which implies that it is necesssry to as-
sume 0 < d < 1 in order to satisfy the asymptotically second-order efficiency. We
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also assume that when taking d = 1, the constant ¢ satisfies
k
c< Zl)\jld’j I)\,’IO’,‘, i=1,...,k. (25)
j=1
The following three lemmas are proved in the appendix.

Lemma 2.1.

..m (N,-—n;‘)z_z _
e
where
k 2 2
1 i1 Aj05 2|Aslo; .
?7?=§ 1-|-—Z"l 2 + il i=1,...,k. (2.6)

2 k
Lemma 2.2. For0<d<1
1 k 1 k
Jim W By (N; —nj) =~ { o Z Pilos | Wiloi = 5 Z [Ailos | Xilos o
Jj=1 J#i
i=1,...,k and ford=1
. o 1 * 1[& 1
lim Ep(N: —nf) = = { € | 3_Wslos | Pilos = 3 Z Wiloj | Idlos g + 3,
j=1 J#i

i=1,...,k.

Lemma 2.3.
EgWxn =0 (Wa) as W —0.

Using (1.4) and (2.4), Lemma 2.1 yields that for 0 <d <1
(N; —=n3)? _ (Z§=1 |,\,-|a,-) il

. 1-d 2 =1,.
v{/lTOW Eg N," c M, 1, ,kr
so that
2
k *\2 k k
) 1—d (Ni—=ni)> 1 ey 2242 2
V{}TOW ;Eo'——Ni =% ;MJ'”J +3j¥1 3% (- (2.7)

It follows from Lemma 2.2 that for 0 < d < 1

2 2
k k k
1 1
: 1-d § : * — E o —_ - E o
p}}r_n‘oW Eo(Ni - ni) = E eo (j=1 |/\]|UJ) 2 (j=1 |’\]|0-.7)

i=1

T Agaf.} (28)
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and ford=1
k ? 1 k 2
Jim 37 Ep(N; —n3) = Z Polos | =3 { 2o Wsle
i=1 j=1 Jj=1
k
1 k
A } : .

Hence substituting (2.7) and (2.8) ((2.9)) into (2.3) and using Lemma 2.3, we have
the following result.

Theorem 2.4. For0<d< 1

2
. 2wl+d k k
EoL(bn,p) = W+ (1-¢ (Zl)\jk’j) + N}
=1

o)

2

ca? (Tho Pslos ) =
+o (W) as W — 0.

and ford=1

k

2
. 2W? 1 =
EoL(bn,p) = W+ - | A-6) (ZI&-I%) Z a3

2
k :
a? (b, Wslos) =

—g}+o(W2) as W — 0.

>From Theorem 2.4, it turns out that when taking 0 < d < 1, we have to
choose the design constant £, with £, > 2 in order to assure (1.2) for small W,

that is,
EoL(bn,p) S W +0(WHY) asW — 0. (2.10)

However, it follows from Lemma 2.2 that such a choice for 0 < d < 1 implies
v%/lg.loEa(Ni -n})=o0c, i=1,...,k,

that is, the asymptotically second-order cfficiency does not hold, but that for d = 1
satisfies the asymptotically second-order efficiency. The condition (2.5) is essential
to assure the asymptotically second-order cfficiency when taking d = 1.
In order to make the two-stage procedure with d = 1 valid in real applications,
we have to specify a lower bound o;.(> 0) for each ¢; such that o; > 0i.,i =
., k. Letting

k
7o = min(| Ao, -, [Mloxa) Y [Ajlose,
Jj=1
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we propose the two-stage procedure with the design constant £, with £, > 2 and
the following initial sample size from each population

2
m = max (mo, [%‘%—] + 1) , (2.11)

where mg(> 2) is any positive integer. Then the conditions (2.4) and (2.5) hold
with d = 1 and ¢ = 7., and hence (2.10) holds with d = 1 and the asymptotically
second-order efficiency is satisfied.

Remark Chattopadhyay et al.|3] proposed a sequential procedure to asymp-
totically satisfy (1.2). However, their procedure is constructed so as to mimic
iy = ka?X20?/(2log(1l + W)) instead of n}, i =1,...,k. It is easy to sce that

k e k A252
lim Zi:l n; - kZ‘l:l A,O’l > 1’ (212)

WO T (Th |z\,~|a',-)2

i=1

unless |A1]o; = -+ = |Aglok. Let N; be their sample size from m;, i = 1,...,k.
Then it holds

It follows from Lemma 2.2 that the two-stage procedure with d(0 < d < 1) satisfies

lim ——Eg (zf:l Ni)
w—=0 ¢ !

i=1"%

Hence unless [A]o; = - - - = |Ak|o, from (2.12)

lim _—Eo (E:;l Ni)
w=0 Ey (Zf:l Ni)

This shows that their procedure is less efficient than ours in terms of the total
number of observations required for small W.

>1,

which implies

3. Simulations

We conducted simulations to see moderate sample size performances of the pro-
posed two-stage procedure for k = 3. We considered the problem of estimating
of u = (i1 + u2)/2 — p3 under the LINEX loss function with a = V2. We chose
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fm =1+2/m and 01, = 02. = 03. = 1 as a lower bound for each unknown o;.
The values of W were chosen as W = 0.10(0.02)0.02, 0.01. The initial sample size
m is determined by (2.11) with mo = 2. The simulation results in Tables 1 and
2, which estimated the risk function Ry and E(N; — n}),t = 1,2,3, are based
on 10,000 replications under o, = 1.2, 0 = 1.4 and o3 = 1.6 in Table 1 and
o1 = 1.6, 02 = 1.4 and 03 = 1.2 in Table 2. We also provided their respective
standard errors within parentheses. The values in the last row of each Table are
derived from the asymptotic ones in Lemma 2.2 with d =1 and ¢ = 7,.

Table 1: 61 =1.2,0: =14, 03 =1.6

w Ry Ep(N1 —n}) | Eg(N2 —n3) | Eg(N3 ~n3)

0.10 | 0.098 2.94 3.33 7.82
(0.002) (0.06) (0.07) (0.19)

0.08 | 0.077 3.08 3.53 8.20
(0.001) (0.07) (0.08) (0.21)

0.06 | 0.057 3.22 3.72 8.60
(0.001) (0.08) (0.09) (0.24)

0.04 | 0.040 2.98 3.56 8.03
(0.001) (0.09) (0.11) (0.28)

0.02 | 0.020 3.21 3.62 8.25
(0.000) (0.12) (0.14) (0.38)

0.01 0.010 3.17 3.50 8.90
(0.000) (0.17) (0.20) (0.54)

3.29 3.79 8.74

Table 2: 0, =1.6,02 =14, 03 =1.2
w Ry Eg(N1 —n}) | Eg(N2 —n3}) | Eo(N3 — n3)

0.10 | 0.094 3.53 3.21 5.51
(0.001) (0.08) (0.07) (0.13)

0.08 | 0.077 3.74 3.18 5.62
(0.001) (0.09) (0.07) (0.14)

0.06 | 0.059 3.69 3.35 5.66
(0.001) (0.10) (0.08) (0.16)

0.04 | 0.038 3.81 3.32 5.62
(0.001) (0.11) (0.10) (0.18)

0.02 { 0.020 4.02 3.67 6.41
(0.000) (0.17) (0.13) (0.25)

0.01 0.010 4.06 3.33 5.77
(0.000) (0.22) (0.19) (0.35)

4.06 3.58 6.08

It turns out that the risk functions seem to satisfy the bounded risk condition
(1.2) and that the values of Eg(N; — n?) seem to be approximated fairly well by
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these asymptotic ones.

4. Appendix

In order to prove Lemmas 2.1 to 2.3, we need several lemmas. Let

k
Y; = (Z |,\,.|VJ-(,,,)) XilVigmy, i=1,...,k. (4.1)
=1

Lemma 4.1.

k
Y - (Z.P\jlﬂj) |Ailo
=1

Proof. See Takada [6, p. 110]. O

4

Ey =O(m"’/2) asm—oo0, i=1,...,k

Lemma 4.2. Foranyp>1,
Py(N;=m)=0 (m"’/z) asm—o0, i=1,...,k
Proof. From (1.5) we have
Pa(N; = m) = Py (Y; < 2Wm/(a®tr)) -

It follows from (1.6), (2.4) and (2.5) that there exists €(0 < € < 1) such that for

small W
k
PNi=m) < Py|Yi<e|D Iloy|INilo:
i=1
k k
< B l|v— [ X los | ddos| > (1= &) | Do Wslag | [Ailos
ji=1 j=1
k P k P
< {(1-¢ Z|/\,—|a,~ [Aslo Ep|Y;: — Zlf\jkfj [Xilo
=1 =1
Then using Lemma 4.1, the proof is completed. a

Lemma 4.3.
Ni/n! =1 ae asW—0, i=1,...,k
Proof. From (1.5) we have

Y; <N mi

(Zf:l |’\j|0'j) ilos — ™ ™ (E;Ll |)\j|0j) | Al

mI(n;=m) Y;
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where 14 denotes the indicator function of the set A. Since m — oc as W — 0,
Y;

(Z5e1 Plor ) sl

For 0 < d < 1, from (2.4) m/n} — 0 as W — 0, which completes the proof.

For d = 1, it suffices to show that INi=m) = 0ae as W — 0. Let A, =
{I(¥y=m) > €} = {N; = m} for any € (0 < € < 1). Then from Lemma 4.2

Pa(D Ae) < f:Po(Ae)=O(m‘L3_ﬂ) as m — oo

f=m €=m

—1 ae. asW—0, i=1,...,k

with p > 4. Hence

=23
Py (Iimsup Am) = lim Py (U Ae) =0,
m—0o0

m—eo t=m
so that the Borel-Canteli Theorem implies that Iy, =m) —0ae asW—-0. O
Lemma 4.4. Foranye(0<e<1) and anyp > 1
Py(N; < en?) =0 (m-P/2) asW =0, i=1,...,k.
Proof. From (1.4) and (1.5) we have
k
Py(N; < enf) < Py (Y <e (Z |)\,-|a,-) |/\,~|a,~) .
j=1
The rest of the proof is the same as that of Lemma 4.2. (]

Proof of Lemma 2.1

Let W2 = th.%m)/a,?,i =1,...,k with v = m — 1. Then W2,... , W2 are
¢.1.d. chi-squred random variables with v degrees of freedom. It is easy to see that
Z; = V2(W; — /¥) converges in distribution to N(0,1) as m — 00, i = 1,..., k.

Substituting Vj(m) = 0;(v¥ + Z;/V2)/V/¥, j = 1,...,k into (4.1), we have

k k k
1
i = Y los | Inile: + T > los | IiloiZ: + |l > " IsloiZ;
J v i=1

k
1
+5 (Z I’\jlajzj) |Ailo: Z;,

1=
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which yields from (1.6) that

7 (azemY,- B o’ (Z§=1 IA,-Ia,-) |,\,-|ai)
2

2

converges in distribution to N(0,7?) as m — oo, where
k 2 k
4y2.2
2 _ G°ATO} 2_2 .
T = —é—' (J.E=1 I)\jlaj) + J.E_,! /\J-a'j + 2| X;los E |/\j|0’j , 1=1,...,k

=1

Let

) — VW (N; = n})

s [Pt 7 (Shet Plos) Indor
14 2 2

2 f
ﬁw(a e;nY. -N,-), i=1,...,k

It follows from (1.5), (2.4) and Lemma 4.2 that
BolUi| < VoW (mPy(N; =m) +1) =0 as W = 0.

Hence /oW (N; —n}) converges in distribution to N(0,7) as W — 0,i =1,...,k,
which yields from (1.4) that v/¥(N; —nf)/n} converges in distribution to N(0,7?)
as W — 0,4 = 1,...,k, where n? is (2.6). Then it follows from Lemma 4.3
that \/v/nt(N; — n})//N; converges in distribution to N 0,n}) as W — 0,i =
1,...,k, so that from (2.4) in order to prove Lemma 2.1, it suffices to prove that
{(N; — n?)2/N;} is uniformly integrable (u.i.).

Let A = {N; < en}} for some €(0 < ¢ < 1) and

(N; —nf)? _ (Ni—np)?
N; - N;
L+ 1z (say),

(N; —n})?
N;

Ia+ Iz

where A denotes the compliment of the set A. Since

* nfz = nf2
L= (Ni—Zn,-%- I\l/ )IAS (eni+7;1—)IA,

i
it follows from Lemma 4.4 that {I,} is w.i.. Since

I < (N; —n3)?

en;
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in order to prove that {I5} is u.i., it suffices to show that {(V; — n})%/n!} is u.i..
Note that

a? i 2 2 ] * 2
Ne-mpp _ 2(Mi-S) 2 (S - ni)
* S * + *
n; n; n;
13 -+ 14 (say).

Il

Since
2 2
I; < - (mIn,=my +1)°,

T

Lemma 4.2 shows that {I3} is u.i.. Write I4 as

2
vat k
I = T (zmy,. - (,; |)\,~|aj) |,\,-|a.-) i

Then it follows from Lemma 4.1 that {I4} is u.i., so that the proof is completed.

Proof of Lemma 2.2

Let F; = a20,Y;/(2W), J; = F; —[Fj]and R; = F; +1—J;,i=1,...,k. Then
N; = max(m, R;),i=1,...,k. From Lemma 4.2 we have

Eg|N; — Ri|=0(1) asW —0, i=1,...,k,
which implies that as W — 0,

Eo(N; —nj)

Eg(R; —nj) +0(1)
= Eg(Fi—n})+Ee(l—J)+o(l) i=1,....k (42)

By the same method as the proof of (18) in Takada [6], we have
Eg(l—Ji)=%+o(l), i=1,....k asW —0. (4.3)
Substituting (4.3) into (4.2) yields
Bo(N: = i) = Bo(Fi —nf) + 3 +o(1), i=1,...,k, (4.4)
as W — 0. Since

1 1
E9V,~=aj(1—5)+o(;> as m — oc,
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it follows from (1.6) and (4.1) that

a? ¢, 1 k
EFi = 5 (1+ +o ( )) ((Zp\ lor_,) [As |a,-—(Z|A |a,) |Ailo:
J= J#i
+o| -
v
a? u 1 [ & 1
= i+ g | b J;lf\jldj Ailoi — 5 ;l)\jlaj |Ailo +°(WJ

Hence

Jim W'=¢Ey(F; — n})

=1 ( (Z"\ |aJ) Adlos — = (;u Ia,) s Im) ;

which completes the proof from (4.4).
Proof of Lemma 2.3

For any € (0 < € < 1) and any 6(0 < § < 1) let

Cc= n({mzen}ﬂ{l vy —0fl <8}

i=1

Then
Py(C) < Z {Po(N <en;)+ Py ( sup V2 iin) — - > 6) } (4.5)

i=1

Since {|V2 iy o?|?} with ¢ > 1 is a reverse submartimgale,

1 .
Pe (nS“P [Vitwy — 071 > 5) < gEolvi(sn;) -d7=0 (n,. "/2).
Hence it follows from Lemma 4.4 and (4.5) that for any p(> 1)
Py(C)=0(WP) asW —0. (4.6)

Let

Eo(WN) = LWNdPa+LWNdPg
111-!'112 (Sd.y)
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The Taylor expansion of e* shows

2

1 (a2 & 22

I = /_ =N 2 (W —02) | expAndPy
! 02(2i=1Ni o )

ka® < /\f 242
T /C,ZF(V«M) ~o?) exp AndPy

i=1 "

2kW4
(Z§=1 |)\j|cfj)4 at i=

IA

k - *\ 3
n* n:
1 é/c (F‘) N; (Vv —03)2exp AndPy

i

where
k

a® — A? a2 &
ANl < 5 30 F Vi ~of1 S o= X
i=1" " i=1

\3
on C. From Lemma 4.3 it is casy to see that (’nﬁ") N;(Vyw,y — 02)?exp An
converges in distribution to 20 x? as W — 0 and is w.i. on C. Then we have

“r 3
/ (Z—‘) Ni(Vigni) — 02) exp AndPy = 20¢ +0(1) as W — 0,
c \V;

so that
IL=0(W? asW—0.
Hence it is enough to show that

IL=0(W? asW —0.

Since N; > m, we have

2 k _ 2 k
0<IL, < exp <;Tn Z,\?a,?) Py(C) + %/@ZA,?W,-(M) — o?|dPy

i=1 i=1
< exp a—zi/\202 Pg(é) + (1—2‘[{1/2}99(6')1/2
- m & Ut 2m !
where
k k
K= (Z )‘?) > Es(Viw,y — 02)?,
i=l i=1

which is finite from the reverse submartingale property of {(V;%n) —02)?}. Then
the result follows from (4.6).
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