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Abstract. The range of a random walk means the number of distinct sites
visited at least once by the random walk. In the three dimensional case, it
has already known that the second term of the expectation of the range of
the simple symmetric random walk under the conditional probability given
the event that the last point is the origin is small in comparison with that
of the original random walk. This paper claims that the second term in the
pinned case is bounded.

1. Introduction

Asymptotic behavior of the expected volume of the Wiener sausage for a Brownian
bridge on the time interval [0,¢] associated with a non-polar compact set was
supplied by van den Berg and Bolthausen [1] in the two dimensional case and by
McGillivray [5] in higher dimensional cases. They conclude that the leading term
is the same as that of the Wiener sausage for a Brownian motion up to time ¢,
which is given by Spitzer [6]. In the case that the non-polar compact set is the
closed ball with radius r, the second term of the expected volume of the pinned
Wiener sausage is small in comparison with the non-pinned Wiener sausage if
the dimension is three. McGillivray [5] showed that the former is 6773, which is
already implicit in the work by Uhlenbeck and Beth [7], and Le Gall [4] showed
that the latter is 4v/27r2V/%.

A discrete analogue of the volume of the Wiener sausage up to time ¢ is the
number of distinct sites entered by a random walk in the first n steps, which
is called the range at time n of the random walk. Asymptotic behavior of the
expectation of the range at time n of the simple random walk was first given by
Dvoretzky and Erdés [2], and by Hamana [3] in the pinned case. Similarly to the
Wiener sausage, their results show that each expectation has the same leading
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term, and if the dimension is three, Hamana proved that the second term of the
expectation of the range of the non-pinned simple random walk is ¢y/n for some
suitable positive constant c and that of the pinned simple random walk is of order
vn(logn)~¢ for any 6 > 0. The result for the Wiener sausage shows that the last
result can stand further improvement. The conclusion in this paper is that the
second term of the expectation of the range of simple random walk is bounded for
dimension three.

2. Preliminaries and notation

By a random walk {S,}22, on the d dimensional integer lattice Z%, we mean a
sequence of random variables defined by Sp = 0 and S, = X1 + X2 + -+ + X,
where {X,}22, is a sequence of independent and identically distributed random
variables which take values in Z%. The simple random walk means a random walk
such that P[X; = z] is equal to 1/2d if z is a unit vector in Z¢ and is equal to 0
otherwise. Throughout this paper we consider the d dimensional simple random
walk. Let v be the probability that a random walk never returns to the starting
point. It is well-known that v is strictly positive if d 2 3 and equal to 0 otherwise.

Since it will be convenient to regard the random walk as a Markov chain, we
will use some terminology of general Markov chains. For z € Z¢ let P;|-] denote
the probability measures of events related to the random walk starting at z. When
= 0, we simply write P{-] instead of Py[-]. For n 2 0 and z,y € Z? the notation
p™(z,y) is used for P;[S, = y|. It is obvious that p"(z,y) = p"(0,y — z). For
z € Z°% let 7, be the first hitting time of z, that is, 7, = inf{n 2 1; S, = z}. If
there are no positive integers with S, = z, then 7 = co. The taboo probabilities
are defined by

Pi(z,y) = Pu[Sn =y, 7z 2 n].

A simple calculation shows that
pg(0,z) =p2(0,x) (2.1)
foralln 21 and z € Z°.
For simplicity we will use uy, for p*(0,0) and f, for p§(0,0). If n is odd, both
un and fn are equal to 0. It is well-known that

-1

Ugp = Z Jarua(n—k) + fon- (2.2)
k

=1

Another useful formula is that
Ugp = kan~ %% + O[n'l'd/ 2], (2.3)

where kg = 2(d/47)?/2. For sequences {an}3;, {bn}az1, {cn}az: of real numbers
such that ¢, > 0 for n 2 1, the notation a,, = b, + O[cy] means that (an —bn)/cn
remains bounded.
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Throughout this paper, Ci1,C,,--- ,C;; will denote suitable positive real con-
stants.
3. Main result and proof

For a positive integer n let

R‘n = I{ShSZ)"' 1Sn}|7

where |A| denotes the cardinality of a set A. We call R, the range at time n of
the random walk. If d = 3, Hamana [3] proved that

E[R34|S2n = 0] = 2731 + O[n!/?(log n)~¢) (3.1)

for any & > 0. However, this result must be improved when we consider an analogy
between random walk and Brownian motion. The mail result in this paper is the
following.

Theorem 3.1. Ifd = 3, we have that
E[RZn'S2n = 0] = 2vsn + 0[1] (3.2)

Unfortunately we have no idea for calculating the explicit form of the second
term of the right hand side of (3.2).

We now give a proof of Theorem 3.1. Since we treat only the three dimensional
random walk in this section, we write ¥ and x for s and g, respectively for
simplicity. According to (3.21) in Hamana (3], we have that E[R2n|S2n = 0] is
equal to ’

] n-1
2n+2n) fon — 22y (h-1/2 - n'1/2) Faneny +O[l.  (3.3)
h=n h=1
It suffices to give asymptotic behavior of fo, for calculation of (3.3). The second
claim of Lemma 3.1 in Hamana [3] is that
fan =702 + O[n~3/*(logn) =)

for any § > 0. Since this formula can provide only (3.1), we need to improve this
estimate in order to show (3.2). We accordingly obtain the following lemma, of
which the proof is defered to Section 4.

Lemma 3.2. We have that
fon =¥2kn"32 £ O[n~17/8),

for the three dimensional simple random walk.
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In virtue of this lemma, we obtain that the second term of (3.3) is
dy?kn/? 4 O[n~Y8).

We can calculate the third term of (3.3) in an analogous manner to (3.23) in
Hamana [3]. It follows from Lemma 3.2 that

n—1
S (W72 =072 fagnemy (3.4)
h=1
is equal to
’an n-1

> - +0 [i > 1 ]

Vi & kv VR Vi hpE(R+ V)]

Since the first term of (3.5) is the same as (3.25) in Hamana [3], we have that it is
22kn~! + O[n~3/2).

It suffices for an estimate of the second term of (3.5) to give a bound of

Z\/_(n h9/8

Since it is of order n~%/2, we have that (3.4) is 2y2xn~" + O[n~3/2|, which implies
that the third term of (3.3) is

—4y?kn'/? + O[1).
This completes the proof of Theorem 3.1.

Remark. In the three dimensional case, Proposition 2.1 in Hamana [3] shows
that

ER, =y + 2/242kn'/? 4+ O[n*/?(log n)~%)
for any & > 0. With the help of Lemma 3.2, the estimate of the error term can be
easily improved. We then conclude that

ER,=vn+ 25/242n% 1 O[1].

4. Proof of Lemma 3.2

This section is devoted to a proof of Lemma 3.2. We also consider the simple
random walk moving on Z3.

Let N = [n/4] for a positive integer n, where the notation [x] is used for the
greatest integer which is not larger than a real number z. Note that

=53 pg¥ (0,2)p5" 4N (2, y)pE" (v, 0) (4.1)

T#£0 y#0
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for a positive integer n. For simplicity, we use L for n — 2N. We first consider the
effect of replacing p3”(z, y) with p?£(z, y) in (4.1), for which the following equality
will be useful:

Y (2,y) - P () = Pe (o S L,Sor = 9| + P [L <19 S 2L,Spr, =] (4.2)

It is easy to see the the first term of (4.2) is equal to

L
> pb(z,0)p%2(0, ).

k=1

Classifying the event {L < 7y £ 2L, S5, = y} by the last hitting time of 0, we can
obtain that the second term of the right hand side of (4.2) is equal to

2L—1 2L-1 L
Y Ploo=k Su=9l- Y S Pln=koo=j Sr=y, (43
k=L+1 j=L+1k=1
where 09 = max{a £ L; Sao = 0}. The first term of (4.3) is expressed by
2L-1
> Pz, 0085 *(0,9)
k=L+1

and the second one is expressed by

2L-1 L ‘ )
= D > pb(, 00,0055 (0,y).
j=L+1k=1
Recall that L = n — 2N. We hence have that f,,, is equal to
2.5 B8N (0,2)p*" N (z, 4)pN (3, 0) (4.4)
ZH40 y£0
n—-2N
= > 2 B3N (0, 2)ph(z, 000N 5 (0, y)B3N (3, 0) (4.5)
k=1 z#0y#0
2n—4N-1
= > Y o8N 0.2z, 00PN R (0, 9)p3N (w, 0) (4.6)

k=n—2N+1 z#0 y7#0
2n—-4N-1 n-2N

+ Y > Dm0, 2)pk(x, 0uikpd N (0, 4)p2N (3,0).  (4.7)

J=n=2N+1 k=1 z#0y#0

We next try to show that

n/2) (n/2] [n/2}
Jon = ugn — 2 Z Soruzn_ak + Z Z forfajton—2k—2; + O[n™%/3.  (4.8)
k=1 k=1 j=1

We neced the following lemma.
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Lemma 4.1.

> o 0,wp? (w,2) =P H(0,2) = 3 fup®™H(0,2). (49)
w#£0 k=1

Proof. If a = 1, we can easily obtain (4.9) from the fact that p3(0,w) = p*(0,w)
for any w. We may consider the case when o 2 2. For w # 0

a—1
e (0,w) = p**(0,w) — Y faxp®* (0, w).
k=1

Then
3 920, w)p* (w, 2) =p™**+?(0, 2) — p**(0,0)p°°(0, 2)
w#0
a-1 a—1
=5 a0, 2) + Y Fakp™ (0,009 (0, 2).
k=1 k=1

Using (2.2), we have that the forth term of the right hand side is cqual to
u2ap(0,2) — f2a0" (0, 2),
which implies (4.9). O
An immediate consequence of (2.1) and (4.9) is that

3 p%(0,2)p3 (2,0) = 3, p*(w, 0)pg (0,w)

z#0 w#0
8 (4.10)

= Usas2p — ) fokU2a+26-2k-
k=1

Lemma 4.1 yields that (4.4) is

N
Yo N0, y)BN 1,00 — D Y fakp™ 2V (0, 1)86" (v, 0)-

y#0 k=1 y#0

Therefore it follows from (4.10) that (4.4} is equal to

N N N
usn =2 foxtion—2k + D Y fokfajuan—2k-2;.

k=1 k=1 j=1
For a calculation of (4.5), (4.6) and (4.7) we now consider the case that n = 2m.
We have that (4.5) is equal to

n—2N

=Y fansk zpzn_dN—k(Oyy)PgN(y,O),

k=1 y#0
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which can be expressed by

m-N
=Y fanaze )P0, P3N (v, 0).
k=1 y#0

Making the substitution h = N + k in the summation on k, we obtain that this
summation coincides with

m
- Y fawy_ PO, u)pEN (3, 0). (4.11)
h=N+1 y#0
It follows from (4.10) that (4.11) and also (4.5) are equal to

m m N
= Y fotameont Y. Y fonfokUam—zho2k. (4.12)

h=N+1 h=N+1k=1
Similarly to (4.5), we can see that (4.6) has the following form:

2m—2N-1
- Z f4m—2N—2k ZP(Z)N(O’ .’B)p2k(:22, 0)
k=m-N+1 z#0
Substituting A = 2m — N — k in the summation on k, we have that it is equal to
m-1
- > fany_ B3 (0,0)p" 2N (g, 0). (4.13)

A=N+1  x#0
Applying (4.9), we easily show that the difference between (4.12) and (4.13) is
dominated by fo;,u2m, which is of order n~3. Therefore the leading term of (4.6)
coincides with (4.12) and its remaining term is O[n=3].
It can be easily seen that (4.7) is of order n~%/2. Indeed, it is bounded by
2m—-2N-1 m-N

> D Fnszkusjoakfam-2n—2;
j=m—=N+1 k=1
2m—-2N-1 m—-N
G ), Y N+ k)T em - N - )72,
j=m—-N+1 k=1
which is dominated by a constant multiple of

2m—-2N-1
N732 3N (j—m+N)"Y22m — N - §)3/2 < C,N~3(m - N)/2.
J=m—N+l

Therefore, if n = 2m, we conclude that

m m N

fon =uan =2 foxtan-ak+ Y D forfajuian-2k-2j
k= =1 7=

X f=tast (4.14)

m N
+ Z Zfzkf2ju2n—2k—2j+O[n_5/2]'

k=N41 j=1
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Since

m m m m

S Y fafrura-akg SCNTP Y N (2m—k—j)"¥? = 007,
k=N+1j=N+1 k=N+1j=N+1

the forth term of the right hand side of (4.14) is

m

Z Z for fojuzn—ok—2j + On~%?].

k=N+1 j=1

This immediate implies (4.8).

In the case that n = 2m + 1, we can apply the same calculation. Detail is left
to the reader. We then finish the proof of (4.8).

Before proving Lemma 3.2, we must provide two more lemmatta.

Lemma 4.2.
fan = kn"/2 4 O[n~?).

Proof. We first calculate the second term of the right hand side of (4.8). We use
m for [n/2] again. By (2.3),

Zf2ku2n—2k = KZ fa(n—k)™32+0 Zk‘sﬂ(n - k:)'5/2] . (4.15)
k=1 k=1 k=1

It is obvious that the second term of the right hand side of (4.15) is of order
n~5/2, We estimate the effect of replacing n — k with n in the first term. By the
mean value theorem, we have that 0 £ (n — k)~3/2 — n=3/2 < Cyk(n — k)~3/2 for
1 £k £m. Then

0y fu{(n k)2 =032} S O~y k72 = O[n7,
k=1 k=1

which yields that the left hand side of (4.15) is equal to

k32" for + Ofn].

k=1
Remark that
[~ 1 [+o]
Zf2k=1"’7— Z fa =1—=7+0[aY?. (4.16)
k=1 k=a+1

We therefore obtain that the second term of the right hand side of (4.8) is

—2x(1 = y)n~%2 + O[n"?).
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We next calculate the third term of the right hand side of (4.8), which is

K i ifzkfzj(n -k-35)7%240 \Zj i k3257312 (n — | — 5)75/2| | (4.17)

k=1 j=1 k=1 j=1

Recall that N has been used for [n/4], which is equal to [m/2]. We divide the
summation in the second term of (4.17) into the following two parts:

m N m m
Z Z k—3/2j—3/2(n — k- j)_5/2, Z Z k—-3/2j—3/2(n —k— j)—5/2_
k=1 j=1 k=1j=N+1

It is easy to see that both summations are of order n=5/2. Indeed, the first sum is
bounded by a constant multiple of

m N
(n —_—m = N)—5/2 Z Zk—3/2j-3/2

k=1 j=1

and the second one is bounded by a constant multiple of

m m m
N—3/2 Z Z k'3/2(2m —k _j)—5/2 g Csn_3/2 Zk-3/2(m _ k)—-3/2.
k=1j=N+1 k=1
- The estimate of the first term of (4.17) can be obtained in the same manner as
the first term of (4.15). We consider the effect of replacing n — j — k with n in the
first term of (4.17). Since (n — k — j)™3/2 = n=3/2 < Cy(k + j)(n — k — 5)~5/2, it
suffices to give an estimate of

m m
Z Z:k—l/2j—3/2(,n —k—j)75/2, (4.18)

k=1 j=1

We also divide the summation on j in (4.18) into the case that 1 £ j £ N and the
case that N < j < m. In the first case, the summation is bounded by a constant
multiple of

m N
(,n -—m - N)—5/2 Z Zk—l/2j—3/2 = 0[71_2].
k=1 j=1
In the second case, the summation is bounded by a constant multiple of

m m m
N—3/2 Z Z k—1/2(2m — k- j)—5/2 g an—3/2 Z k_l/2(m _ k)—3/2’
k=1j=N+1 k=1

which is of order n=2. Here we have considered the effect of the summation on k
over 1 £ k S N and that over N < k < m. Therefore (4.18) is O[n~2). In virtue
of (4.16), this immediately implies that (417 is

m 2
kn =%/ (Z fzk) +0[n7% = (1 -7)*n=32 + Oln72.
k=1
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Applying (2.3) again, we conclude the assertion of this lemma. a

The following lemma. is the main tool to calculate the right hand side of (4.8).

Lemma 4.3.
m
k)32 _ -32] - X8 -5/2
;f% {@m -k (2m)=/?} = s+ O™ logm).  (419)
Proof. By Lemma 4.2, the left hand side of (4.19) is equal to
'yznz k372 {(2m — k)32 _ (2m)‘3/2} (4.20)
k=1
m
+0 [Z k2 {(zm — k)32 - (2m)“3/2}] . (4.21)
k=1

Since (2m — k)~3/2 — (2m)~3/2 £ Cok(2m — k)~%/2, the summation on k in (4.21)
is dominated by
Co > k7 (2m — k)~5/2,
k=1
which means that (4.21) is of order m~/2logm. Since z° — 3® = (z — y)(z® +
zy + %), the summation on k in (4.20) is expressed by

1 1 1 1 1
;Wf (\/2m—lc - \/2_m) (2m—k t om = kam %)

which is the sum of the following three summations:

1 1
V2m ; Vk(vV2m - k3(V2m + V2m — k)’ (4.22)
1 « 1
2m Z < VE(2m — k)(VZm + V2m — k)’ (4.23)
Z 1 (4.24)
(\/2%)3 . VEVIm - K(VZm + V2m — k) )

Here we have used the following formula:

1 1 k 1
Som—Fk  vom ﬂ?n—k\/ﬁ(\/ﬁﬁ+\/—_2m-—k)'

By the standard argument of Riemannian integral, we have that (4.22) is

V2 mf*Z N k/m)3(\/‘+f ~k/m)
1 1 dz
= V2 Jiym VA2 =2V (V2 + VE-2)

+0[m=5/%).
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Substituting y = 1/z/2 in the integral on z, we obtain that (4.22) is
1 1/V2 dy
2m? Jiyvam (V1= 3L+ V1 -9?)

We can calculate (4.23) and (4.24) in an analogous manner, and conclude that
(4.23) is

+ O[m™=5/2].

R AL d
— Y — +O[m~%?]
2m? Jyyvam (1-2)(1+ /1 -42)
and that (4.24) is
1/v?2
! dy + O[m‘s/z]

2m? J\ V1-y2(1++/1-
Therefore the leading term of (4.20) is equal to

’ch/l/‘/- 1 1,1 1 dy
2m? Jyjvam | (V1= y2)? l—y"-’ VIi-y?2 ) 1+/1-¢2 "

which coincides with

1/V2
1= R SRS S (4.25)
2m? Jiyvam v | (V1 -9?)3
since 273 + 272+ 27! = (273 - 1)/(1 — z) and the remaining term of (4.20) is of
order m~5/2. Moreover the fact that

d % - 1) _1 1 1
/1o y2 1-y2 ¥y ¥ | (V1I=¢2)3
implies that (4.25) is v*x/v2m? + O[m~5/2), which yields (4.19). D

We are ready to show Lemma 3.2. We consider only the case that n = 2m since
we can show the lemma in the case that n = 2m + 1 analogously to this case.
Lemma 4.3 and (4.15) yields that the second term of the right hand side of (4.8)
is

3/2 4 5/2
KI; far(2m)~ ﬁ > + Olm™*?logm].
Lemma 4.2 immediatcly implics that

m
D fa=1-7-27mY2 4 OmY). (4.26)
k=1

Then

Z fortiam—zk = (1 — 7)x(2m) ™32 + O[m~=5/2 log m).
k=1
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We have already see that the third term of the right hand side of (4.8) is
m m
£y farfos(2m—k— iy + O[m=>/% (4.27)
k=1 j=1

in the proof of Lemma 4.2. We recall that N = [n/4] = [m/2] and write M for
[m®/4]. The double sum in (4.27) is divided into the following three parts:

M m
YN farfas(@m—k -5)7%2, (4.28)
k=1j=1
m N
Z Z fakf2j(2m — k- 773, (4.29)
k=M+1 j=1
Yo Y fufu(em— k- (4.30)

k=M+1j=N+1

It is easy to see that (4.30) is of order m~'"/8. Indeed, by (2.3), it is dominated
by a constant multiple of

m

m—21/8 z i (2171. —k "j)—3/2-

k=M+1j=N+1

We first estimate the effect of replacing 2m — k — j with 2m — j in (4.28). By
the mean value theorem,

M m
Y3 faxhos {(2m —k—5)"¥%—(2m —.7')—3/2}

k=1 j=1

M m
§ CIO sz—l/2]——3/2(2m —k—- j)_5/2,
k=14=1

which is bounded by
M m
Cro(m — M)’5/2 Z Zk-lﬂj—iiﬂ = O[m—l'r/s]_
k=1j=1
This means that (4.28) is
M m
S5 fakfai(2m = 5)% + O™,
k=1 j=1

We next estimate the effect of replacing 2m — j with 2m in this double sum. It
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follows from (4.16) and (4.19) that

M m
ZZfzkuj {(2m )72 - (2m)“3/2} = \75"2 >

k=1 j=1

-5/2

logm]
2
(1 -7)= ~19/8
=1 _"V2.0 ,
Jomz+ [m™"F]
which yields that (4.28) is equal to

(2m)- 3/222 fonfas + 2 E}_ )k +Ofm=17/9),

k=1 j=1
The effect of replacing 2m — k — j with 2m — k in (4.29) is of order

m

N
Z Zk—3/2j—l/2(2m —k _j)—5/2,

k=M+1 j=1
which is bounded by a constant multiple of
N
M-3/? Zj“/z(m - §)7%2 = O[m~=17/8).
j=1
Therefore the leading term of (4.29) is
m N
D D fahry(em— k)T (4.31)
k=M+1 j=1

and the remaining term of (4.29) is of order m~17/8, We divide (4.31) into the
following two parts:

m N
Z > farfaj(2m) =32, (4.32)
k=M+1 j=1
m N
S 2 fanhr {(om - B2 - (2m) =52} (4.:33)
k=M+1 j=1

It follows that

m

Z Z forf2;(2m) 3% = O[m~17/8),

k=M+1;j=N+1
which yields that (4.32) is

@m)32 3" N forfo; + O[m~13).

k=M+1 j=1



96 Y. Hamana

Moreover we have that
ZZfzkfzg {(2m k)32 — 2'”‘)“3/2} £Cn Zk 12(2m — k)=5/2,
k=1 j=

which is of order m~17/8. Therefore (4.33) is

m N
Z Z fak f2j {(2m — k)32 (2m)'3/2} + O[m‘"/B],

k=1j=1

of which the first term is equal to v2(1 — y)x/v2m?. Here we have applied (4.16)
and (4.19). We hence obtain that (4.31) and also (4.29) are

(zm)—3/2 Z Zf?kf?] \/_ 'Y)n_*_ol —17/8]
k=M+1 j=1

Consequently we have that

Z Z fok fojtam—2k—2; =k(2m)~3/? Z Z Sorf2;

k=1 j=1 k=1 j=1 (434)
2071 _ 2
+ V2P - 7)s? (12 £ 4+ O[m™17/8),
m

By (4.26), the first term of the right hand side of (4.34) is
201 _ V2
(1 = 2)(zmy32 - LA (;,2 D 1 ofm=212),

which means that the left hand side of (4.34) is

(1 = 7)%k(2m) =3/ + O[m~17/8).
Then (4.8) yields

fam = Y2 5(2m) 3% 4 O[m~17/8],

which is equivalent to the assertion of Lemma 3.2 if n = 2m. This complete the
proof of Lemma 3.2.
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