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Abstract. When one attempts to establish some theory of differential equa-
tions, it seems to be very effective to treat systems of differential equations
rather than single differential equations. In this short paper, we shall show
a method of reduction of every linear differential equation with a finite num-
ber of regular singularities and one irregular singularity to a system of linear
differential equations of the form (t — B) € = (A + Ct) X.

1. Introduction

In the note [3], one of authors considers the global analysis for the single linear
differential equation

(- 1)y + (3 - 1)t + {0’ ~ (38 +) £ + F}y =0,

which has three regular singular points at ¢ = 0,+1 and an irregular singularity
at infinity. And the study extends to the system of linear differential equations

(1) (t—B)%=(A+Ct)X,

which is closely related with the above single linear differential equation. In fact,
differentiating the single differential equation two times, he obtains the single linear
differential equation

2 (82 - 1)y = Py(t)y"® + Py(t)y” + Pi(t)y + Po(t)y,
where

Ps(t) = —118% + 5¢,

Py(t) = —a®t* + (36% + v — 30) £ — B2 + 4,
Pi(t) = —8a®t® + 2 (68% + 2y — 9) ¢,

Po(t) = —120%t% + 2 (38% + v),
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and then reduces it to a system of linear differential equations of the form (1) by
means of the transformation

nwn=u

y2 = @1y +e200,

ys = @21” +e31y’ + €309,

va = 03y® + es2y” + eany’ + ea0y

with @3 = (= 1), g2 = (2 — 1) and @3 = ¢ (1% - 1).
Actually, it can be verified that the transformation

4

32,0(t) =oi (t -1),

es0(t) = 0?t* — ait — (262 + v — i),

esa(t) =2,

eao(t) = —3a2t® + (B2 + 6) it + 862 + 57 — (6% + 6) v,
es1(t) = a?t® — (262 + 7+ 6),

eqo(t) =4

\

leads to a system of linear differential equations of the form (1) with

B =diag(1,-1,0,0),

ot 1 0 0
282 +y—a?—ai ai—1 1 0
A= 2 )
(B*+2)ci— 0 4 1
n 0 p2—-36 -8
and
—ai 0 00
C= dai o 00
T - (B +3) i —ai 0 0|’
3 (B2 +6)ai 0 0
where

¢ =—a® (8% +6) +2(56% +9) o,
n=28*-26%+ (B2 +6)v—3(30% +4) oi.

In this short paper, we shall consider the reduction of any single linear differ-
ential equation of the following general form

(2) Pa(t)y™ = Py ()™ + - + Pt + Polt)y,

where

en(t) =] = X)

=1
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and the coefficients P;(t) (7 = 0,1,...,n — 1) are polynomials of degree at most
7, to the system of linear differential equations (1) with

B =diag (A1,A2,...,Aq)-
From now on, we assume that
MNEN (#19).

Then, obviously, the single linear differential equation has n regular singularities
at t = A; and an irregular singularity at ¢ = 00, if at least one P;(t) is a polynomial
of degree greater than j + 1.

2. Transformation for Reduction

In order to attain such a reduction, we put

(

n=yvy
y2 = o1y’ + ez 0¥,

3 & . .
® Yi = 05— e 007D+ ey + v,

[ Un = 0n1¥™ D +enneay™ D 4 ten 1y +enov,
where )
7
pi=]lt-M) (G=12..,n-1), @=L
k=1

and attempt to derive a system of linear differential equations for the column
vector Y = (y1,¥2, -+ -2 YUn)s:

A dl,l 1 0
t=M 0 day dz2 1
t- )\2 Yy’ . : . ‘. Y,
0 . S
dny dnz -+ o+ dan

where all d; ;(¢) are polynomials of the first degree.
Now we shall derive relations which accomplish such a reduction. The first
element is caluculated as follows:

t-M)y =01y =2 —e20m1 =y2 +d111,

in which we have put
dl,l = —€20-
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Then, we calculate

(t = Ao) ¥ = (¢ — A2) (013" + 01V + €200 + €2,09)
21 + {(t = A2) (¢} +e20)}y + (t — A2) ea oy
= ys + {(t — A) (¢} +e20) —e31} ¥ + {(t — Ae) ez 0 —e30} ¥

Here we put
(t — Do) (] + €20) — €31 = d2 2901

~r

and then proceed to the next step of calculation

(t—X2)ys = ys +d2.2 (v2 — €2,09) + {(t—A2)ego~ €30}y
= ys + da o2 + {(t — A2) €ho — €30 — d22€20} 1
= y3 + da,2y2 + d2,1%1,

where we have put

7
(t — A2) e g — €30 — da,2€20 = d2,1.

Hereafter we use the following notations:
(4) e = 1, €j,j-1 = Pj-1, €j—k =0 (k > 0)

In exactly the same manner as above, taking account of

j—1
Yi = zej.ky(k)
k=0

or

j=2

iy =y =Y ejuy®,
k=0

we shall calculate the j-th element as follows:

-1 j-1
(t—=A)y; = (E— X)) {Z ey )+ e;,ky(")}

k=0 k=0
i-1
=@y + (¢ - Xy) {z (ejk-1+ €5 ) y(k)}
k=0
-1

=Yj41 + Z {(t - )\j) (ej,k-l + e_f,',k) - €j+1,k} y(k)-
k=0
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Here we put

(t=X;) (e5,5-2 + €} ;1) — €j41,j-1 = dj jpj 1

and then obtain
j=2

(=) ¥ = yie1 + 5505 + D {(E= X)) (e5h-1 + €)5) — €k — djjeju} v
k=0

When we continue to calculate and obtain

(E =X y5 =y + gy + -+ dj oy

j—1-2 1
+ {(t = X)) (Egae-1 + €54) — eiwrk =) di.j—hej—h.k} y®,

k=0 h=0
wce put
i
(t = X) (€55-1-3 + €} j_1—2) — 41512 = Y djj_n€jhjoi-2 = 11012,
h=0

A A~

obtaining

(t = 2)¥; = Yj +dj05 + - +dj i + djjoim1yjo

j-1-3 1+1
+ Z {(t_ j eJ,k 1+eJk)_eJ+1k—Zd 33— he:—hk}y(k)
k=0 h=0

Consequently, the procedure yields a sequence of relations
(= X) (ejj-2 + €} ;1) — €541,5-1 = dj jpj1,
!

(t—=2;) (ej,j—t—s + e},j_z-z) — €1 mt-2 — 9 dj i h€ihj-i2
h=0
=djj1-19j-1-2 (=0,1,...,5—2).
In particular, for j = n, we have to use the single linear differential equation

n-1

eny™ =" Py®
k=0

in the first stage of calculation

n—1
(t = An) ¥h = 0ny™ + (t = An) {Z (enk-1 + € ) y(k)}

k=0
n—-1
= Z {(t et /\n) (en,lc—l + e;l,k) + Pk} y(k)
k=0

and continue the above procedure.
We have thus derived the following relations for reduction.
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Theorem. Forj=1,2,...,nandl=-1,0,...,5 -2,

41
(5)  (t=As) (ejjmt-3 +€}jo1m2) = €ia1jot-a+ Y dij-h€ihmi-2,
h=0

where
eny1x=—-P: (k=0,1,...,n=1)

together with (4).

3. Determination of the d;;

We shall now explain the determination of the e;; and d;; from (5).
First we consider the relation for j =n and ! = -1 in (5):

(t- An) (en,n-z + ‘p;z—l) =dpnPn-1— Ph.

Since the right hand side is a polynomial of degree at most n, it must include the
divisor (£ — A,), and hence

dnn@n-1— Pact |t=a, = 0.

Then we see that e, n-2 is determined as a polynomial of degree at most (n — 1).
Hereinafter, we say “a polynomial of degree at most &” simply by “a polynomial of
degree &”. Similarly, from the relation for j =n and l = 0 in (5), we have

dn,nen,n—2 + dn,n—l‘pn—2 - P, |£=)s.. =0

and obtain the polynomial e, ,—3 of degree (n —1).
Next, we consider the relation for j =n and [ =1 in (5):

(t - /\n) (en,n—4 + e:;,n_s) = dn,nen.n—S + du,n—len—l,n—3 + dn,n—Zﬂon—Zi — Po_s,

in which there is a polynomial e,_) -3 not yet determined. One can determine
it by the relation for j =n — 1 and I = -1 in (5):

(t—Aa-1) (en—l.n-3 + ‘P:u—2) =enn-2 + dn-1,n-1Pn-2
Again, the right hand side is a polynomial of degree (n — 1) and hence, by
epn—2 + d —-1,n-1¥n-2 |t=,\.._| =0,

€n—1,n-3 can be seen to be determined as a polynomial of degree (n —2). From
this, putting

dn,nen,n—3 + dn,n—len—l,n—B + dn,n—2ﬂan—3 —Ph_3 |t=z\.. =0,
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we can determine e, ,—4 as a polynomial of degree (n — 1).
The relation (5) for j =n—1and {=0:

(t - )\n—l) (en-l,n—-4 + '3;.—1.1;—3) = dn-l,n—len—l.n-3 + dn—l.n—2‘Pn—3 + én,n-3

leads to the determination of e,—1 »—4 as a polynomial of degree (n — 2), since the
right hand side in the above formula is of degree (n — 1).
Moreover, the relation for j=n—-2and [ = -1:

(t = An—2) (€n-2.n-a + ©p_3) = €n-1,n-3 + Gn-2,n—20n_3

gives ep—2,n—4 as a polynomial of degree (n — 3).
The above order of calculation is as follows:

€na,n-2 (dn,n)

4 N
En,n-3 (dn,n—l) €n—-1,n-3 (d —l,n—l)
X3 V4 l N

€n,n—4 (dﬂ.,n—2) — €n—1,n—4 (dn—l,n—2) — €n-2,n-4 (dn—2,n—2)

We shall now prove by mathematical induction that each e; ; can be determined
as a polynomial of degree (j — 1). :
Suppose that we have determined

ei (t=n-2,n-3,....n—k; j—1<2)

till (k — 1)-th line (row) from the first line e, n—2, where each e;,; is a polynomial
of degree (5 — 1).
Then the k-th line begins with

k—2
(t - ’\n) (en,n—k-—-l + e;,n_k) = Zdn,n—-hen—h,n-k + dn,n—k+1‘Pn—k — Pk,
h=0
from which it is easily seen that e, n_x—1 is determined as a polynomial of degree
(n — 1), since the right hand side is of degree n.
Here, suppose that e€,_1 n—k—1,€n—2,n—k—1,---,€n—t,n-k-1 are determined as
polynomials of degree (n —2),(n —3),...,(n —1), respectively. Then, for 1 <
! < k — 2 the relation

’
(t— An—i-1) (en-l-l.n—k—l + en—l—l,n—k)
k—1-3
= z dn—t-1,n—t-1-h€n—t-1-hn-k + Gni-1,n—k+1Pn—k + En—ln—k
h=0

determines €,.;-1,n—k—1 as a polynomial of degree (n —[ —2), since the right
hand side is of degree n — [ — 1, because of n —k +1 < n —! — 1. We have thus
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proved that each e;; (2 < j <n, 0 <4 < j—2) can be determined as a polynomial
of degree (j — 1).

In the above procedure, for j =n,n—1,...,2 and { = -1,0,...,7 — 3 we have
put
141
(6) €j+1,j-1-2 + Z djj—h€j—h,j—1-2 =0
h=0 t=/\j
and consequently obtained
j—2
(M) (t—Aj)e€so— €je10— D djjoh€joho = dj1.
h=0

Since the left hand side of (7) is of degree j and however, the right hand side
is a polynomial of degree 1, we have to assign zero to the coefficients of ¢ (I =
5,7 —1,...,2) in the left hand side.

By these relations (6) and (7), we can determine all d; ; as polynomials of degree
1. In fact, for each j we have (j — 1) relations of (6) and (7 — 1) relations from
(7), whence one can determine 2 (j — 1) coefficients of the d;; (¢ = 5,7 —1,...,2),
and lastly obtain d;,; just by (7).

Consequently, we can determine

n
> 2j=n(n+1)
j=1

coefficients of the d;; (j = 1,2,...,n; i = 1,2,...,j) by the same number of
coefficients of the polynomials P; (j =0,1,...,n — 1) of degree n.

Example. Consider
(t— M) (t = A2)y" = Pi(t)y’ + Po(t)y,

where
Pi(t) =ait> + byt +c1, Po(t) = agt? + bot + co.

Then, putting ez, = (t — A1), we have the following formulas of reduction:
@ (t—X2)(e20+€h;) =da2(t—M)— P,
@ (t— A2)ezo =dz2e20+d2y — Fo,
® di,) +e20=0.

We seek
dao =[Pt +az, day=Pait+azy, dig=pt+ar
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@® leads to

(Bodz +a2) (A2 — M) =a1 X3 +bida+ ¢
and

e20=(B2—a1)t—{a1do+b —az — fa (A2 — A1) +1}.
Then, @ becomes

(t—A2) (B2 —a1)
={B2 (B2 — a1) — ao}t® + {B2,1 + a2 (B2 — a1) + YB2 — bo} t + (az,1 + yaz — co),

where
Ty=—{a1de+b —az—fBa(A2— A1) +1}.

Hence, we have

Bo,1 = — (a2 = 1) (B2 — a1) — ¥B2 + bo,

a1 ==X (f2 —a1) —vya2 + ¢

{ B2 (B2 —a1) —ap =0,

and @ immediately leads to
{ ﬁl =_(ﬂ2_al)r

ap = —17.
From the above relations, we easily see that 8y, 82 are roots of the equation

u2—a1u—ao=0

and then

= (BrAz2 + Bad1) Ao + by A2 + ¢;

A2 — A ’
_Bire+BM) M+ i + ¢
y= -1
A2 — A

Substituting these results into other relations, we can consequently determine all
dj,i- We here pay an attention to the following values

al)\§ +bi A2+
A2 — A '
_ a1/\¥ + b]_)\l +Cl

B +a1——XT+1,

the meaning of which will be explained in the next section.

B2r2 +ap =
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4. Characteristic Exponents and Constants

The single linear differential equation
en()y™ = Paa ()"0 + -+ PL(E)Y + Po(t)y

has regular singularities at t = A; (j = 1,2,...,7n), which are roots of ¢n(t) = 0.
The characteristic equation at each regular singular point ¢ = A; is

p(p—l)---(p—n+1)=%,‘—EST")p(p—l)~-(p—n+2)-

So, the characteristic exponents are
Pnoy (’\j )
en(X)
which implies that near each regular singular point there exist (n — 1) holomorphic
solutions and one nonholomorphic solution.

On the other hand, near the irregular singular point at infinity one can find
formal solutions of the form

(8) p=01,...,n-2n—-1+4

y(t) = e”'t? i h(s)t™"°.

s=0
The characteristic constant v is one of roots of the characteristic equation
(9) V=Pt 4+ PP 4+ Plu + B,
where PJ are the cocfficients of ™ of P;(t), i.e.,
Pit)y=P)t*+--- (j=0,1,...,n—1).

For the system of linear differential equations
X
(t_B)cfi_t =(A+Ct) X,

there also exist (n — 1) holomorphic solutions and one nonholomorphic solution
near each regular singular point ¢ = A;. Then, the characteristic exponent p; of
the nonholomorphic solution is given by

(10) pi = aj,j + AjCj 5,

where @, ; and c;,; are the j-th diagonal elements of A and C, respectively.

As for the characteristic constants of formal solutions, it is also not difficult to
sec that they are equal to eigenvalues of C.

Now we shall show that the transformation of reduction described above pre-
serves characteristic properties. To see this, we have only to consider the diagonal
elements d;, ;.
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From the relations
A1) (=X (es5-2 + 1) = 4151 +djg0im1 (F=1,2,...,7),
we have given formulas of determining d;, ; as follows:
ej+1,5-1(8) + 5,3 ()j-1(t) |e=a, = 0.

Each value of d; ;(A;) exactly corresponds to (10).
In order to calculate d; ;(A;), we multiply both sides of (11) by

ﬁ (= A)

k=j+1

and obtain

[ﬁ (t- /\k)] €jj-2 ~ [ ﬁ (t- /\k)] €j+1,5-1
k:

k=J =j+1

k=j

= dj_j H (t - /\k) - I:H (t - ’\k)} (p.;'—l

kst

Then, summing up these formulas from j = 1 to j = n and taking account of
the notation that ep41n—1 = —P,_; and e1,-1 = 0, we consequently obtain the
formula,

Zdj,j H(t—/\k) =Pn—l+z [H (t—/\k)] i1

i=1 =2 |k=j

k#j

If we put t = ); in the above formula, then we have

dia ) | TT v =) | = Paca (M) + > [f_[ (M — ,\k)J Wiy

k=1 =1 =9
pivt j=t+1 =3

=P (M) + (=0 [JT =20,
et

whence
Pn— 1 (’\l)

on(M)
This value differs only by an integer from the characteristic exponent of the single
linear differential equation (2). Therefore, the behavior of solutions for the reduced
system (1) is same as that for (2) near regular singularities.

pr=di(N) = +(n-1).
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Next we shall consider the characteristic constants at infinity. Since the matrix
C for the reduced system of linear differential equations is triangular, the diagonal
elements of C are eigenvalues. So, putting

dj;=Bit+a; (j=1,2,...,n),
we have only to investigate the values of 8;.
We take up the coefficients of the highest degree in the formula (5):

141

(t = A3) (€5.i-t-3 + €} j_1-0) = €j41,5mt-2 + D djj-h€ih,j-t-2-
h=0

The coefficients of ¢t/ are derived from e; j_;—3 in the left hand side and e;41,j—1-2,
d; jejj—1—2 in the right hand side. Hence, we have
(12) ;13— Bi€3 12 = €41y (1=-1,0,...,5-2),

where we have put
ekl(t) = €9t/ ™t + -+

Multiplying (12) for j = n by 8*~*~? and summing them up from ! = -1 to
n — 2, we immediately obtain

Br =P B+ P o fn 24 -+ PBn + P,

which implies that 8, is a root of the characteristic equation (9).
Also, multiplying (12) by ﬁ; ~!-2 and summing them up from [ = -1 to j — 2,
we obtain
Bl +€541,-18 7 + €0 41m2B) o+ €11 B+ €540 =0.

These imply that 3; (j = n,n—1,...,1) are also roots of the characteristic equation
(9). In fact, the relations (12) are the so-called Euclidean Algorithm:

0 0 0 0 )
1 ejp1-1 €ani-2 "7 €+l Eirlo L B;
0 .00 .0
B; Bi€5j—2 -+ Biesy Bieso
0 0 0
1 ;s €3 - ¢&o 0

. We have thus verified that the properties of solutions are not changed by our
transformation of reduction.

5. Application

We here take up the fourth order single linear differential equation described in
the introduction

2 (&2 - 1)y = P()y® + Pa(t)y” + Po(t)y + Polt)y-
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Putting ¢, = (¢ - 1), w2 = (¢* — 1) and 3 = ¢ (t? — 1), we have the following
relations of determination of the d; ;(t):

@ t(es2 +3) = —P3 +dyaps,

@ t(ea1 +eso) = —Pr+dyges +dasps,

® t(eso+esy) = —Pi +daseq + dagesy +daaer,
@ teyg = —Fo+daseso +dyzeso+dyzezo+da,
® t(es,1 +ph) = es2 + d3 302,

© t(eso+eh;) =es +dszesy +dsapn,

@ tego = eq0 +dazeso +dazero +day,

(¢ +1)(e2,0 + 1) = €31 + d2 2001,

® (t+1)eyo =es0+daze20+dz,

@ —ez0=4d;.

The order of calculation is as follows:

O<@®<O«O
N N %
Q-0

N
=

N
=

@-®

N
= ©
Now, putting
d;j=cit+a;, dj;=cjit+aj; (§#£1),
we first carry out the calculation:
®© (e42:d44) — @ (eq1,ds3) — @ (esn,ds3).
According to our method, we can immediately obtain

ea,2 = cat® + (aq + 8) % — cqt — (ag +4),
ags = (B2 —4) —aq(as +4),
ear = (cf +0®) 2 + {ca (2a4 + 5) + ey 3} 2
+ {Cl4 (a4 + 6) - Cg + Q4.3 — 3,32 hlit 4 + 14} t— {C4 (2&4 + 3) + C4'3}
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and
{ az = —a4 —4,
€31 = (03+C4)t2+(0.3+a4+6)t—(C3+C4).

We here make a remark on the relation (@©. Since the right hand side include a
factor ¢, we have not any relation between a4 and ¢4. So, we can assign any value
to a4. From now on, we put

ay = 0.

Next we calculate:

® (e4,0,ds2) — @ (e 0 ds2) — @ (e20,d22).

We have
as2=—(B%—4)(ca+ca),
ean = cq (e + a?) t2 + {2¢ + ca .3 (c3 + 2¢4) + 5a? } 82
+{-ca(ci+B2+7+4)+c3(B%—4) +c2}t
~ {2c4 (ca + ca3) + c3ca,3 + Ca2 — Ga2 + 882 + 37},
az2 = C4 +4C3 — C4.3,
€30 = (C% +c3c4 + C% + 0:2) 2+ (64,3 +c32—cq— 4cz)t
— (3 +csca+cf+c32 —as2+26%+7)
and

{ as=cz— 1,
ez,o=(62+C3+C4) (t-1).

The last formula gives d;,; by @9.
‘We proceed to the calculation:

@ (ds)) — @Ddsy) — @ (d22)-

Following our method again, we assign zero to coefficients of t* (k > 2) in the
relations. From coefficients of fourth, third and second degreec in @, ® and ®,
respectively, we obtain

3 (c3 +a?) =0,
c3 (¢ + csca + 3 +a?) + e (¢ +of) =0,
(Cg +C3Cq +C§ +C¥2) +c2 (C2 +c3 +C4) =0.

We here take
Cq4 = —Qi, Cy3 = (Yi, Cy = 0.

Then, the coefficient of ¢3 in @ yields

263 +caz(cs +2cq) + 5a% = 0,
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whence
C43 = —-3oi.

Furthermore, the coefficients of ¢? in @) and @) yields
32 =600, cq2=ai(a®~28%-v-12),

successively.
From those values of the c; ;, we can determine the remaining values of the a;,;,
and hence all d;; and e;; as follows:

( ez'o(t) =0,
e3,0(t) =0+ 121
es1(t) = 2¢,

es0(t) = —12ait + {5a® — 8% — 3y — fai},
e4,1(t) = —8cit?® + (8 + 24) t + 6ari,
e4,2(t) = —ait3 + 8t2 + it — 4,

\

where we have put
0=a®-28%-~vy-12.

Then, by the transformation (3) with the above e;;, we have

[ dya(t) =0,
da 1 (t) = -0 — 12,
dzyz(t) =-1,

ds1(t) = —Oait + i — o? — v,
d3,2(t) = 6ait + 6ai,

d3_3(t) = ait — 4,

dga(t) =&t +,

d4_2(t) = 0Q‘it,

dy3(t) = —3ait + (82 - 4),
d4,4 (t) = —ait,

\

where the constants &, are given by
£ =0’0+2(4a® - 782 - 3y — 6) o,
n=—0(0 +14) + 40® — 2.

Thus we have reduced the fourth order single differential equation to a system
of linear differential equations of another form (1) with

B =diag(1,~1,0,0),

0 1 0 0

Ae —-0-12 -1 1 0
T | fai—0®—v 6ai -4 1
n 0 B2-4 0
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and

0 0 0 0

0 0 0 0
—fai b6oi i 0

£ Oai —-3ai —oi

C=
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