# A remark on the functional calculus in C\*-algebras and positive definite sequences

## Yukimasa Oka

(Received January 20, 2006)

Abstract. Let A be a C\*-algebra with the identity 1 and a be a self-adjoint element in A with the norm  $||a|| \le 1$ . If a continuous function f on the interval [-1,1] satisfies the invariant property with respect to positive definite sequences, then the element f(a) is of the form  $f(a) = \sum_{n=0}^{\infty} c_n a^n$ , with  $c_n \ge 0 (n = 0, 1, 2, ...)$ 

#### 1. Main theorem

In this paper we give a remark on the functional calculus in C\*-algebras and positive definite sequences. Let A be a C\*-algebra with the identity 1 and a be a self-adjoint element in A. From the functional calculus it follows that an element x in A belongs to the C\*-subalgebra  $C^*(a)$  generated by a and 1 if and only if there is a continuous function f on the spectrum  $\operatorname{sp}(a)$  of a such that x = f(a). If the element x is given by  $x = \sum_{n=0}^{\infty} c_n a^n$ , with  $c_n \geq 0 (n=0,1,2,\ldots)$ , then the function f defined by  $f(\lambda) = \sum_{n=0}^{\infty} c_n \lambda^n$  satisfies an invariant property with respect to positive definite sequences that for a positive definite sequence  $\{\lambda_i\}$ , the sequence  $\{f(\lambda_i)\}$  is positive definite. The converse is also  $\operatorname{true}([2])$ . Thus we have the following

Theorem 1. Let A be a C\*-algebra with the identity 1 and a be a self-adjoint element in A with the norm  $||a|| \le 1$ . If a continuous function f on the interval [-1,1] satisfies the invariant property with respect to positive definite sequences, then the element f(a) is of the form  $f(a) = \sum_{n=0}^{\infty} c_n a^n$ , with  $c_n \ge 0 (n = 0, 1, 2, ...)$ 

### 2. Proof of Theorem

Let f be a continuous function on the interval [-1,1]. If the function f satisfies the invariant property with respect to positive definite sequences, then from Theorem I([2]) it follows that f is of the form  $f(\lambda) = \sum_{n=0}^{\infty} c_n \lambda^n (-1 < \lambda < 1)$ , with  $c_n \geq 0 (n = 0, 1, 2, \ldots)$ . The uniqueness of the functional calculus completes the proof.

## References

- [1] Kadison, R.V. and Ringrose, J.R., Fundamentals of the Theory of Operator Algebras I, Academic Press, New York, 1983.
- [2] Rudin, W., Positive definite sequences and absolutely monotonic functions, Duke Math. J., 26(1959), 617 622.
- [3] Rudin, W., Fourier Analysis on Groups, Interscience Publishers, Inc., New York, 1962.

Yukimasa Oka Department of Mathematics Kumamoto University Kumamoto 860-8555, Japan e-mail: yoka@sci.kumamoto-u.ac.jp