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Abstract.

In this paper we will show that for any Cantor minimal system (X, ¢), any
potential function f and any ¢ with sup{ fdu | u is a ¢-invariant probability
measure on X } < ¢ < oo, there exists a Cantor minimal system (Y, ) such
that ¢ and ¥ are strongly orbit equivalent and the topological pressure of 3
determined by f is equal to c. If ¢ is finite, we can take ¥ as a (minimal)
subshift. This result is generalization of the paper [S3]: On the subshift
within strong orbit equivalence class for minimal homeomorphisms.

1. Introduction

Let X be a Cantor set and T: X — X be a homeomorphism acting minimally
(i.e. for any z € X, the orbit {T"z |n € Z} is dense in X). A pair (X, T) is called
a Cantor minimal system. Giordano, Putnam and Skau showed that the following
statements are equivalent ([GPS|: Theorem 2.1):

e Two Cantor minimal systems are strongly orbit equivalent.

e Two C*-crossed products associated with Cantor minimal systems are iso-
morphic.

This theorem is the topological/C*-algebra setting of Krieger’s theorem ([Kr1],
(Kr2]). (The measure-theoretic/von Neumann algebra setting means a relationship
between the measure-theoretic orbit equivalence of ergodic non-singular systems
and an iscmorphism of von Neumann crossed product factors.) In the measure-
theoretic setting, Dyes showed any ergodic measure preserving systems are orbit
equivalent ([Dy1], [Dy2]). It is not hard to construct an ergodic measure preserving
system having any fixed value of measure-theoretic entropy. These imply that the
concepts of orbit equivalence and measure-theoretic entropy are independent. In
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the topological setting we have a similar result, that is, the concepts of strong
orbit equivalence and topological entropy are independent ([S1],{S2]).

Concerning the strong orbit equivalence of a Cantor minimal system, we can
ask the following question. Within any strong orbit equivalence class, is there
a minimal subshift? In [S3], we obtain the following result: For every Cantor
minimal system its strong orbit equivalence class contains minimal subshift of
all finite topological entropies. In this paper we generalize this result using the
concept of topological pressure by the following (Theorem 1.1). For a topological
dynamical system (X, T), denote M(X) by the set of Borel probability measures
on X and M(X,T) by the set of T-invariant Borel probability measures on X.
Let C(X,R) denote the set of all real valued continuous functions.

Theorem 1.1 Suppose that (X, ¢) is a Cantor minimal system and f € C(X, R),
which is called o potential function, is given. Choose any o with

exp (sup {/fdn | nEM(X,¢)}) <a<o (1.1)

and fiz it. Then there exists a Cantor minimal system (Y,) strongly orbit equiv-
alent to (X, ) such that
P(y,fob7') =loga,

where P(3,-) is the topological pressure of ¢ and 8 : X — Y is a strong orbit
equivalence map. If « is finite, we can take ¥ as a minimal subshift.

We remark that if f =0, then 1 < & < oo and P(%,0) is the topological entropy
of 9. So Theorem 1.1 is the generalization of [S1], [S2] and [S3]. We also remark
that (1.1) is the best possible inequality which a can take. The reason is the
following. Giordano, Putnam and Skau showed that an (strong) orbit equivalence
map 8 : X — Y gives a bijection 6 : M(Y,%) = M(X,¢) defined by f(v) =vold
(Theorem 2.2 in (GPS]). Using this fact and the variational principle of topological
pressure (see Theorem 9.10 in {(W1]), we have

Pl o0 =sup {m)+ [ 1007w | ve M}
Zsup{/fOO"ldv | VEM(Y,'/’)}
=sup{/fd§(u) | ueM(Y,vﬁ)}
=sup{/fdu | ueM(X,cS)}-

Now we give an overview of each section below. In this section below we intro-
duce some notations, definitions and conditions concerning Bratteli diagrams. In
§2, we consider the relation between Cantor minimal systems and subshifts. We
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will show that whenever a properly ordered Bratteli diagram B satisfies Property
1.5, then the associated Bratteli-Vershik system (X3, Az) is topologically conju-
gate to a subshift (Theorem 2.4). In §3, we calculate a topological pressure of a
special case of Cantor minimal system. By Theorem 3.8, we only calculate a pres-
sure of a subshift associated with a B satisfying Property 1.5. In §4, we introduce
two modification propositions of diagram which preserve the equivalence relation
on Bratteli diagrams. In Proposition 4.2 we construct a based Bratteli diagram
C using a given diagram B. In Proposition 4.5 we construct the desired diagram
B of (Y, %) in Theorem 1.1 using a based diagram C. These propositions play
important roles in proving Theorem 1.1. Finally in §5, we prove Theorem 1.1.

Notation 1.2 Basically, we use notations and definitions in [HPS| and [GPS).
Suppose B = (V, E, >) is a properly ordered (also called simply ordered) Bratteli
diagram. Suppose A is a set and |A| (or #A4) denotes the cardinality of A.

(1) Let 7 : E — V denote the range map and s : E — V denote the source map.
Namely, e € E;, connects between s(e) € V;,_; and r(e) € V,,.

(2) Let M™ = [#r=1(u)N5~(v)]uev, vev,._, denote the n-th incidence matrix of
B (ie., M.(,:,') is the number of edges connecting between u € V,, and v € Va-1)-
We also write B = (V, E, {M™}, >). Let M{™ = [M,(,I,’)]ue‘,;__l denote the u’s
row vector of M(™) which is called an incidence vector of u. Forn >k, let
M™¥) denote the product of incidence matrices M ™ M(n=1) ... pr(k).

(3) Set Xp = {(e:)ien | &; € Ei,r(e;) = sess1) Vi € N}. We call it the (in-
finite lengths) path space of B. For v € V,, let P(v) denote the set of all
(finite lengths) paths connecting between the top vertex vp € Vp and v. Then
[P)| = M,S:;l) holds. Put P(V,) = Uyey, P(v). The range map r is extended
to P(Va), that is, for p = (ey,...,e,) € P(V,), we define r(p) = 7(en).

(4) Forz = (e:)ien € Xgorz = (ey,...,e) € P(Vy), put T(i ) = (€ i1y - -+, €5)
and Z(; ;) = (€i+1,...,€;). For p € P(V,), set [p]s = {z € Xp | Zp,n) = P}
We call it the cylinder set of p.

(8) For v € V, and e € r~(v), let Order(e) denote the order of e in ri(v). If
Pmin = (€1,€2,---) is the unique minimal path in Xg, then Order(e,) = 1
for all n € N. If pmax = (f1, f2,---) is the unique maximal path in Xz, then
Order(f,) = [r~'r(f,)| for all n € N. Similarly, Order(:) is defined on P(V,,).
Le., for p € P(V.), Order(p) is the order of p in P(r(p)).

(6) For v € V;,, we write 7~} (v) = {e; | 1 < i < |r—1(v)), Order(e;) = i}. Define
List(v) = (s(e1), s(e2), -~ yS(epr-1¢0)))) € (Vn_1)|"‘l(")|.

We call it the order list of v.
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(7) For a monotone increasing sequence {t,}nez, C Z+ With to = 0, we say that
a Bratteli diagram B’ = (V', E', {M’ (")}) is a telescoping (or contraction) of B
to {t}, which we write B' = (B, {ta}), if V'n = Vi, and M'™ = Mtntn-itD),
Let B:, ¢._1+1 = {Z(ts_1,tn) | € € Xp}. Then there is a bijection between E,
and E;, ;,_,+1 preserving source and range vertices. We call {t,} a sequence
of telescoping depths. Especially, we define Boqa as telescoping B to odd depths
{0,1,3,---} and define Beyen as telescoping B to even depths {0,2,4,---}.

(8) Let (X5, Ag) denote the Bratteli-Vershik system of B. Namely, Az : X — X3
is a lexicographic transformation defined by the order > on E.

(9) For Bratteli diagrams B and B, define B ~ B’ provided that there exists a
Bratteli diagram B such that Boaq yields a telescoping either B or B, and
Beven yields a telescoping of the other. Then it is not hard to show that ~ is
an equivalence relation on Bratteli diagrams.

Remark 1.3

(1) Let (X,T) denote a Cantor minimal system, C(X,Z) the set of all integer
valued continuous functions, C(X,Z)* = {f € C(X,Z) | f > 0} and Br =
{f=foT™ 1| feC(X,Z)}. Define

K°(X,T) = C(X,2)/Br, K°X,T)*=C(X,Z)*/Br.

In [Pu], Putnam showed that the triple (K°(X,T), K°(X,T)*, (1]} is a sim-
ple, acyclic (i.e. K°(X,T) 2 Z) dimension group with the (canonical distin-
guished) order unit (1], where 1 = 1x is the constant function 1. Herman,
Putnam and Skau showed in [HPS] that the family of Cantor minimal systems
coincides with the family of Bratteli-Vershik systems up to conjugacy and
showed that K°(X,T) = Ko(V, E) (= means two dimension groups are unital
order isomorphic), where (V, E) is a Bratteli-Vershik representation of (X ,T)
and Ko(V, E) is defined by the induct limit of a system of ordered groups

Ko(V,E) = JLI,;(ZIV il M) = ZVel 2, Zivil 2, Zval My

They also showed that all (acyclic) simple dimension groups can be obtained
in this (dynamical) way.

(2) It is easy to see that (V, E) ~ (V', E') if and only if Ko(V,E) = Ko(V', E).
Giordano, Putnam and Skau showed in [GPS] that Bratteli-Vershik systems
(Xs,,As,) and (Xg,, A,) are strongly orbit equivalent if and only if By ~ Ba.

Definition 1.4
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(1) (distinct order list.) We say V,, has distinct order lists if for v,v' € V,,
List(v) = List(v’) implies v = v’ (or equivalently, v # v’ implies List(v) #
List(v')).

(2) (The minimal/maximal vertex property.) Suppose B = (V, E, >) is a properly
ordered Bratteli diagram. We say E,, has the minimal/mazimal vertex property
if there exist v, v7! € V,—; such that for any e, f € E,, with Order(e) =1

min ?

and Order(f) = |r~'r(f)|, then s(e) = v23! and s(f) = w27}

min
Now we consider a properly ordered Bratteli diagram B of Property 1.5. Later we

will show that the associated Bratteli-Vershik system (X3, Az) is conjugate to a
subshift and its topological pressure is calculable.

Property 1.5 B = (V,E, {M™},3) satisfies the following properties. For any
n €N,

(1) M™ is a positive matrix (i.e. M{™ > 1 for all u and v),

(2) E, has the minimal/maximal vertex property,

3 V-n > 3 and v3},;, # v1.,, where v™. and v"_._ are defined in Definition 1.4
o min max min max
(2)’

(4) for each v € V,, M::,)._l =M"_, =1,

min Y¥max

(5) V,, has distinct order lists. (In the case of n = 1, we ignore this property.)

2. Conjugacy between Cantor minimal systems and subshifts

In this section we consider a B satisfying Property 1.5. We will show that (X 5 Ag)
is topologically conjugate to a subshift. The details of shift spaces and its topology,
see [LM] in §1 and §6.

Definition 2.1

(1) Let (X, o) denote a subshift, that is, X is a shift space and o is shift transfor-
mation. For z € X and ¢,j € Z with 1 > j, set

Tlig) = TiTit1 L5y L(i,5) = TiTit1 " Tj-1,
which are called blocks (or words) of =. Set
Bn(X) = {$|o,n) | T €e X}, B(X) = Unean(X).

Since X is shift invariant, we see that B, (X) = {zpj)lz€e X, j—i=n}and
hence B, (X) is the set of all (length) n-blocks that occur in points in X. We
call B(X) the language of X. For B € B,(X) and 4,5 with j —i+1 =n, put

[BY = {z € X | 255 = B}.
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2

(shift of finite type) Let A be an alphabet (a finite set) and F be a set of
words with alphabet A. For F, define X to be the subset of sequences in AZ
which do not contain any word in F. We say a subshift (X, o) is shift of finite
type (SFT) if X has the form X for some F and F is a finite set. We say an
SFT subshift (Xr,0) is M-step (M € N) if F consists of blocks with length
M + 1. We say a subshift (X, o) is irreducible if for any u,w € B(X), there
exists v € B(X) such that uvw € B(X).

Remark 2.2 Suppose X C AZ. By Theorem 6.1.21 in [LM],

X

is a shift space iff 3F such that X = X iff X is shift-invariant and compact.

Definition 2.3 (Subshift associated with B) Suppose B = (V, E,>) is a
properly ordered Bratteli diagram. Let 7 : Xg U (UienP(V)) — P(V;) denote
a truncation map, that is, 7z = z; where z = (21,22, -+ ).

(1)

2

Define a shift invariant subset Xo, C P(V1)% to be
0 = {(T)\B'"a:)nez I T € XB-} .

One can show that X is compact. Let oo, denote the restriction of shift to
Xoo-

Define a finite directed graph G\ = (V, €) arising from P(Vj) as follows. Define
a edge set £ = P(Vi) and a vertex set V = {i(p),t(p) | p € £}, where i(p)
(t(p), resp.) is the initial (terminal, resp.) vertex of p satisfying that

r(p) = r(q) € Vi and Order(p) + 1 = Order(q),
p,q €&, t(p) =i(q) iff < or
Order(p) = |P(r(p))| and Order(q) = 1.

It is easy to see that Gy is a irreducible graph. Let X denote the edge shift
Xe,- Le,

X = Xg, = {z = (z:)icz € P(VR)? | t(z:) = i(zi4) for all i € Z}.

(See [LM]:Definition 2.2.5. ) Let &; denote the shift on Xj. It is easy to see
that (Xk,ak) is a 1-step shift of finite type. Define X = mi(Xx), where the
map 7 : Xx — P(V1)?% is defined by

7 Toyzoxy -+ ) = (- (r2o)-(T20) (1) -+ )- (2.1)
Let oy denote the shift on Xj.

First we consider the relationship between (X3, A3) and (Xeo, 0co)-
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Theorem 2.4 Suppose B = (V,E, >) is a properly ordered Bratteli diagram sat-
isfying Property 1.5. Then (X3, \3) is Lopologically conjugate Lo (Xoe,0o0)-

Proof. We write A = A3 for short. Define moo : X5 — Xoo as
oo = (TA"Z)nez.

We will show that 7. is a conjugacy. Clearly 7o is surjective. oo O A = G oo © Moo
holds because

(TooAZ)n = TA" AL = TA M2 = (Mo T) st = (FooTooT)n-

Therefore we will show that 7 is injective. We call the argument below the one-
to-one argument.

The one-to-one argument. Choose any = = (z;),y = (1:) € X 5 With = # y and fix
them. It suffices to show that there is m € Z so that TA™z #7ANy. If T2 # Ty,
the claim would have been proven. Therefore assume that there is [ > 1 so that
Zy = Y and Zigy # ypae (@, = (21,%2,...,21)). Suppose n < 0 is the
maximum number so that (A"z)(1,141) lies in the minimal path in P(r(z;4,)). This
implies that Order((A"z);4,) =1 and (AT 142,00) = T(14+2,00)- Then we consider
the following two cases:

@) (W2 = AV,
(i) (\z) # A"y

In the case of (i), we note that Order((A\"y);;;) = 1 because r(A*z) = r(A\"y); =
v!n and Property 1.5 (2) and (4). Let v = r(A"z)iy1 and v = 7(Ay)41.
Then u # v because of Z(i+1] # Yoi4+1)- Since Vis1 has distinct order lists,
there exist e € r~'(u), f € r~!(v) and the minimum number 1 < n' <
min(lr=!(u)], Jr=!(v)|) such that s(e) # s(f) and Order(e) = Order(f) = n'.
Let # = n + Z?;III'P(s(e,-))I, where e; € r~!(u) with Order(e;) = i. Then
$(A*z)141 = s(e) and s(A\*y);4, = s(f). This implies that (V2)1, # APy

Both the case (i) and (ii) imply that there exists N € Z such that (AN Ty #
(AN Y)u,y holds. By repeating this procedure, we get TA™z # TA™y for some
m € Z. So we finish the proof.

Definition 2.5 For v € V'\ Vg, define words (or blocks) Con(v) and 7Con(v) as

Con(v) =p1p2...pp(wy,  7Con(v) = (7p1)(1p2) - .. (TP|P (o)),

where {p; | Order(p;) =i, 1 < i < |P(v)|} = P(u).
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Remark 2.6 Using Con(-) and 7Con(-), we see that
3{nitiez C Z with n; < nit1, Hvitiez
C Vi stVi€Z, Tin, niyy) = Con(v,-)} '
In;}icz C Z with n; < nip, H{vikiez
CVist.VieZ, Tlninigs) = -rCon('vi)} '

Xk = {:z: € 'P(Vk)z ‘

Xy = {a: € P(V)2 |

So (Xx, %) and (Xx, o) are renewal systems with the generating list {Con(v) |v €
Vi}, {rCon(v) | v € Vi} respectively (see [LM], §13.1).

‘We consider the relationship between (Xk,&k) and (X, o0k). The following theo-
rem is important so as to calculate the topological pressure of (X3 A3)

Theorem 2.7 Suppose B = (V,E, >) is e properly ordered Bratteli diagram sat-
isfying Property 1.5. Then for any k € N, (Xk,6%) and (Xi,0k) are topologically
conjugate.

Proof. We will show that the map 7y is a conjugacy. Clearly mx is surjective
and 7, 0 G = Of o mk. So we will show that my is injective. Suppose z =
(z:),z' = (z';) € X satisfies that z # 2’ and zo is some minimal path in P(Vi).
If 7zo # 72’0, then we have been done. Therefore we assume 7zo = 7z'g. Then
there exist {n;},{n’;} C Z and {v;}, {v';} C Vi such that for any i € Z,

T(nineer) = Con(vi), & i mripn) = Con(v'i),n0 =0, n'p <0< 7'y
Here, let us consider the following three cases:
(i) v'o # vo,
(i) v’o =wo and n'y #0,
(iii) v'o = vo and no = 0.
In the case of (i) and (ii), there exists { with 1 <1 < k such that (zo)(1,y = (')
and (Zo)[1,141) # (z’0)(1,4+1)- So we use the one-to-one argument in Theorem 2.4

and obtain 72, # 7'y for some m. In the case of (iii), by = # z’ there exists
I € N such that

o for any % with [i] < I, v; = v'; (therefore n; = n'; holds),

¢ vy 75 ‘UI[ or v—y 7& ’U'_].

If v; # v'1, by Property 1.5 (2), (Za,)p,4) 2nd (2'n;)[1,%) are the minimal path
in P(v;) and P(v'1) respectively (and hence (Tn )1 k-1 = (z'ns),k~1)) and
(Zn)u k) # (@'n;)k). So using the one-to-one argument in Theorem 2.4, we
have TZm # T&'m for some m. If v_; # v'_j, basically by the same argument we
have Tz, # Tz’ for some m.

In the case where g is not some minimal path, we may consider some minimal
path z, instead of zo. Therefore we have a conclusion that mx is injective.
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3. Calculation of topological pressure

The aim of this section is to calculate the topological pressure of a Bratteli-Vershik
system in a special case. First we introduce the definition of topological pressure.
The details of definitions and notations are written in [W1].

3.1. Definitions and properties of topological pressure

Definition 8.1 Let (X,T) be a topological dynamical system. (le. X is a
compact metric space and T is a continuous transformation on X .) For f €
C(X,R) and n € N, put (S, f)(z) = iy f(T'z). For € > 0, put

i=0

Qn(T, f,€) = inf {z eSn X3 | Fisa (n, €)-spanning set for X} ,
z€F

QT £,€) = limsup ~ 10g @u(T /),
P(T,f) = ;%Q(T,f,&')

‘Then it is easy to see that P(T, f) exists but could be co. The map P(T,-) :
C(X,R) — RU {c0} is called the topological pressure of T.

When T is an expansive homeomorphism, we can calculate P(T, f) as the following
way. A finite open cover a of X is a generator for T if for every bisequence
{An}2 _ o of members of a, the set N _ o T~"A, contains at most one point of
X. Define

n-=1
Pa(T, f,a) = inf {Z sup e(5» (=) | 8 is a finite subcover of V T—ia} .
AeB el =0

Theorem 3.2 ((W1]: Lemma 9.3, Theorem 9.6) Let T be an expansive
homeomorphism of X. If & is a generator for T, then

.1 NP |
P(T,f) = lim —logpn (T, f,0) = inf < logpw (T, f,a).
In the case of a subshift (X,o) with alphabet A, o = {lald | a € A} is generator
for 0. Moreover we see that

o Vijo ia= {Blz7! | Be B,(X)} and hence Vi!o~ia is a finite cover of

3

e Since {[B]§~! | B € B,(X)} is a disjoint finite cover (i.e., B # B’ implies
[Blz~' n[B|3~! = 0), it has no proper subcover.

So by Theorem 3.2 we have the following.
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Proposition 3.3 Suppose that (X,0) is a subshift end f € C(X, R) is potential
Junction. Then

P(o, f) = lim llog Z sup elS~H)=)
n—oo N BEB.(X) :BE[B]:-I

1
=inf “log| Y sup eSvN@ |
NeN N (BeBn(x)xele’-‘

3.2. Topological pressure of Bratteli-Vershik systems
In this subsection we assume that B satisfies Property 1.5. First we calculate the

topological pressure of (X, 5x) with respect to some special potential functions.

Definition 3.4 Suppose B is a properly ordered Bratteli diagram. We say that I
is a simple function on Xg based on P(V,,) if for any z,z’ € X with z(y n) = z'(1,n)s
f(z) = f(z') holds. Then for p € P(V,) we can define f[p]s = f(z) if z € [pls-

Remark 3.5 Since each cylinder set [p]s is a clopen set, f is a continuous func-
tion.

For g € C(X3,R) and k € N, let g denote a simple function based on P(Vi)
satisfying limg .o gk = g as the supremum norm. We define a continuous function
gk on )-fk to be

9x(z) = glzol s,

where z = (z,) € X and hence i is a simple function on X

Lemma 3.6 In the situation above, we have
P(5, gr) = log ok,

where oy is the mazimum positive solution of the equation for z given by

) x]i-"P_(—_:’u))I =1, where(v)=exp ( > g"[P]B) '

veWy PEP(v)

Proof. By Theorem 2.7, ()'(k,&k) is 1-step irreducible SFT. Let A be the adja-
cency matrix of the graph Gy defined by

{1, if t(p) = i(q),

A, =
e 0, otherwise.

Let D be a diagonal matrix defined by Dpp = e?lPls. Put S = AD. Let g =
max{|A] : A is an eigenvalue of §}. A is an irreducible matrix and so is S. Then
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using Lemma 4.7 in [W2], we have P(Gy, gx) = log As and there exists an eigenvalue
A such that As = A. Now we will show Ag = a. By Perron-Frebenius Theorem
(See [W1]: p16, Theorem 0.16.), s is an eigenvalue and its eigenvector is positive.

Let 6 be the right eigenvector of As. We write 8 as 6 = (8,) € R!f(‘-,") l, where
0, = (0p)pe‘P(v)~ (T — As)@ = 0 follows that

o —\s0, + e9ldlag, = 0, where r(p) = r(q) and Order(p) + 1 = Order(q).

* —Asbp+ 3, e9:lalsg, = 0, where Order(p) = |P(r(p))| and g is taken over
Order(g) = 1.

These are equivalent to

o0, = Ag’de'(")'l exp(— > . 9x([p’]5)8,, where r(p) = r(g), Order(q) = 1 and
p' is taken over p’ € P(r(p)) with 1 < Order(p’) < Order(p).

3, esldsg, = ,\!gp("("))'exp(- > 9x[P'13)0,, where Order(p) = 1, q is
taken over Order(g) = 1 and p’ is taken over p' € P(r(p)) with 1 <
Order(p’) < Order(p).

Then we have

_ AP ep(5 gufills) Ly APEDIPOIRg) P .
O exp( T aulals) g, Py ldlg) Xy eldT)

p

where p' is taken over p’ € P(r(p)) with 1 < Order(p’) < Order(p) and ¢’ is taken
over ¢’ € P(r(qg)) with 1 < Order(g’) < Order(g). So we have

Z & =1.
/\g’(””

vEV)

So we finish the proof.

Lemma 3.7

P(0co,gom) = lim P(oy, g omy ). (3.1)
— 00
Proof. First we will show
) Xk = Xeo.
keN

For k € N and v € V;.41, the word 7Con(v) corresponds to concatenated words
7Con(u; )7Con(us) - - - TCon(u,),

where (uj,u2,...,u,) = List(v). Then by Remark 2.6 X1 D X D --- and
Xoo C NkenXy. Conversely, suppose z € NgenXk. Since

z€Xe iff foranyn e N, the word Z|-n,n) appears in a point of X,
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we will show z(_, n) € Bon+1(Xo). It suffices to show that z|_, ) appears in
7Con(v) for some vertex v. Suppose that N € N satisfies min{|P(v)| | v € Vn} >
2n. For m > N, Define A,,, B, and Cy,, as

m = {0 € Vin | Z(_n,n| aPpears in 7Con(v)},
m = {(%,v) € Vin X Vip | Tj—n,n) appears in a concatenated word 7Con(u)rCon(v)},
'n = {(1,v) € Vi X Vi | 7Con(u)7Con(v) € B(Xm+1)}-

Since € NkenXk, Bm N Crm # § holds for any m > N. Suppose A, = 0 for
any m. If (u,v) € By NCy with (u,v) # (v, v};,), then there exist w € VN1
and e, f € r~!(w) such that s(e) = u, s(f) = v and Order(f) = Order(e) + 1.
But this implies that w € Ay and hence By N Cn = {(vN,y, vMin)}. Now, for
any y € V42, 7Con(y) contains the word 7Con(v¥,,)7Con(v;,). Because by
Property 1.5 (2), any concatenated word TCon(u)7Con(v) with u,v € V41 con-
tains 7Con(vXY, )Con(vY, ) and 7Con(y) consists of concatenations of 7Con(w)’s
(we Vi+1). Therefore y € An2 holds and hence it is a contradiction. Therefore
A # 0 for some m and z|_n 5 appears in TCon(v) for some vertex v.
Define hy, € C(X3,R) based on P(V,) to be

ha(z) = max{g(y) | y € [plz} ifz € [pl5-

Then we see that limp—oo ||2n — 9] = 0 and hence limg—.oc [|2n — gnll = 0. By
Theorem 9.7 (iv) in [W1]

|P(ok, Gk 0 75 t) — Plok, ko mg )| < |lhe —gill = 0 as k — oo.
Therefore we will show
P(0s,g0oms) = kll'no)o P(ox, hrom ).
Clearly
P(o1,k1) 2 P(oa,ha o3 ) 2 P(os,hsom3t) >+ 2 P(0oo,g0To)

because X; O X2 D -+ O Xo and hy, is monotone decreasing with respect to n.
By Proposition 3.3 for any € > 0, choose NV satisfying

- 1

1 log E sup elSngor@) | « P(0s,gomyt) + zE.

N N-1 2
BEBn(Xs) TElBla

By NkenXk = Xoo, there exists K € N such that for any k > K and = € Xp,

Bn(Xe) = Bn(Xy) end hi(z) < g(z)+ %s.
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Using Proposition 3.3 again, for any k > K we have

7 1 .
P(og,hom!) < i log Z sup e(Svheomy ') (=)

BeBy(Xy) ZEIBN !
1 -1
- (Svgon ' )(x)+Ne/2
< Nlog Z sull)v_le N
BEBN (X ) ZElBlo

< P(0oo,gom!) +e.

Theorem 3.8 Suppose that B = (‘7, E, >) is a properly ordered Bratteli diagram
satisfying Property 1.5, g is a potential function on X3 and {gn} is a sequence of
simple functions on X based on P(V;,) for each n satisfying limy_.o0 |lg—gnl| = 0.
Suppose o, is the unique positive solution of the equation for x given by

Tn(v
z zl’;’((v))l =1, wherey(v) =exp Z anlpl
vev, PEP(v)

and lim oy = a ezists. Then P()\g,g) = loga.
n—o00

Proof. By Theorem 2.4, A5 and 0 are conjugate and hence P(A3,g) = P(000, g0
To' )- By Theorem 2.7, 54 and oy are conjugate and hence P(Gx, k) = P(ok, gk ©
m;'). Therefore by Lemma 3.6 and 3.7 we have

P(Xz,9) = klingo P(ok,gi © 7r,:1) = kllngo PGk, gx) = kli'n;no log oy = loga.

4. The modification of simple Bratteli diagram preserving equivalence
relation

In this section, we give two modifications of diagrams preserving the equivalence
relation of Bratteli diagrams (see Notation 1.2 (9)). The first modification is
useful for the construction of a based diagram C in the main theorem. Using a
given simple Bratteli diagram B = (V, E, {M(™}) and a sequence of telescoping
depths {t,}nez,, C = (W, F, {N(™}) is constructed by the following: (We call the
construction below the verter amalgamation.)

The vertex amalgamation construction of C. Define an equivalence relation
~ on vertices of (B, {t.}) as

u=uv, ifn=0,

u~v (u,v €V, &
? ¢ ) {Métmtn-l'*‘l) = M‘,_(,t"'t"_‘+1), ifneN.

Using this equivalence relation, we construct W by

Wo=V,[~.
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For z € Wy_; and w € W,, define N{¥ as

N = ZM&,""“""’I), where u € w.

vEX
(In the case of n = 1, we put vp € wp where Wy = {wo}, Vo = {wo}.) Note that

this definition is independent of the choice of u € w.

Remark 4.1

(1) We give an example of (stationary) Bratteli diagrams satisfying the conditions
above. Forany n € N, sett, =n, V, = {1,2,3,4,5,6} and W,, = {w,, wa,ws}.
Incidence matrices M and N are defined by

2 111111
2 9 111111 22 2

M= H N0 = [§] 20 = [} N = [$35] (022,
4 214545

Then we see that 1,2 € wy, 3,5 € ws and 4,6 € w;.

(2) In this example, w2 # ws but N =N,

Proposition 4.2 Suppose B = (V, E,{M™}) is a simple Bratteli diagram and
{ta} is a sequence of telescoping depth satisfying that all M (tastn-1%+1) %5 gre pos-
itive matrices. Suppose C is the diagram constructed above. Then the following
statements hold:

(1) foranyn € Nandse N, #{we W, | r~Hw)| < s} < 2%,
(2) for anyv € we W, |P(v)| = |P(w)],

(3) for any 0 <7 < 1, there exists K € N such that - yen, 7PN < 1 for all
n>K,

4) B~C.
Proof. (1) Since

{(Mtntn-1t) |u eV, } C

Z Ny = Z Mtntnmar+l) g € Vg“}

vev‘n—l I"eV‘n—l
u€ Vz,.} )

{(nu) € NlVenil

and

{|'r‘1(w)| fweW,}= { Z Mx%"’t"-‘“)

veVy, _,
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we have

s—1
z nv =S = Ith—ll-l :

vev‘n—l

#{w e Wa | |r~!(w)| = s} < #¢ (n,) € NIVtaal

Then we have

#HoeWa P @<t Y (Wil ) = (i) <2,

i=Ve, 1
where we used the formula (77]) = (7) — (7).
(2) In the case of n = 1, [P(v)] = MY = N{) = |P(w)| holds for any

v € w € Wy. Suppose that for any v € z € W,_,, |P(v)] = |P(z)| holds.
Then for u € w € W,,, we have

P)l= > PE)IME-+D = Y (Zm(v)mggmtn-.m)

veV:, _, 2EWn_) \vEzx
= D IP@IY ME = S P(2) NG = [P(w)].
ze€W,_ v€T TEWn_1

(3) Put pmin = min{lP(:z:)l | z € Wn_1}. By the simplicity of B and (2) above, it
is easy to see that pJ'" is monotone increasing with respect to n. Using (1),

n—1
we have
_ pmin
> rPwI < 5 et <er":.= so 2 o
— 0 pT
weWw, wew, s=1 1—2rPn-1
as n — 0.

(4) We will construct a Bratteli diagram B = (V, E, {M)}) so that Beve,, corre-
sponds to (B, {t.}) and Boqa corresponds to C. Forn € N, we put Van_y = W,
Vz,, = V. and define the incidence matrix M (") as

HGD = Mt where u €,
MEZ = 8%, where &M =1ifvew,and 8 =0if v ¢ w.

We will check that M(2m2n-1) = pf(tata—a+1) gnq pr(r+12n) _ N(n+1)
(M©® = NO) = {1] for convenience).

Méﬁnﬂn—l) = Z Mé?”n)Mé'zvn—l) - Z 6&73Mt(‘t’u)‘n—l+l) (t € ‘lU)
weEW, weW,

= M‘gf)n,tn—l"'l) (cutews M‘(‘:n,t,._|+1) = Mt(ﬁ...t..-ﬁl))’
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M&Zzni-l,Zn): Z M‘g’nH)Mﬁn): Z Mz(i"“""“’é,‘,';) (t € w)

veVe, v,
=S Mt S NG (e ).
vET

Remark 4.3
(1) In the example of Remark 4.1, M™ s the following.

M® = [é] CNen = [

—O-OOO

Sr(2n+1) _ [111111]
], M t13eg) (e

(=1l le g
OOmOO

(2) Suppose B and C are Bratteli diagrams satisfying Proposition 4.2. Then there
is an onto map @ : E' — F, where E' = U2, E;_ .. ,+1 is the edge set of
(B,{tn}), such that

o &(Ey, ¢ ,+1) = Fn,

e for any e € E', s(e) € s(®(e)) and r(e) € r(P(e)),

o for any v € w € Wy, & gives a bijection between {e € Et, ¢, +1 | r(e) =
v} and r~(w),

e for any é € F,, and e, e’ € $71(€), s(e) = s(¢').
Then we can define a map 8" : P(V;,) — P(W,,) as

tn—

x[l,tn] and Q(x[l,tll)é(x(h,tzl) R ¢(z(£n_1.ln])'
We see that

(i) P" is surjective,
(i) the restricted map $"|p(y) is a bijection between P(v) and P(w) where
vew,

(iii) for any p € P(W,) and x[l,tn]az’[l,tn] € @")_I(P), TiLtn-a] = x’[l,tn—l]
holds.

Using $"’s, we define ¢ : X5 — Xc as

@((Zn)nen) = (Yn)nen & foranyne N, 45"(:':[1,:,.1) = Yi,n)-

Then we can show that ¢ is bijective by the following. By (i) ¢ is surjective.
For any fixed y € X¢, the number of paths in P(V;,,) corresponding to y(1,n] via
" (ie., (") yu,n)l) is #{v € Vi, | v € 7(yn)} because of (ii). However,
by (iii) source vertices of each edge in B¢, ,,ta4+1 corresponding to yp4+1 via
& are a same vertex. Therefore considering preimage of yj1 n41) via ot we
can choose uniquely the path in P(V;,) corresponding to y1,n) via 9™ This
means ¢ is injective.
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(3) o preserves the cofinal relation. I.e,
T#7 €Xgand Vn 2 tn, 2 =7"n = VYn 2 N, 0(@)n = @(z)n.

Therefore, if we assign any proper order <g, <¢ on B, C respectively, o is an
orbit equivalence map. Moreover if <g and <. satisfies ©(Tmin) = Ymin and
¥(Zmax) = Ymax, ¥ is & strong orbit equivalence map.

(4) Suppose f is a simple function on Xz based on P(V:i._,)- Then fop~lisa
simple function on X¢ but not based on P(W,_,) in general. Indeed, f o o1
is based on P(W,_,) if and only if flp]s = f[p']s for any p,p' € P(V;,_,)
with 6" (p) = &™(p'). However, fo ™! is based on P(W,,). We regard f as a
simple function based on P(V;,) by

f(z) = flpp,ta_yls if z € [pl, p € P(VL,).

By the condition (iii), #"(z(1,¢,)) = P™(2'(1,t,)) implies z(1 e, ) = @',y
Therefore
foo™ () = flppen_yls ify € [8*(D))c

does not depend on a choice of p € P(V;,) and is a simple function based on
P(W,.).

Here we introduce the “converse” construction of the vertex amalgamation, which
is called the vertex splitting.

The vertex splitting construction of B. Suppose C = (W, F, {N®™}) is a
simple Bratteli diagram. Suppose B = (V, E, {M™}) satisfies

oV, = Uwew, Vn,w as disjoint union and Vn,w # 0, (Le., we split w into IV,,_,,,|
vertices in V;,.)

o for any u,v € Vn,w, 1\7!.(;") = M:Sn),
o for w,z € W,, with w # z, then M,S") # Mé") foru e Vn,w and v € Vn,x

e for any u € V,,,w, Zvef,n_l.: i) = Né;;).

Remark 4.4 In the case of the vertex amalgamation construction, C is uniquely
determined. However, in the case of the vertex splitting construction, there is an
ambiguity of a number of vertices and hence B is not uniquely determined.

Proposition 4.5 B~ C.
Proof. This follows Proposition 4.2 by putting B = B and {t.} =12Z,.

Remark 4.6
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(1) Suppose B and C are simple Bratteli diagrams satisfying the vertex splitting
construction. By similar arguments of Remark 4.3 (2), we have a bijection
@ : X3 — Xc preserving the cofinal relation. Suppose that B and C are simple
Bratteli diagrams satisfying the vertex amalgamation construction and B and
B have proper orders <g, and <g respectively satisfying

@(Zmin) = $(Zmin) and #(Zmax) = @(Emax)-
Then @0 is a strong orbit equivalence map between (X3, As) and (X3, Ag)-
(2) Let o™ : P(V,) — P(W,) be an onto map which induces a conjugacy ¢ (see

Remark 4.3 (2)) and A be a simple function on Xc based on P(W,,). Then we
see that for any %,%' € Xz with #™(Z(1,)) = d-*"(a’fil,n]) =q,

ho (%) = ho ¢(z') = hlglc.

This implies that for any v,v' € I-/,,,w,

3 hoglplz= D hodlpls= > hlde-

PEP(v) PEP(V') q€P(w)

5. Proof of Theorem 1.1
5.1. Requirements of a simple Bratteli diagram for (Y, ).

By Theorem 9.7 in [W1], for a topological dynamical system (X, T) and potential
function f € C(X,R),

h(T) +inf f < P(T, f) S K(T) +sup f

and so P(T, f) = oo iff A(T) = oo. In the case of & = oc, there exists a Cantor
minimal system (Y, ) strongly orbit equivalent to (X, ¢) such that h(¥) = oo (see
[S2]). This means

P, f 0871) = co.

So we only consider the case where a is finite. Let B = (V,E,{M (m)}, >) be
a properly ordered Bratteli diagram which is a representation of (X,¢). So we
identify (X,®) with (Xg, Ag). From the simplicity of diagram, we may assume
that all M(™’s are positive matrices. We only consider within a strong orbit
equivalence class of (X, ¢). So applying Proposition 4.2 to B, we may also assume
that

vn,s €N, #{veVy | Ir~l(v)| < s} £2°, (5.1)

0<Vr<l1, AKeNst¥n2 K, » rPMl<1 (5.2)
veV,
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Choose any decreasing sequence {en}nen satisfying 0 < 35,. < Enp1 < -en
and fix it. Now we will construct a properly ordered Bratteli diagram B =
(V,E, {M™},3) which is a representation of (Y,9). First, applying the vertex
amalgamation construction to (B, {t,}) where {t,} is some suitable telescoping
depths, we have a based Bratteli diagram C = (W, F, {N™}) with C ~ B (see
Proposntlon 4.2). Second, applying the vertex splitting construction to C, we have
B with B ~ C (see Proposition 4.5

5.2. Preliminary

In this subsection, we will introduce some lemmas.

Lemma 5.1 Suppose that N,A,Q € NwithA>3, R€Z, andl <r <2 satisfy
the following conditions:

() N-2=(A-2)Q+Rand0<R<A-2,
(2) (r—1)Q> A4, (2-7)Q 21 and T=UW=A) 5 5
Then the following inequality holds.
A—2 A-3
) € NA-2 _N-2 n > (=W -2)
#{(n,)GN |;'ﬂz N 2,nz<‘f'Q}_( ) T

Proof Let {6:}£53 be a set of non-negative integers with {; < (r — 1)Q. Define
(i} cNas

Q+R-1 ifi=1,
ni=0Q+lL_,—l; if2<i<A-2,
Q+1las ifi=A-2

Then we can easily verify that {n;} satisfies Z'_l n; = L — 2 and by condition
(2), 1 < n; < rQ holds for each i. Moreover it is easy to check that the map
(lylay -+, la1) = (ni1,na,--- ,na_y) is injective. Let [ ] denote the Gauss
symbol (i.e. [z] is the integer part of z). So we get

A-2
#{(n:-)eN"*’l domi=N-2n<rQ } 2#{) ez lL<(r-1)Q}
=1

2 (- eyt~ = (|2 R)])A_a > ([ A)D"-3

So we finish the proof.
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‘We will use the following notations.

77(n) W ) _ Mo
M'U = Z M‘uu ’ M‘Uu == (n) N
u€Vn_1 My

Lemma 5.2 Suppose that (V, E,{M™}) is a simple Bralleli diagram with posi-
tive matrices and N € N is given. Then there exists {cy}uevy_, With0 <cy <1
such that

cu < inf{MIN+EN) |y € Viyyx, k€ N} (5.3)

Proof. For any k € N and v € Vv,
MNHEN) < M) x FINTRNHD where MM =Y M), (5.4)

u,v
Also, the following inequality holds.
N+k,N Or(N+k,N+1 : (N
MNHEN) & pp{N+kN+ ) x min M, ) (5.5)

From (5.4) and (5.5), we get MENFEN) o ¢ where ¢, = (minjeyy M,(,‘N))/HM(N) (B
It is clear that 0 < ¢, < 1 for all u € Vy_1. Therefore (5.3) holds.

Lemma 5.3 For alln €N, (2)" <n! < (2£2)"**

Proof. If n = 1, the inequality holds trivially. If n > 2, then e = Z?:o ',:—': > ’—::T
Therefore the left part of the inequality holds. Next, we can calculate

n+l n+l  pktl
log(n+ 1)! = ; logk < ;/k log zdz = (n + 2)log(n + 2) — (n+1).
Since log(n + 1) > 1 for n > 2, we get
logn! < (n+ 2)log(n +2) — (n+ 1) — log(n + 1)
< (n+2){log(n+2) — 1} =log ((n + 2)/e)"+2.
So the right part of the inequality also holds.
Let f be a function of Xp. For z € Xz and m € N, put
SGiemy =~ S f0s')
™ =0

Lemma 5.4 Suppose B = (V,E,>) is a properly ordered Bratieli diagram, f is
a simple function on Xp based on P(Vn). For any B > exp(sup{[ fdu | p €
M(Xg5,Ag)}), there exzists N' > N such that for any n 2 N andv e V,,

ﬂlp(v)l > exp ( Z f[p[l,N]lB) .

PEP(v)
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Proof. Suppose this lemma is false. Then there are infinitely many n’s and v, €
V,, so that

AP < exp ( > f[TNP]B) & exp(log 8 — S(f,2a, [P(va)l)) < 1,

PEP(vn)

where z, € X is in the minimal path of P(v,). Define u,, € M(Xg) as

1 |P(vn)l-1
n= T/ 6 i .
T Pl § As'an

Choose subsequence {n;} so that {S(f,Zn,, |P(vs,}])} is convergent and {un,} is
convergent in the weak* topology on M(Xpg). Let u = lim;_.oo ftn,. By Theorem
6.9 in [W1], we see that u € M(Xg, Ag) and

S 2nes (Pa ) = [ Fain, / fdu (i — o).

exp (logﬁ— /fdu) <1

This contradicts 8 > exp (sup {/fdu |ne M(XB,,\B)}).

Therefore we have

5.3. The construction of a based diagram C.

If {t,} is decided, we can construct C by the vertex amalgamation construction.
Then, we define ¢ : Xp — X¢ as Remark 4.3 (2) and a simple function f, on Xz
based on P(V,,) as

fn(z) = min{f(y) | y € [p]s} where z € [p]s and p € P(V%,).
(Set P(Vo) =0 and [B]z = Xp. Then fo(z) = min{f(y) | y € Xp}.) We see that
o {fa} is monotone increasing and lim,— ||f — fa|| = 0,
® fa_10¢~!is a simple function on X¢ based on P(W,,) (Remark 4.3 (4)),

e for any v € w € W,,

Y. facalPpeals= Y. fac109 gl (5.6)

PEP(v) q€P(w)

(See Remark 4.3 (4). Put ppy o = 0.).
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Define ', [w] as

PEP(v)
where v € w € W,,. Now, we will decide {¢,} by induction.
The 1st step. Put ¢ty = 0. Applying Lemma 5.4 to fy and B, there exists {; € N
satisfying

Tafw] = exp ( > fn—l[P[l,t,._,]]B) , (5.7)

[Pv)l
(a + %el) > exp ( > fo[pu,olls) = exp (|P(v)| x min{f(y) | y € X8}),

pEP(v)
1P(v)|
( @ +152 ) > 9
a+ 3€2

for all v € V;,. ( The second part of inequality above holds because minyev,, |P(v)|
is monotone increasing with respect to ¢;.) We fix ¢;. Then we can construct W,
and N of C by the vertex amalgamation construction. Since |P(w)| = |P(v)|

holds for v € w, the first part of inequality above is equivalent to (a + %EI)I'P(w)I >
Ty [w] for any w € W;. Let {AS‘}) € N | w € W,} satisfy

|P(w)
AL > 2 + max {%—» |Vn.w|} )

where V;, » = {v € V;, | v € w}. Then there exists a unique number a; > a+¢;
such that

AT [w]
Z (al)lrl(s;l -

Choose any g9 > a; — a and ﬁx 1t.
The n-th step. For n > 2, suppose the (n — 1)-th step data are given by the
following: For any w € W,,_,,

(Dn-1-1) (ZE5)IP™) > 2,

(Dn1-2) (@ + €n-1)P@)N < (AT — 2)T 1 [w),
(Dn-1-3) [Vi,_yul < 407 -2,

Choose 1, € R satisfying (5.8) and fix it.

3 (ADTY —2)Ty[w]
A P (5:8)

1<r,,,<m1n(

For any fixed t, > t,—1, we can temporarily construct W, and N (™) by the vertex
amalgamation construction. Define Qz» € N and Ryy € Z4 to be the unique
numbers such that

N —2 = (Al™Y - 2)Quu + Row and 0< Ry <AQ™V -2, (59)
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Define B;,Cy,, and D,,, as

S () A —
PR (0 V2 (N;m 2> N;:L’)

[oew,_, (rwQzw + 2)/e)Ni 24070

C;cw = {(nu) € NI‘,‘“_;.WI

zn,,=zv;:;>},

veEw

Alp-V_2
D:w = {('ﬂ;) € NA&:—U_z I Z n; = N:E:’]:,) - 2, 1 S < 'I’szw} .

i=1
Now we will show that Claim 5.5 holds for sufficiently large ¢,.
Claim 5.5 For any z € W,,
(1) Tulz] < (e + 3eq)P@),
(2) Bzrn[xl(a +€n_1)—|7’(-")| >1,
(3) for any w € Wp—1, |Coul < |Dzwl,
(4) Vi, zITn[z] < (a4 €,)IP@N,
2ate,) PN
(5) Xzew, (a(:—:f_‘%rﬂ;n <1,
+ n
(6) (2temts )P > 9.

(1) fa-1 is a simple function based on P(V;,_,). So applying Lemma. 5.4 to fa_;
and B, there exists T > t,_; such that for any ¢, > T satisfying

1\ P
(a-i- §en) > exp Z Jr-1lpps,_0)lB

PEP(v)

for all v € V;,,. Therefore by (5.7) and |P(v)| = |P(z)| where v € z, we have
1 P}l
T,lz] < (a + gfn) .

{(2) Since

wEW,._, uEw qEP(u)

Tufe] = [T Hexp( > fa-l[tJ]BM,(,ﬁ‘”“"“)) (v ex)
> ] exp( > fn-alqu,t,._,]]sN&)) (v € w)

weEW,_, €P(u)
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= [I @aal)™,

wEWn_-1

we have

B.I'n[z] >E, x H ( (Nz(n) = 2)Tn_1[w] )NS‘:’) )

(a + &n—1)IP@) (T Qzw + 2)(@ + £n—1 )P

wEWn_y

_ aeny =1
where E; = {(( M - 2)/e) [uew, ., (ruQew + 2)/e)24% ‘)} . Choose
a small number & > 0 satisfying (5.10) and fix it (See (5.8)).

(ALY — 2)Tp[uw)

rolateyPer > (5.10)

Since minzew, Qzw — 00 as t, — o0, by (5.9) for a sufficiently large t,,

(NS — )Py [w] (A0 — ) fw]
(rwQzw + 2)(0 + €1 )P 7 ry(a+en_y )P

(5.11)

From Lemma 5.2, there exists {c, | u € V;,_,} with 0 < ¢, < 1 such that
Mitmtn-1+) 5 0 for any v € V;,,. Put N = N:ﬁﬁ,)/ﬁ,(,“). For v € z, we

have
B = ZuEw Mé:‘mtn—ﬁ-l) B Zuéw Méf‘n.tn_,-n)
TW Zyew"_, ESEy Mé;ﬂ:tn-l"“l) M,(,t"'t"""'l) (5'12)
= Z Mtnitn-rtD) > Z —
uew uEw

Then 0 < ¢’ < 1 and (5.12) is independent of t, and z € W,. As
limpoonl/® = 1, it follows that (E;)/¥" — 1 as t — co. Therefore by
(5.10), (5.11) and (5.12), the following inequality holds for sufficiently large

tn: ,

weWa\ Tol@F en1)P0!

Finally we get

’

o A,
BiT'(z] v > H (Ag‘-l) —2)lnafw] _ € c >1
@t en PO A e Z 1

(3) 1t is easily seen that

(n) _ -
(Crul = (2o zis) < (NEDMormet . (513)

|Vt,._l.w|"1
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Since A" and r, are constant, we have (rw — 1)Qzw > ATV (2 -
n n—-1
Tw)Qzw > 1 and (r"’_l‘)A(Ni‘")'As" D51 for sufficiently large t,. Therefore

w2
by Lemma 5.1, we see that
AQ-D-3
Tw — 1)(N — 2) v
|Daul > ( (r A(n)_(l)z_wz —Ty : (5.14)
w

Using (D,,_1-3), we obtain the following inequality for sufficiently large ¢,:

Ap=N_3
(rw — 1)(NLY - 2)
— Ty . (5.15)

(n)yiVe,_y.wl-1
By (5.13), (5.14) and (5.15), we get the inequality of (3).

(4) As |r=1(v)} = M < Mpltmtn-1tD) |r=1(z)| holds for v € V;, ., by using
(5.1) we have

Vin ol < #{v € Vi, | Ir ()] < Ir! ()]} < 277" @),

By (Dn-1-1) and Claim 5.5 (1), for any t, > T (where T is defined in the
proof of Claim 5.5 (1)) we have

(n)
PG ate, | PN
(e + &) >Tafz ]

1
weW,_, o+ 3€n
>Tafz] J[ 2V =Tafzj2in @),
‘IDGWn-l

Therefore we get |V;, z|Tn[z] < (o + £,)/P@).

(8) Choose any number 7 with 0 < n < 3€n_, and fix it. Put r = &4eatl. Then
0 <r < 1. By (5.2) for a sufficiently large ¢,,

T Pl 1,

vEV:,

Clearly |W,| < |V;,|. By Proposition 4.2 (3), we have

Z rP@El < 1,

€W,

Since [P(z)| — oo holds as t, — oo, for sufficiently large t,, 2(a + &,)/P@)I <
(& + s +7)/P@) holds. Therefore we have the inequality of (5).

(6) Since €44, is independent with respect to t, and [P(z)] — oo holds as
tn — 00, (%3)””(”’)| > 2 follows. 0O



142 F. Sugisaki

Put t, satisfying Claim 5.5. Then we can define A(") €Nas

(AP — 3)T,[z] < (@ +€2)P@ < (AP = 2)nz] < ALITn[z] < 2a +n )IP@)I

(5.16)
because of Claim 5.5 (1). So we have the n-th step data by the following: For any
z € Wy,

(Dp-1) (2EE2tiyIP@N 5 2,

atentr/3
(Dn-2) (a+&a)P@ < (AL —2)T[a],
(Dn-3) Vil < A8 —

5.4. The construction of B.

In this subsection we will construct B = (V, E, {M™}, >) satisfying Property 1.5
and for each n € N,
IV,.,,;IF,.[Q:] _
atep<ap<atéEp-i and Z _(Q—)W)I_—l (517)
TeW, n
The construction of 17,,. For z € W,,, we set
[Vno| = AD. (5.18)

By the condition (Dn-3), [Va.w] = 3 holds. Let x € W, (% € Wy, resp.) denote the
vertex satisfying that the minimal path zmin € X (the maximal path Tmax € X5
resp.) goes through some vertex in Vi, « (V¢,,+« resp. ). We can choose any distinct
vertices v, € Vn « and v2_ . € V,, « (because of |Vn w| = 3) and fix them. Then
Property 1.5 (3) holds.

The construction of M(™). In the caseof n =1, forv € V1 » We define

M(l) = N(l)
where Vp = {vo} and Wo = {wo}. In the case of n > 2, we consider the following

conditions with respect to M(™):

(c.0) If z,z' € W, with z # 2/, then MM £ M (“) , wherev € V, ; and v’ € Vi,

(c.1) For any v, v e V" o M(n) (n)

(c.2) For any v € Vo z, . _
(Mtgz))ue\-/n-x.m € Dzw

where D,,, is defined by

u€ ‘711.'

= {(m) e NIl | 57 ny = NI — bu(w) = 80 (w), M < TwQaw }
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and

if w= 1 if w = %,
5u(w) = 1 1 w = *, Sunlw) = 1 W = kk
0 ifw#x, 0 if w# *x

(c.3) Mi:,).fl = Mi:,)._, =1 for any v € V,.

It is easy to construct M(*) satisfying the conditions (c.1), (c.2) and (c.3) and
these conditions imply that B satisfies the assumptions of the vertex splitting
construction and Property 1.5 (1), (4). Now we will show that we can construct
it satisfying also the condition (c.0).

Suppose that M (™) satisfies only the conditions (c.1), (c.2) and (c.3). It is clear
that if N # NS, then MM # ME™ where u € Voo and v € V,, ;.. In general,
T # 2’ € W, does not imply N{™ # Ng') (see Remark 4.1 (2)) and so we will
show that for any = # 2’ € W,, with N,(;") = Nif'), we can reconstruct M.S") and
Mtff‘) satisfying M{™ # M‘(,f') forve V,,and v' € V,..z. By the construction of
N®) | we see that

# {s €W, | NI™ = Ny‘)} < I 1Ceul- (5.19)
weW,,

As M{™ and M,E,") satisfy the condition (c.2), by Claim 5.5 (3) and (5.19) we have

#loe W NP =NOL< ] Dl ] 1Bel (5200
wEWn_, wEWn_y -

The right part of the inequality (5.20) means what the maximum possible value
for incidence vectors in NiVa-1l satisfying the condition (c.2) is. Therefore, we can
choose incidence vectors satisfying M{™ # M.

The construction of é We will check that we can construct > on E with the
property that each E., has the minimal/maximal vertex property (Property 1.5
(2)) and each V,, has distinct order lists (Property 1.5 (5)). For z € W,,, define
Dist(z) € N as

r(n) _
(Suer,, M5 )! (W g
Huefl;_l M'S":)! HuEf’;_l Mg:h

Dist(z) =

where v € V,, and V*_, = Vao1/{v25!, 231} Dist(z) means the maximal
possible number of order lists of v & Vn,z satisfying Property 1.5 (2). Suppose
w#zx,u€E f/,.,w and v € Vn,x. By the condition (c.0), if we assign any order on
7=} (u), 7! (v) respectively, List(u) # List(v) always holds. Therefore V, can have

distinct order lists if and only if

Dist(z) > |V
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for any z and hence we check this inequality. Since M") satisfies the conditions
(c.2) and (c.3), using Claim 5.5 (2) and Lemma 5.3, we have

_ N{™) 2
(Dist(z) - 3)Cafz] _ ((Ni"’—2)/e)N Tufa]

(a +en)PE) I ((M(n) +2)/e
ueVy_,

X (o + £,) 1PN

)MS:) +2

Fim o

(8 - 2)7e) B el

(n) v
[T ((raQeu +2)/e) 2%t
wEWnR_1

= B, T,[z] > 1,

> % (@ + en—1)"1P@)

where v € V, ;. (We use the fact that if n > 4, then n! —3 > (3)" holds.)
Therefore
Dist(z) > (a + €n)P@ITp 2] ™ +3 2 Vool

because of (5.16) and (5.18).
The check of (5.17). By (5.16), (5.18) and Claim 5.5 (5), we have

<1.

Vi z|Tnlz
) [Va,z[T'nl2]

z€W, (e + en—1)IPE

The n-th step data (Dn-2) implies that (a + £,)PCN < |V z|Tn[z]. Therefore
there exists unique oy with a + &, < an < & + €,—1 such that

Vi 2|Talz
ZI 2|Tn[2]

(en)P@N

5.5. The check of properties for (Y, %)

Finally we will show that the Cantor minimal system (X, A) for (Y, 1) satisfies
the conditions of Theorem 1.1. Define $ : X5 — Xc¢ as Remark 4.6 (1). Then
6 =¢ loyp: Xg — Xz is a strong orbit equivalence map between (X, ¢) and
(Y,%). Define functions g, and g on Xp as

gn=fn—1°‘P_x°¢=.fn-—1°0_l and g=f°()0_1°‘15=f°6—1-

Then gy, is a simple function on X based on P(V;,) and nlm;o ilgn — gl = 0. More-

over, since fn—3 0~} is a simple function on X¢ based on P(Why), for any w e W,
and v,v' € Vp,,, we have

3 ablz= > galpla= D famro97'lde (5.21)

pEP(v) peP(v') geP(w)



Topological pressure of Cantor minimal systems within a strong orbit equivalence class 145

(see Remark 4.6 (2)). So we define I',(v) (v € V,,) as

Tn(v) =exp ( Z gn[plé) »

€P(v)

then for v € V,, 4, Tn(v) = Tpfw] because of (5.21). Therefore B satisfies the
following conditions: For each n € N,

(1) a+en < an < a+teq—; and Z m—gdﬂ;‘:l = ( Z (an')‘l(:’)()v)l = 1)’

wew,
(2) B satisfies Property 1.5.

Applying Theorem 3.8 to B, we have
P(p, fob7') = P()\z,9) = ﬂlirr(:c log o, = log ax.

Finally by Theorem 2.4, (Y, ) is topologically conjugate to a subshift.
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