A REMARK ON NONNEGATIVE SOLUTIONS WITH COMPACT SUPPORT FOR DEGENERATE SEMILINEAR ELLIPTIC EQUATIONS

Kiyoshi Yoshida

(Received November, 25, 1988)

1. Introduction

In this note we study the existence of nonnegative solutions with compact support for the equation

(1)
$$\Delta u + f(u) = 0 \quad \text{in } \mathbf{R}^{\mathsf{N}},$$

where N > 1 and f satisfies the following conditions:

- (A1) f is locally Lipschitz continuous on $(0, p_1]$.
- (A2) $f(p_1) = 0$.
- (A3) There exists $\alpha \in (0, p_1)$ such that f(u) > 0 on (α, p_1) .
- (A4) The integral $F(u) = \int_0^u f(s) ds$ exists for all $u \in (0, p_1]$

and satisfies

$$F(u) < F(p_1)$$
 for $0 \le u < p_1$

As for the equation (1), in the previous paper [3] we studied the Dirichlet problem for

(2)
$$\begin{cases} \Delta u + f(u) = 0 & \text{in } B_R, \\ u = 0 & \text{on } \partial B_R, \end{cases}$$

where $B_R = \{x \in \mathbb{R}^N ; |x| < R\}$, and proved the following

Theorem (Fukagai & Yoshida [3]) Under the conditions (A1) – (A4) there exists R_0 such that the equation (2) admits a positive radial solution u(x) = u(r), r = |x|, for any $R \ge R_0$, which satisfies u'(R) < 0,

At that time the problem remained whether the equation (2) admits a nonnegative radial solution u(r) which satisfies u'(R) = 0 and so we prove here the following theorem with the additional condition:

(A5)
$$-\infty < \liminf_{s \to 0} \frac{f(s)}{s^{\sigma}} \le \limsup_{s \to 0} \frac{f(s)}{s^{\sigma}} = -m < 0$$

with some σ such that $0 < \sigma < 1$

Theorem. Under the conditions (A1) - (A5) there exist nontrivial nonnegative radial solutions u(x) of (1) with compact support.

Apply this theorem to the equation

(3)
$$\Delta(v^p) + v(1-v)(v-a) = 0$$
 in \mathbb{R}^N

with b > 1. Then if we put

$$u = v^{p}$$
 and $f(u) = u^{1/p}(1 - u^{1/p})(u^{1/p} - a)$,

we have the following

Corollary. If 0 < a < (p+1)/(p+3), then the equation (3) admits nontrivial nonnegative radial solutions v such that $v^p \in C_0^2(\mathbb{R}^N)$.

In [4] N. Fukagai proves the theorem of this type by studying the asymptotic behavior of solutions for the associated ordinary differential equation:

$$y'' + \frac{N-1}{r}y' + f(y) = 0 \quad \text{for } 0 < r < \infty,$$

$$y(0) = p, y'(0) = 0$$

with help of Strum's comparison theorem. In this note we remark that the above theorem holds in the framework of variational methods considered in [1, 2].

2. Preliminaries

First we recall the mountain pass theorem (cf. Berestyki and Lions [2]) and compactness and radial lemmas due to Strauss [6]. Let H be a real Hilbert space whose norm and scalar product will be denoted respectively by $\|\cdot\|_H$ and (\cdot,\cdot) . Let E be a real Banach space with norm $\|\cdot\|_E$ and $E \subset H \subset E'$ wich continuous injections. Then H is identified with its dual space. Let M be the manifold

$$M = \{x \in E : ||x||_H = 1\},$$

which is endowed with the topology inherited from E, and J denotes a functional $J: E \to \mathbb{R}$ which is of class C^1 on E. We denote by J_M the trace of J on M. Then J_M is a C^1 functional on M, and for any $x \in M$,

$$\langle J'_M(x), w \rangle = \langle J'(x), w \rangle$$
 for $w \in T_x M$,

where T_xM is the tangent space at $x \in M$, that is,

$$T_xM = \{y \in E : (x, y) = 0\},\$$

and $\langle \cdot, \cdot \rangle$ is the duarity pairing of either E' and E. Thus $J'_M(x) \in (T_X M)'$ and the notation $||J'_M(x)||$ is the norm in the cotangent space $T'_X M = (T_X M)'$. Now we recall the weaker Palais-Smale condition (in short $(P - S^+)$):

 $(P-S^+)$ For any $C_1, C_2 > 0$ and any sequence $\{x_n\}_{n \in \mathbb{N}} \subset M$ such that $C_1 \leq J(x_n) \leq C_2$ and $\|J_M'(x_n)\| \to 0$, there exists a subsequence $\{x_n\}$ which converges in M.

Let Σ (M) be the set of compact and symmetric (with respect to the origin) subsets of M. The genus of a set $A \in \Sigma$ (M), γ (A) is defined by the least integer $n \ge 1$ such that there exists an odd continuous mapping $\varphi: A \to S^{n-1} = \{x \in \mathbb{R}^n; |x| = 1\}$. We set $\gamma(A) = \infty$ if such an integer does not exist. For $k \ge 1$ let $\Gamma_k = \{A \in \Sigma : \gamma(A) \ge k\}$.

Theorem A. 1 (Berestyki and Lions). Let $J: E \to \mathbb{R}$ be an even functional of class C^1 . We assume that J is bounded from above on M and that J_M satisfies the condition $(P-S^+)$. Let

$$b_k = \sup_{A \in I_k} \inf_{x \in A} J(x).$$

Then b_k is a critical value of J provided $b_k > 0$.

Theorem A. 2 (Strauss [6]). Let P and Q: $\mathbb{R} \to \mathbb{R}$ be continuous functions satisfying

$$\frac{P(s)}{Q(s)} \to 0$$
 as $|s| \to \infty$

Let $\{u_n\}$ be a sequence of measurable functions: $\mathbb{R}^N \to \mathbb{R}$ such that

$$\sup_{n} \int_{\mathbb{R}^{N}} |Q(u_{n}(x))| dx < \infty$$

and

$$P(u_n(x)) \rightarrow v(x)$$
 a. e. in \mathbb{R}^N , as $n \rightarrow \infty$.

Then for any bounded Borel set B one has

$$\int_{B} |P(u_{n}(x)) - v(x)| dx \to 0 \quad \text{as } n \to \infty$$

If one further assumes that

$$\frac{P(s)}{Q(s)} \to 0$$
 as $s \to 0$

and

 $u_n(x) \to 0$ as $|x| \to \infty$, uniformly with respect to n, then $P(u_n)$ converges to v in $L^1(\mathbb{R}^N)$ as $n \to \infty$.

As usual let $H^1(\mathbb{R}^N)$ be the Sobolev space and $\mathrm{D}^{1,2}(\mathbb{R}^N)$ the closure of $C_0^\infty(\mathbb{R}^N)$ for the norm

$$\|\varphi\|_{D^{1,2}} = \{ \int_{\mathbb{R}^N} |\nabla \varphi|^2 dx \}^{1/2}$$

Then we see, by Sobolev's inequality, the injection

$$D^{1,2}(\mathbf{R}^N) \subset L^{2*}(\mathbf{R}^N),$$

is continuous, where

$$2^* = \begin{cases} \text{any } p \text{ such that } 2 < P < \infty & \text{if } N = 2, \\ \frac{2N}{N-2} & \text{if } N > 2. \end{cases}$$

Theorem A. 3 (Strauss [6]). Let $N \ge 2$. Every radial function $u \in H^1(\mathbf{R}^N)$ is almost everywhere equal to a function U(x), continuous for $x \ne 0$ and such that

$$|U(x)| \le C_N |x|^{(1-N)/2} ||u||_{H^1(\mathbb{R}^n)} \quad \text{for } |x| \ge \alpha_N,$$

where C_N and α_N depend only on the dimension N.

3. Proof of Theorem

Let us define $\tilde{f}: \mathbf{R} \to \mathbf{R}$ an follows:

$$\tilde{f}(s) = \begin{cases} f(s) & \text{on } [0, p_1] \\ 0 & \text{for } s \ge p_1. \end{cases}$$

For $s \le 0$, \tilde{f} is defined by $\tilde{f}(s) = -\tilde{f}(-s)$. Observe that by maximum principle, nonnegative solutions which have compact support for the equation (1) with \tilde{f} are also nonnegative solutions which have compact support for (1) with f. Hence there is no loss of generality in replacing f by \tilde{f} , and so we keep also the same notation f for the modified function \tilde{f} . Consider the functional

(4)
$$\phi(u) = \frac{1}{2} \int_{\mathbb{R}^n} |\nabla u|^2 dx - \int_{\mathbb{R}^n} F(u) dx$$

and put

(5)
$$T(u) = \int_{\mathbb{R}^n} |\nabla u|^2 dx, \quad V(u) = \int_{\mathbb{R}^n} F(u) dx.$$

Since F(s) = F(-s), if u_c is a critical point of $\phi(u)$, then $|u_c|$ is also the critical point of ϕ . Hence we can take always a nonnegative critical point of ϕ , if exists. Let $H = D^{1,2}(\mathbf{R}^N)$. Then H is the Hilbert space with scalar product

$$(\varphi,\psi)=\int_{R^{n}}\nabla\varphi\cdot\nabla\psi\ dx.$$

and H is identified with its dual. Let's denote by $D_r^{1,2}(\mathbb{R}^N)$ the subspace of $D^{1,2}(\mathbb{R}^N)$ formed by the radial functions. Similarly we use the notations $H_r^1(\mathbb{R}^N)$. Put

$$E = D_r^{1,2}(\mathbf{R}^N) \cap L_r^{1+\sigma}(\mathbf{R}^N),$$

which is endowed with the graph norm, where σ is the same constant as in (A. 5). If $u \in E$, then $u \in L^{1+\sigma}(\mathbb{R}^N) \cap L^{2*}(\mathbb{R}^N)$ and so $u \in L^2(\mathbb{R}^N)$ by Hölder's inequality, which implies $E \subset H^1_r(\mathbb{R}^N)$. Thus we have, as an immediate consequence of Theorems A. 2 and A. 3, for any p such that $1 + \sigma , the injection <math>E \subset L^p(\mathbb{R}^N)$ is compact. Put

$$M = \{u \in E : T(u) = 1\}.$$

Then our theorem is derived from the following

Proposition. For all $k \ge 1$ there exists a critical value β_k of V_M given by

$$\beta_K = \sup_{A \in \Gamma_b x \in A} \inf V_M(x).$$

Moreover $\beta_k > 0$ and there exist a critical point $v_k \in M$ corresponding to B_k and $\theta_k > 0$ such that

$$-\Delta v_k = \theta_k f(v_k) \qquad in \ \mathbf{R}^N$$

Proof. Apply Theorem A. 1. Then we can prove this proposition by checking the following:

- (i) V_M is bounded from above.
- (ii) V_M satisfies $(P S^+)$
- (iii) $\beta_k > 0$.

As for (i), from the conditions (A. 4) and (A. 5)

$$\alpha = \sup\{c > 0; F(s) \le 0 \text{ for } |s| \le c\}$$

is positive. On the other hand, since F (s) is bounded, there exists a positive constant C such that

$$F(s) \le C |s|^{2^*}$$

Thus we have, by Sobolev's inequality,

$$V_M(u) = \int_{\mathbb{R}^n} F(u) dx \le C \int_{\mathbb{R}^n} |u(x)|^{2*} \le C',$$

since $u \in M$.

We proceed to (ii). Let C_1 and C_2 be any positive constants such that $C_1 < C_2$ and $\{u_n\}_{n\in\mathbb{N}} \subset M$ a sequence such that $C_1 \le V(u_n) \le C_2$ and $\|V_M'(x_n)\| \to 0$ as $n\to\infty$. Then we prove there exists C>0 such that $\|u_n\|_{\mathcal{E}} \le C$. If this fact is shown, then the remainder of the proof is done along the same line as in [2]. In what follows we use a notation C which implies a variable positive constant but dose not depend on $\{u_n\}$. Put

$$f_1(s) = (f(s) + ms^{\sigma})^+$$
 and $f_2(s) = f_1(s) - f(s)$ for $s \ge 0$

and

$$f_i(s) = -f_i(-s) \quad \text{for } s < 0.$$

Clearly $f_i \ge 0$. If we put

$$F_i(t) = \int_0^t f_i(s) \, ds,$$

then for any $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

(6)
$$F_1(s) \leq C_{\varepsilon} |s|^{2^*} + \varepsilon F_2(s)$$
,

and further

(7)
$$F_2(s) \geq \frac{m}{1+\sigma} |s|^{1+\sigma} \qquad s \in \mathbb{R},$$

since $f_2(s) \ge ms^{\sigma}$ for $s \ge 0$ and $f_2(s) = -f_2(-s)$ for s < 0. Form (6) with $\varepsilon = \frac{1}{2}$ we have

(8)
$$V(u_n) \leq C \int_{\mathbb{R}^n} |u_n(x)|^{2^*} dx - \frac{1}{2} \int_{\mathbb{R}^n} F_2(u_n(x)) dx.$$

Since $||u_n|| \le 1$, it follows from Sobolev's inequality that there exists a constast C > 0 such that

$$\int_{\mathbb{R}^N} |u_n(x)|^{2^*} dx \leq C.$$

Since $V(u_n) \ge C_1 > 0$, we have, from (8),

$$0 \leq \int_{\mathbb{R}^n} F_2(u_n(x)) dx \leq C.$$

This together with (7) leads to

$$\int_{\mathbb{R}^N} |u_n(x)|^{1+\sigma} dx \leq C,$$

which means $||u_n||_{\mathcal{E}} \leq C$, since

$$\int_{\mathbb{R}^N} |\nabla u_n(x)|^2 dx = 1.$$

Thus (ii) holds.

Since the assertion (iii) follows from Theorem 10 in [2], the above Proposition holds. The proof is complete.

Finally we prove our Theorem. Apply the above Proposition. If we put, for any $k \ge 1$,

$$u_k(x) = v_k(x/\sqrt{\theta_k})$$

then $u_k(x)$ is a weak solution of $\Delta u_k + f(u_k) = 0$. In what follows we omit the subcsript k in u_k . Since f is locally Lipschitz continuous on $\mathbf{R}^N - \{0\}$ and Hölder continuous at 0, we have $\mathbf{u} \in C^2(\mathbf{R}^N)$. Furthermore since $\mathbf{u} \in E \subset H^1_r(\mathbf{R}^N)$, it follows from Theorem A. 3 that

(9)
$$|u(x)| \le C_N |x|^{(1-N)/2} ||u||_{H^1(\mathbb{R}^N)}$$
 for $|x| \ge \alpha_N$.

Now, from [5, Theorem5] we see the condition

(10)
$$\int_0^s |F(s)|^{-1/2} ds < \infty$$

is necessary and sufficient for nonnegative radial solutions u of (1) with a property that $u(x) \to 0$ as $|x| \to \infty$ to have compact support. But the condition (10) holds from (A. 5). Thus the proof is complete.

REFERENCES

- [1] H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I Existence of a ground state, Arch. Rational Mech. Anal. 82(1983), 313-345.
- [2] —— and ——, Nonlinear scalar field equations, II Existence of infinitely many solutions, ibid, 347-375.
- [3] N. Fukagai and K. Yoshida, An existence theorem for positive solutions of

degenerate semilinear elliptic equations, Funkcial. Ekvac., to appear.

- [4] N. Fukagai, Nonnegative solutions of semilinear elliptic equations, preprint.
- [5] L. A. Peletier and J. Serrin, Uniqueness of non-negative solutions of semilinear equations in R^N, J. Differential Equations 61(1986), 380-397.
- [6] W. A. Strauss, Existence of solitary wave in higher dimension, Commun. Math. Phys. 55(1977), 149-162.

Department of Mathematics Faculty of Science Kumamoto University Kumamoto 860, Japan