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1. Introduction

In this note we study the existence of nonnegative solutions with compact support for
the equation

1) du+ f(u)=0 in R",

where N >1 and f satisfies the following conditions :
(Al) f is locally Lipschitz continuous on (0, p1].
(A2) f(pD=0.
(A3) There exists a € (0, 1) such that 7 («) >0 on (e, p1).

(A4) The integral F(u)= '[; uf (s) ds exists for all « € (0, p1]

and satisfies
F(u)<F(p) for0<u<p

As for the equation (1), in the previous paper [3] we studied the Dirichlet problem for

@ {Au +f(u)=0 in Bg,

u=0 on dBe,

where Br = {x € R"; |x| < R}, and proved the following

Theorem (Fukagai & Yoshida [3]) Under the conditions (A1) — (A4) there exists Ry
such that the equation (2) admits a positive radial solution u(x) = u(r), r = |x|, for any
R = Ro, which satisfies ' (R) <0,

At that time the problem remained whether the equation (2) admits a nonnegative
radial solution # (r)which satisfies #'(R)=0 and so we prove here the following
theorem with the additional condition :

(A5) —oo< ]irsl'ljglf fs(ﬁ) < ]iI?-+Soqu?(§_)—' =—-m<0
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with some ¢ such that 0 < <1

Theorem. Under the conditions (A1) — (A5) there exist nontrivial nonnegative
radial solutions u (x) of (1) with compact suppori.
Apply this theorem to the equation
3 A +vQ-v)(v—a)=0 inR"
with p > 1. Then if we put
u=1v" and f(u)=u""(1 — u"*)(u'"?—a),
we have the following

Corollary. If 0< a<(p+1)/(p+3), then the equation (3) admits nontrivial non-
negative radial solutions v such that v® € C§(RY).

In [4] N. Fukagai proves the theorem of this type by studying the asymptotic
behavior of solutions for the associated ordinary differential equation :
” N - 1
R

y+f(y)=0 for0<r< oo,

y(0)=p5,y(0)=0
with help of Strum’s comparison theorem. In this note we remark that the above
theorem holds in the framework of variational methods considered in [1, 2].

2. Preliminaries

First we recall the mountain pass theorem (cf. Berestyki and Lions [2])and com-
pactness and radial lemmas due to Strauss [6]. Let H be a real Hilbert space whose
norm and scalar product will be denoted respectively by ||+ [l» and (-, ). Let E be a
real Banach space with norm | « |l and £ € H C E’ wich continuous injections. Then H
is identified with its dual space. Let M be the manifold

M={xeE;|xls =1},

which is endowed with the topology inherited from E, and J denotes a functional J : E
— R which is of class C' on E. We denote by Jx the trace of / on M. Then ju is a
C! functional on M, and for any x € M,
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Tulx), w>=<J(x), w> for w € TxM,
where T:M is the tangent space at x € M, that is,
T:M ={y € E;(x,y) =0},

and < -, ) is the duarity pairing of either £’ and E. Thus Jx(x) € (TxM) and the
notation || Ju(x)| is the norm in the cotangent space TiM = (TxM). Now we recall the
weaker Palais-Smale condition (in short (P — S*)):

(P—=S*) For any C\, C:> 0 and any sequence {xn}nen C M such that Ci < J (x2) <
C: and | Ju(xn) | =0, there exists a subsequence {xn,) which converges in M.

Let 3 (M) be the set of compact and symmetric (with respect to the origin) subsets of
M. The genus of a set A € X (M), y (A) is defined by the least integer » = 1 such that
there exists an odd continuous mapping ¢:A— S"'={x € R"; |x| =1}. We set y(A4)
= oo if such an integer does not exist. For £>1let [n={A € 3;y(A) = k).

Theorem A.1 (Berestyki and Lions). Let J: E—R be an even functional of class
C'. We assume that ] is bounded from above on M and that Ju satisfies the condition
(P—S*). Let

o0 = Sup Inf /().
Then by is a critical value of J provided b. > 0.
Theorem A. 2 (Strauss [6]). Let P and Q : R—R be continuous functions satisfy-
ing
%(%—»0 as |s| — oo,
Let {un} be a sequence of measurable functions : R® — R such that
sup [, 1Q(un(2))| dx < o0
and
P(un(x))—v(x) a. e inR", as n— .
Then for any bounded Borel set B one has
[ 1Pun(x)) ~ o) ds—0 a5 noco

If one further assumes that
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P as s

and
un(x)—0 as |x| — oo, uniformly with respect to n, then P(ux) converges to v in
L'(RY) as n— oo,

As usual let H'(R") be the Sobolev space and D"*(R") the closure of C5’ (R") for the
norm

Iolons={[, V9P dz}"
Then we see, by Sobolev’s inequality, the injection
D'2(R")C L™ (RY),
is continuous, where
2* =

2N i N>2.

[anypsuchthat2<P<oo if N=2,
N-—2

Theorem A.3 (Strauss[6]). Let N=22. Every radial function u € H'(R") s
almost everywhere equal to a function U (x), continuous for x #+ 0 and such that

(U )] < Cw 2|2 |u| mwn  for 12| = an,

where Cn and an depend only on the dimension N.

3. Proof of Theorem

Let us define f : R— R an follows:

{ f(s) on [0, p]

Fe&= for s = pu.

For s <0, f is defined by f(s)= —f(—s). Observe that by maximum principle, non-
negative solutions which have compact support for the equation (1) with F are also
nonnegative solutions which have compact support for (1) with /. Hence there is no loss
of generality in replacing f by 7,and so we keep also the same notation f for the
modified function . Consider the functional
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@ =5 [ IVulac— [ Flu)ax
and put
6 TW=[,IVaPdy, V@)= [ Fdx.

Since F'(s) = F(—s),if uc is a critical point of ¢(«), then | .| is also the critical point
of ¢. Hence we can take always a nonnegative critical point of &, if exists. Let H =
D'(R"). Then H is the Hilbert space with scalar product

(¢,¢')=];~ Vo - V¢ dx.
and H is identified with its dual. Let's denote by D¥*(R") the subspace of D"2(R")
formed by the radial functions. Similarly we use the notations H!(R"). Put

E =D*(R") n LV (R"),

which is endowed with the graph norm, where ¢ is the same constant as in (A. 5. If u
€ E,then u € L"*°(R") n L*™(R")and so u € L*(R") by Hélder’s inequality, which
implies £ C H;(R"). Thus we have, as an immediate consequence of Theorems A. 2
and A. 3, for any p such that 1+ o < p < 2*, the injection £ C L?(R") is compact. Put

M={uecE;T(u)=1}.

Then our theorem is derived from the following

Proposition. For all k 21 there exists a critical value Bx of Vu given by

B = gupJnf Vi ().

Moreover Bx >0 and there exist a critical point vs € M corresponding to By and 6 >0
such that

— Avs = Gf (v2) n RY

Proof. Apply Theorem A.1. Then we can prove this proposition by checking the
following :

(i)  Vw is bounded from above.

(i)  Vw satisfies(P — S*)

(iii) B >0.
As for (i), from the conditions (A. 4) and (A. 5)
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a=sup{c>0;F(s)<0 for|s| <c}

is positive. On the other hand, since F () is bounded, there exists a positive constant C
such that

F(s)< C |sl*
Thus we have, by Sobolev’s inequality,
I@@=£jﬁ0¢sc£JM@Wsca

since u € M.

We proceed to (ii). Let Ci and C: be any positive constants such that Ci1< Cp and
{#n}nen C M a sequence such that Ci < V (un) < C; and || Vir(xa)| =0 as n— 0. Then
we prove there exists C >0 such that |u.]e < C. If this fact is shown,then the
remainder of the proof is done along the same line as in [2]. In what follows we use a
notation C which implies a variable positive constant but dose not depend on {u}. Put

A =(f(s)+ms®)* and fa(s)=fi(s) = f(s) for s=0
and

fi(s)=—fi(—s) fors<O.
Clearly f; = 0. If we put

¢
Fi())= [ fs)as,

then for any e > 0 there exists C. > 0 such that
6) Fi(s) < Ce |sl™ + eFa(s),

and further

M FRE)zyizlsi? seR

since f2(s) = ms® for s =0 and f2(s)= — fz(—s) for s <0. Form (6) with e=—%—we
have
®  Vd<C [, lun(x)*dx - + [ Fa(tn () .

Since || uall <1, it follows from Sobolev’s inequality that there exists a constast C >0
such that

[u@ras<c.
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Since V (ua) 2 C; > 0, we have, from (8),
0< [ Fiun(x)dx< C.
This together with (7) leads to
[ m@reas<c,
which means || < C, since
fo\VanoPax=1.

Thus (ii) holds.
Since the assertion (iii) follows from Theorem 10 in [2], the above Proposition holds.
The proof is complete.

Finally we prove our Theorem. Apply the above Proposition. If we put, for any %
>1,

un(x) = va (x/ V),

then wu.(x) is a weak solution of Aus + f(u:)=0. In what follows we omit the subc-
sript % in .. Since f is locally Lipschitz continuous on R" — {0} and Hélder continuous
at 0, we have u € C*(R"). Furthermore since » € E C H}(R"), it follows from Theo-
rem A.3 that

9) £ (x)| <Cw le =2 g || grgm for | x| = an.
Now, from [5, Theorem5] we see the condition
1) [ IF($Ids <o

is necessary and sufficient for nonnegative radial solutions u of (1) with a property that
#(x)— 0 as | x| — o to have compact support. But the condition (10) holds from (A. 5).
Thus the proof is complete.

REFERENCES

[1] H. Berestyckiand P. L. Lions, Nonlinear scalar field equations, I Existence of
a ground state, Arch. Rational Mech. Anal. 82(1983), 313-345.

[2] and , Nonlinear scalar field equations, II Existence of infinitely
many solutions, ibid, 347-375.

[3] N. Fukagai and K. Yoshida, An existence theorem for positive solutions of




Kiyoshi YOSHIDA

degenerate semilinear elliptic equations, Funkcial. Ekvac., to appear.

[4] N. Fukagai, Nonnegative solutions of semilinear elliptic equations, preprint.

[5] L. A. Peletier and J. Serrin, Uniqueness of non-negative solutions of semilinear
equations in R", J. Differential Equations 61(1986), 380-397.

(6] W. A. Strauss, Existence of solitary wave in higher dimension, Commun. Math.
Phys. 55(1977), 149-162.

Department of Mathematics
Faculty of Science
Kumamoto University
Kumamoto 860, Japan



