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1. Introduction

The investigations of systems of differential equations with variable structure mark
their beginning with the works of T. Vogel {1]-[4]. This theory is further developed in
the works of A. Myshkis, A. Hohryakov [6] and A. Myshkis, N. Parshikova [7].

The first publications on the theory of systems with impulse effect without variable
structure were by V. Mil’'man, A. Myshkis [8], [9], A. Samoilenko [10] and A. Samoilen-
ko, N. Perestyuk [11].

The investigation of systems of differential equations with variable structure and
impulse effect begins with the works of D. D. Bainov and S. D. Milusheva [12] and A. B.
Dishliev and D. D. Bainov [13].

2. Statement of the problem

Let th< i< < ..., 1ig1 t;= + o, be a given sequence of real numbers. Linear

systems with variable structure and impulse effect in fixed moments of time have the
form
dy _

= fBy+ fu(t), €[t tsr), £=012,.. o

yi = ou(¥7) + k=12,..

where A (2) is a continuous (z X n)-matrix for ¢ € [£, tx+1], /2« (¢) is a continuous vector-
valued function for ¢ € [f, te+1], @« : R®*— R" is a linear mapping, ax is an »-dimensional
constant vector, yi =y (t« + 0} = lim y(#),yx =y (t — 0)= lim y (2).

We consider as well the respective homogeneous system

dx
g = A0 @

xF = oalxk)
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The solutions of systems (1) and (2) are piecewise continuous functions in the interval
[£o, + o0] with discontinuities of first type in the points , £ =1, 2,...

Remark 1. By | x| we shall denote the norm of the vector x € R”. We should note
that theorems 1 and 2 are valid for an arbitrary vector norm and theorems 3 and 4 only
for the Euclidean norm.

Definition 1. The solution 7(¢) of system (1) is called stable (for ¢ = t,) if for any
€ >0 there exists 6 >0 such that every solution y(¢) for which |y () — 7(%)| < &
satisfies the inequality |y (¢) — 7(¢)| < & for ¢ € [4,, + ).

Otherwise the solution 7 (¢) is called unstable.

Definition 2. The solution 7 (¢) of system (1) is called globally asymptotically stable if
7(t) is stable and if, moreover, each solution y (¢) satisfies the condition

lim |y (&) -2 ()| =0,

Definition 3. Linear system (1) is called stable (globaily asymplotically stable) if all its
solutions are stable (globally asymptotically stable).

3. Main results

Theorem 1. Non-homogeneous system (1) is stable if and only if the trivial solution
of homogeneous system (1) is stable.

Proof. 1f 7(¢) is a solution of (1), then all solutions of non-homogeneous system (1)
have the form y(¢) = 7(¢) + x(¢) where x(¢) runs over all solutions of homogeneous
system (2) and vice versa.

Let 7(¢) be a stable solution of (1). By definition 1 for any & > 0 there exists & >
0 such that for each solution y(¢) such that |y (%) — 7 ()| < & the inequality
|y (#) — 7(¢)] < eholds for ¢ € [, + ). But x(¢) =y (¢) — 7(¢) is a solution of homo-
geneous system (2). Hence for any & > 0 there exists 8 > 0 such that each solution x (¢)
of homogeneous system (2) for which |x (#)| < & satisfies the inequality | x (¢)| < & for
t € [to, + ), i. e. the zero solution of homogeneous system (2) is satble. Conversely, let
the trivial solution of homogeneous system (2) be stable, i. e. for any ¢ > 0 there exists
0 >0 such that each solution x (¢) for which |x (#)| < & satisfies the condition
|2 ()| < e for t € [t,, + ). Let p(¢) be a solution of non-homogeneous system (1) and
v (¢) be an arbitrary solution of (1) for which |y(t)— 7(t)| <6. Then
|y () — 7(#)] < € for ¢ € [4, + ), i. e. the solution 7(#) is stable.

Corollary 1. System (1) or (2) is stable if and only if at least one of its solutions is
stable.

Corollary 2. System (1) (and (2) in particular) is globally asymptotically stable if and
only if the trivial solution of homogeneous system (2) is globally asymptotically stable.
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Theorem 2. Homogeneous system (2) is stable if and only if any of ils solutions is
bounded for t € [t, + ).

Proof. Let z(¢)be an unbounded solution such that z(t)+0. For any 6 >0 we
construct the solution

Obviously |x (%)| = —g— < & but since the solution z(¢) is unbounded, there exists ¢ such

that x (£,) is greater than any & chosen previously. Hence the trivial solution is unstable.

Now let each solution of homogeneous system (2) be bounded. Denote by e;(¢),j =
1,..., n the solutions obtained when x () runs through the basis vectors (1,0,..,0),(0,1,
0,...,0),...,0,...,0,1y where by(,,,) we have denoted the transposed vector. Since
each solution of homogeneous system (2) is bounded, then |e;(¢)| < C where C is a
positive constant. Then the solution x (¢) with initial condition x (t) = (Ar,..., An) has the
form x(£) = Aies(£) + - + Anea(t). 1f we choose |4;| < & where §=6/Cn,j=1,...n,
then we obtain

lx (D] < |l ler(D] +-+ | Al lex(D)] <0,

i.e.the trivial solution of homogeneous system (2)is stable and by theorem 1 each
solution of homogeneous system (2) is stable.
Consider the system with constant coefficients

% = Auwx, t € [f, basr)

xi = pr(xi)

where A. are constant (z X n)-matrices and by A. we shall denote the greatest
eigenvalue of the Hermitian-symmetrized matrix 1/2 (A + AZ); ¢»: R"—R" are maps
satisfying the conditions | @x (x) — @x ()| < ax |x — y| where | -] is the Euclidean vector
norm.

Introduce the following conditions:

I 1

L i fle<re
I )

H2. lim Ai(tul - ts) < + o0,
ket =0

H3. é/lr(tin - f.') = — 00,

Theorem 3. If conditions (H1) and (H2) hold, then system (3) is stable and if condi-
tions (H1) and (H3) hold, then system (3) is globally anymptotically stable.
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Proof. Lth p(¢)and x(¢) be'two solutions of system (3). By the inequality of
Wazewskij we have ‘

lx(t) — n()| < |xi — 5| exp[(t — t) Au] for ¢ € [t tesr).  But |xi — 71|

= lon(xi) = e (00| < au |2z = 28| < an |21 — 2| exp[An-i (e — ta-s)]

< s @1 | %0 = 70| exp[Ae-s(th — baoi) + ... + (b1 — 1o)],

iex(8) = 2()] < aneear | 20— 70] exp[A(t = ) + Aucs (bs — tact) + ... + Ao(ts — 10)]
< @keve @1 | %0 — 70| @xp[0Ak (tuer — te) + Ancr (b — buct) + -+ + Ao (8 — £)],

1 for Ax20
where 6_{ 0 for A<0.
Hence if conditions (H1) and (H2) hold, then
Ix(t)_’/(t)l SC'Xo—YIaI, C = const.,

and system (3) will be stable.
If conditions (H1) and (H3) hold, i. e. if for each M > 0 there exists v such that for %
>vy

S At =)< — M
then for ¢ € [#, fx+1) we have
|z(8) = 2()] < Cilxo— mole™, Ci= comst.,
which implies that system (3) is globally asymptotically stable.

—_— k
Remark 2. If kler gozl.-(tm — t;) = + oo, then system (3) can be stable as well as

unstable. As an illustration of this we shall consider two examples.
Example 1. Consider the linear system without impulses, i. e. @« (x) = x :

%:akx-f-bhy, t € [k,k+1),(th=k)

4
% = ary.
Let ax = — 1 and b, = 4 for all &, i. e. consider a system of ordinary differential equations

as a particular case of a system with variable structure. According to the classical
theory it is stable since its characteristic roots are negative. The Hermitian-symmetr-
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ized matrix has eigenvalues — 3 and 1,i.e.

w24t — 1) = Tim, gl=+w

h—+oo =0

Hence this is an example of a stable system which does not satisfy condition (H2).
Example 2. Now let for the linear system (4) ax= —1 and b= (k +1)e**'. Let
x(0)=0, y(0) = yo+0. By straightforward computation we obtain

=yo(bo+ ... + be-1ne *
Ve = yoe~*

where x. = x (%), y» = y(k). Hence

Jxi+ yE = |vo|l e *(bo+ -+ + brsr)*+1 2 |vol e™* | o+« + bu-i| =
= |yol e |e + - + ke*| = |30l &,

i. e. the zero solution is not stable.
The eigenvalues of the Hermitian-symmetrized matrix of the system are

1+ k—'{—le~+', E=0,1,.,1i¢

— A
kl.i.er go/li(tiu k)= 2( 1+ k'2"1 )=+

Hence this is an example of an unstable system which does not satisfy condition (H2).

Remark 3. In the classical case a system with constant coefficients is stable if the
eigenvalues of its matrix have negative real parts. Example 2 shows that for systems
with variable structure such an assertion is not valid. In relation to this we shall note
that if ReA is the real part of one of the eigenvalues of the matrix A and M; < M; are
respectively the smallest and the greatest eigenvalues of the Hermitian-symmetrized
matrix B =1/2(A + A¥), then M, < ReA< M.. This follows from the extremal prop-
erty of Rayleigh’s relation

max Lx,Bx) _ max <{x,Bx>= M. min {x,Bx>=M,
x+0 (x,x) <x,x>=1 <X, x>=1

where by <x,y> we have denoted the scalar product of the vectors x,y € C" (see [5]).
Lemma 1. Let A be a constant matrix and A be the greatest eigenvalue of the
Hermitian-symmetrized matric 1/2(A + A*). Then the inequality

et < et ®)

holds where by |+ || the spectral norm of the matrix is meant induced by the Euclidean
vector norm, i. e.
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| Bl =max | Bx|
|xi=1

For normal matrices (AA* = A*A) inequality (5) turns into an equality.

Proof. Consider the system dx/dt = Ax. Its solution x (#) = e**x(0) satisfies the
inequality of Wazewskij |x(#)] < |x(0)| e* and for =1 we obtain |e4x(0)]
< |x(0)| ¢*. But for the induced norm there exists a vector xo, | xs| = I, depending on
A and such that

le?ll = [e*xl.
Choose the initial condition x(0) = x,. Then
le*ll = |e?xo] < |x0| &* = e*.

For normal matrices inequality (5) turns into an equality since each normal matrix is
unitary-similar to a diagonal matrix and the unitary-similar matrices have equal
spectral norms (see [5]).

Finally consider an analogue of the classical problem for stability of a system of
ordinary differential equations with almost constant coefficients :

dx _
7—(A,,+B;.(t))x, t € [tn, tosr) 6)
%k = ou(xi)

where A, are constant(z X n)-matrices and by A we shall denote the greatest
eigenvalue of the Hermitian-symmetrized matrix 1/2(Ax + A+*); ¢x: R*— R” are lin-
ear maps satisfying the conditions | g« (x)| < ax | x| and B.(?) are continuous matrix-
values functions for ¢ € [#, fx+1]. We introduce as well the piecewise continuous func-
tion B(¢) = Bu(t)for t € [tk, taer).

Theorem 4. If conditions (H1), (H2) are satisfied and ? IB(z)| dz < o, then system
(6) is stable and if condition (H1) holds and

A tin
lim 3 [+ |Bi(o)])dr=— o0 N
A=t ;=0 ¢
then system (6) is globally asymptotically stable.
Remark 3. If we introduce the step-function A(¢) = As, ¢ € [#, #+1), then condition

(7) can be written in the form
TA@ + |B(@)dr= - oo ®

Proof of theorem 4. The solution of system (6) is written in the form
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x () =eml-tgr + tfie"'("’)Bk(r)x(t) dr,
when ¢ € [t tee1), i. €.
%] < leml-o x| + ] 1emE- 1Bu() |2 ()| dr
and by lemma 1
2(B)] < &) |xi] + [ M) [Bu(D)] |2(0) e
which implies the inequality
letx ()] < e |zi| + [ | Ba(Dll ™% (0)] dr.
We apply the lemma of Gronwall-Bellman and obtain
et ()] < e k| exslf | Bulo)ldr]

e lx(®)] < x| explAe(t — ta) + Jiu | Be(2) | dr].

In particular, | %hes]| = | @me1 (Xmer)| < ames |Znet]l € < @ner x| explAm (bmer — tm) +

Sim | Ba (D) | dr).

We apply this inequality for 7 =0,1,...,# — 1 and obtain for ¢ € [ 4, tx+1) the inequality
|x(8)] < ax... ar | yol explAo(tr—to) + + =+ + Au-s (8 — beor) + A (t — t2) +

3] 73 t
+1 1B dr+ -+ + ::f.. I Bu-1 ()]l dz + [ | Ba(0) | dr), 9)
ie
Ix(t)l < ag...ar | vol exp[/lo(tx —t)+ e+ At (te — te=1) +
tre1
+ oMt — )+ [1B(2)] dr]
0 A<0
where 6—{1 20> 0

Hence if conditions (H1), (H2) hold and :f |B(z)|l dr< oo, then |x(¢)| < C =const,

whence it follows that system (6) is stable.
Inequality (9) can be written in the form

|x(8)] < ax...a:r | yol exi)[i(/l(r)+ | B())dr].

Hence if conditions (H1) and (8) hold, then tlit& |x(#)| =0, i. e. system (6) is globally

asymptotically stable.

The authors express gratitude to A. Dishliev for discussion on the results.
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