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Abstract. In the previous paper the author defined an extension of the psi
function or the gamma function, which seems to be useful in some appli-
cations of mathematical science. In order that it plays a role as a special
function, the properties of such a function must be investigated in detail.
In this short paper we shall verify the multiplication formula for the
extended gamma function like the well-known Gauss multiplication formula

o) = s 117 (++ )

for the classical gamma function I'(z).

1 Gauss multiplication formula

As an extension of the classical psi function, we have defined a series of solutions
of the linear difference equation

1
(1) A<I>p(z)=<I>p(Z+1)—‘1>p(z)=zjzplogz—vpzp (r=0,1,2,...),

where the constant vy, satisfies the relation

1

= ;1 70=0a

DYp — Yp-1

that is, vy, is given by

1 1 1
= — e - = 1,2, ...).
Yp p!(1+2+ +p) (p=0,1,2, )
For p = 0, the difference equation becomes

®o(z +1) — Pp(2) =log z
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and hence we see that

Bo(z) = logT(s),  Bh(s) = (—)) = 1(2).

It is also easily seen that there hold

@ 3 (2)= 8M(2) = Bpp(e) (k=12 ..,p).

In this paper we shall study the Gauss multiplication formulas for such ex-
tended psi functions ®,(z) (p =0, 1, 2, ... ). To this end, we first introduce some
properties needed later for Bernoulli polynomials. (See [5] and [6].)

The Bernoulli polynomials By(z) satisfy the linear difference equations

ABi(z) = Bi(z+1) — Bi(2) = k2F1 (k=0,1,2,...)
and they can be expressed in terms of the binomial expansion

k
Bi(z) = (z + B = Z (IZ) Bt 2k-¢

=0
where the B¢ are interpreted as

Bt = B; (Bernoulli number).

Now we consider the multiplication formula for ®,(z).

Put
9(z) =a [Z@ (”")] + bBpi(2),

and then obtain

Ag) = af[ o, (ZHE) - 0, (225 | 4 b8 Byt

k=0

= a [Qp(z ) qlp(ﬁ)] +b(p+1)2°
= a [p' = log ) - (%) ] +b(p+1)2*
= % [pi 2P log z — 'ypz”] (b(p-l—l) - — = log n)

Here we take 1
a = nP, b = ——— log n.

CES]
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Then, we have

1
Ag(z) = IFZP log z — v, 2P.

This implies that g(2) is a solution of the linear difference equation satisfied by
®,(2). So, we have

n—1
(2) ®,(z) = n? [Z @, (z+k>] + Bpia(2) log n + ¢,
k=0

n p+1)!
where c is generally a periodic function with period 1.

Taking account of the fact that

1
Bl(z) =2z - 51

we immediately see that the formula (2) for p = 0 exactly corresponds to the
original Gauss multiplication formula for ®(z) = logI'(2) :

n—1
log I'(z) = Zlogr(z+k) + (z - %) logn — (n;l) log 2.

n
k=0

So, the formula (2) may be considered to be the extension of the Gauss multipli-
cation formula.

2 Asymptotic expansion

In order to determine c in the formula (2), we shall here reconsider the asymptotic
expansion of ®,(z).

In the paper [1}, we have derived the asymptotic expansion of ®,(2) in the
right half plane as follows :

1 1
(3) Dp(2) ~ (m log z — ’Yp+1) Bpii(z) + ; @ Bey1(2)

[ o]
- dm
+ )\logz+mz=lz—m (Rez > 0, z > c0).

In fact, we put

Bpt1(z) log z — o Bpi1(2) + ¥(2)

®y(2) = p+1

1
(p+1)!
and then it is easy to see from (1) that ¥(2) must satisfy the linear difference
equation

AY(z) = Bpyi(z+1)Alog z = a(2).

-1
(p+1)!
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Putting
pt+1

Bpi(z+1) = ) Cpn2™,

m=0

we calculate the right hand side

a(z) = (p+1)' (pi‘icz)(zu )

m=1

p /pti-t
- i (E )

£=0 m=1

1 B (™ 1 1
(p+1)!{r§=:lc,’" m+1  Deel E+O<?)

- (p+1)'{za‘z Tz }+O($)’

whence we obtain the principal part of the asymptotic expansion as the summation
(as for the following notation, see [3])

d 1
¥(z) = Sa(z) = (pH),{Z }+o(;).

+

=0

So, putting

p+1—¢
— «
* e+1 (Z Cm+e( ) G =

p+1)
p+1 1
(=1)™+ < A
= = _B A
’ {mgc'" TSl A I
we obtain the principal part of the asymptotic expansion of ®,(z)
By(x) ~ e Bpii(2) log z — 2= Byui(2)
? P+ p+177
£ < 1
+ Z G¢Beri1(z) + Alog z + O (—) .
=0 , z
Since
S WU U
P p+17 7? (p+1)! =1pr 7p+1,

we therefore derive the asymptotic expansion of the form (3) described above.
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We here make a remark on the coefficient of the asymptotic expansion (3).
From the property of the Bernoulli polynomial, we have

p+1
Bpri(z+1) = ) Cm2z™ = (24 1+ B)PH!

m=0
p+1

-3 (”;1) (B 4 1)p+i=m ;m

m=0

and hence we can write the coefficient C,, by

(4) Cpn = (”;1)(3“)"“-"1 (m=0,1,...,p+1).

Using this, we can prove that for p > 0 the constant X is vanishing.
In the formula

ptl m
A = {ZcmM—Bpﬂ} (Co = Bpir)

= m+1
p+1 1
—1)ym+
- Y el
m+1
m=0

we substitute the above expression (4) and then calculate as follows :

t T :é e HEAE A
- ;ﬁ g (m+1) !(,(,p++221!(m Y (B + 1)pr2-imil) (_qym+l
= z% ,i (plz) (B +1)PH2-m (—1)™
= z% {g (p:f) (B +1)P+2-m (1) — (B + 1)P+2}
= ﬁ{(B+1—1)”+2—(B+1)"+2}

- ﬁ {Bp12(0) = Bpya(1)} =0 (p > 0).
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3 Determination of ¢

Taking account of the asymptotic expansion (3) of ®,(z), we calculate the principal
part of the asymptotic expansion of the functlon in the right hand side of (2) :

g(z) = n? [Z Qp(z-'-k)] + %:—l%logn-i-c.

k=

We begin with the calculation of the sum

[Z‘I’ (z-}-k)] N :Z;; ((p-:l)! Jog (z:k) _%H)BM (z:k)
k=0 £=0
1

ACTECENENCS
* (p+1v21°g(1+ ) pﬂ(z:k)
B (1) ()

k=0 ¢=0

B ((Z’+1)' log (%) - '7p+1) Bpii(z)n™?

+ +1)IZlog(1+ ) ,,H(z';k)
p—1

1
& B —¢ 1
+ Z (47 e+1(z)n + 0 (z) y

£=0

in which we have used the multiplication formula for the Bernoulli polynomial

z B (”")] am=t,

Bm(z) =
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We consequently obtain

o) ~ (i ioe — e ) Bona(2)
- (p+1 Zhg( ) ”“(z:k)

p—1
+ Z ang.,.l(z)np -t 4 O( ) + c.
£=0

Combining this asymptotic expansion with that of ®,(z), we have

(5) g(2) — Bp(z) ~ (p:‘__"l)! g log (1 +§) Byt (z:k)

p—1
+ Zae(n” e—l)Be+1(Z)+c+O( )

e_
for sufficiently large values of z in the right half plane.

Let us put

n—1
R(z) = n? z log (l + k) Bpi1 (z :; k)
k=0
p—1
+ Y ap(nP7 = 1) Beya(2).

£=0

If we can show that the principal part of R(z) includes no terms of z¥ (k =
1,2,...,p), then, according to the asymptotic relation (5), we can conclude that
¢ must be a constant, which is determined by the constant term of R(z). Instead
of calculating the exact values of coefficients of z* and verifying that they are all
zero, we consider the difference A R(z) :

nP Ti:l A [log (1 + é) By (Z : k)] + Pz—f ae (nP~% — 1) A[Bey1(2))-

k=0 £=0
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Rewriting

ol () 2 (5]
(S (142 < (52 e (o)
o (22158 o ) - 22

) 1 217) - (58] 141

= Bpt1 log (1 +

— By (z+1+k) log (1+ )
we can obtain
5 afos (1+2) o (529)
k=0
= Bpn (Z:n) log (1+§) i Bpt1 (ﬁ%ﬁ)] log (1+%

k=0
n n _ 1
) log (1+;) —n"PByii(z+1) log (1+;)

z+
= Bpy1 (
from the multiplication formula for the Bernoulli polynomial.
Moreover, taking account of
AB,(z) = mz™"! (m=0,1,2...),

we consequently see that A R(z) is equal to

o {Bos (04 ) ke (12) - w7 B9 s (141

p—1 ‘
+ > ap (Pt 1) (£ +1) 28
£=0

N——’
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As we have already seen, we obtain

By (1+%) log (1+§)
P pt+1-¢ m—1 2
=§(Z Cm+e( 1) )(;)Z-FO(Z%)
—Zae(£+1)( ) +O(;1§),
=0
By (1+2)log (1+%)

= —Zae(f+1)z +0( )

=0

Substituting these formulas into the above relation, we have thus proved that
A 1
R(z) = O =)

R(z) = aconstant Ry + O (%)

This implies that

Now, we shall calculate the constant term in R(z). For that purpose, we first
consider the Taylor expansion of the function

f() =0+ log(1+¢€),  f(0) =0.

We easily obtain
1
F) = il—!f’(O)c’ + %f”(ﬂ) €4+ OO+ -,

where

L0\ ml(=1)71(G —1)!
100 =3 (j)m S

=1

In particular, we have

—T;Ll—!f(m)'(o) i( )( 1): -1
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Taking account of the above formula, we calculate the constant in

+k k
Bpii (Z " ) log (1 + ;)
p+1 p+1-h
=S (P Y, (BT (14 F ! E)
_Z( h )Bh(n) 1+z log +z

h=0

=S e)e ()

h=0

It is not difficult to see that the constant term is given by
P p+1-h i—1 p+i-h
p+1) p+1—h\ (-1) k
=3 ( B | Y ( i Pl VA
h=0 h [ j=1 J J n
Hence, the constant term Ry in R(z) is equal to

n—1 p—1
Ry = n? Z er + Z ag ("% = 1) Bey1(0).

k=0 £=0

Since ) 1
0= g(Z) - @p(Z) ~ (p——l_mR(Z) +c + O(;) ,

the constant term in the right hand side must be zero. We consequently obtain

o oo {SC0n[E

h=0 i=1

_1 { Bpao_p(n) — Bpia_p(0 = _
x nt 1( p+2 hz()-l)-2—7l+2 A )) - ag (n? e—l)Be+1},

=0
where we have used Jakob Bernoulli’s formula

" Bpt1(n) — Bm41(0)
m m oo, _ 1y — - m+1 m+1
1™ 42" 4. 4+ (n—1) /0 Bpn(z)dz 1 .

For p = 0, the constant ¢ is given as

n—1
5

Theorem  There holds the multiplication formula for the extended psi function
®,(2) :

®,(nz) = nP 7§ ®, (z+£) + Byr1(nz) log n + ¢,
Pt n (p+1)!
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where the constant c is given by (6) .

It is remarked that if ®,(z) includes some constant b, in the asymptotic ex-
pansion, then — (nP*1 — 1)b, will be added to the constant c.
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