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Abstract. We find and study coupled Painlevé IV systems in dimension
four, which are different from the systems of type A‘(,l) . We also give the
augmented phase spaces for these systems.

1 Introduction

The purpose of this paper is to characterize higher order Painlevé equations from
the viewpoint of algebraic vector fields with favorable properties in regard to ac-
cessible singularities (see Definition 2.1) and local index (see Definition 2.2). As an
example of higher order Painlevé equations with favorable properties, we studied
the systems of type A‘(,l), which can be considered as a generalization of the fourth
Painlevé equation Py to fourth-order. Let us summarize important properties of
these systems as follows (see [4, 5]):

Notation.

e H € Clt][z, y, 2, w], o deg(H): degree with respect to z,y, z, w,

e Ops(—log H): subsheaf of ©ps whose local section v satisfies v(f) € (f) for
any local equation f of the boundary divisor H of P4,

® Hiv(g,p,t;71,72) = —qp® + p(m — tq + ¢°) + y2q: the Hamiltonian of Pry,

e dim. of sol. : dimension of the parameter space of meromorphic solutions
which pass through an accessible singular point.

symmetry W(Agl))
Hamiltonian Hyy(z,y,t) + Hyy(z,w,t)
—2yzw
form of equations coupled Painlevé IV
degree of Hamiltonian H 3
v € HO(P4, Opa(—log H)(nH)) n=1
number of parameter 4

Mathematical Subject Classification (2000): 34M55, 3dM45, 58F05, 32S65.
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type of accessible singularity point point point
type of local index (+1,+3,+1,+1) | (+1,43,-1,43) (+1,+3,+5,-3)
dim. of solu. dim. 3 dim. 2 dim. 2

Unlike the second-order case, in the fourth-order case there exist the following
possibilities for types of accessible singularities: (i) point, (i) curve, (iii) surface.

These properties suggest the possibility that there exist higher order versions
of Pyy as well, and furthermore, suggest a procedure for searching for such higher
order versions with different types of accessible singularities from the systems of
type Afil). The purpose of this paper is to find a fourth-order version of the
Painlevé IV systems other than the systems of type A‘(,l). Here, we consider the
following problem.

Problem.

Can we classify the coupled Painlevé IV systems in dimension four that are
the Hamiltonian systems with Hamiltonian H € C[t][z,y, z, w| of deg(H) = 3, and
moreover, have given some accessible singularities?

To answer this, in the present paper, we construct a 3-parameter family of
fourth-order algebraic ordinary differential equations that can be considered as
coupled Painlevé IV systems in dimension four, which are given as follows:

r dx
E=x2—2xy+zz—tz+a1,
d
d_3t1=y2—2xy—yz—zw+ty—az,
fa& | (1)
E=z — 22w+ xz — tz + ag,
dw 2
~E=w —2zw — zy — zw + tw — aa.

Here z,y, z and w denote unknown complex variables and o, o2 and o3 are com-
plex parameters. This system is equivalent to a Hamiltonian system given by

H = Hyv(z,y,t; a1, a2) + Hyv(z,w, t; a3, a2) + zyz + 22w

= —z1” + y(ou — tx + 2%) + oz — 20” + w(az — tz + 2%) + a2z + TY2 + T2W.

From the viewpoint of symmetry, it is worthwhile to point out the following
theorem.

Theorem 1.1 The system (1) is invariant under the following transformations:

. . al )
81 (fl?,y, zZ,w, t!al’a27 a3) - (.'L‘,y—?,z,'w, t; ""alaa2+a17a3),
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- - a3
s2: (z,y, 2, w,t; 01, a2, 03) — (z,9, z,w—;,t;al,a2+a3, —ags),

S3: (.’l?, Y, 2, w,t; 01, a, 03) -

(\/—_ly(xy —a;) V-1(zy +zw+o2) vV=TIw(zw —a3) V=1(zy+ zw + a3)

Ty +zw+ay y T zytzwtas w

V=1t a1,02 + a1 + a3, a3),
o (.’E,y, Z, w7t; a11a27a3) - (Z’w) il',y,t; ag, a2’al)1
w3 : (2,9, 2, w, t;q, 09,03) —

(V-1z,vV-1(z—y+z-t),vV-1z,vV-1(z—w+z2—-t),—V—-1t; v, l— a1 —az—03, a3).
For the system (1), K. Kimura showed the following theorem.

Theorem 1.2 The system (1) has the following first integral 1

I = aszw — oy 2w — o3xy + oYz — Y22 + 2zyzw — zzw?.

Theorems 1.1 and 1.2 can be checked by a direct calculation.

In 1979, K. Okamoto [2] constructed the spaces of initial conditions of Painlevé
equations, which can be considered as the parameter spaces of all meromorphic
solutions (including holomorphic solutions). We call these spaces augmented phase
spaces, in accordance with [8]. For the system (1), we can construct the following
phase space.

Theorem 1.3 The augmenied phase spaces X over B = C for the system (1) is
obtained by gluing twelve copies of C* x C:
UyxC=C*xC>3(z,v,2,w,t),
U; x C=CixC> (:vj,yj,zj,wj,t) (4=12,.,11),
via the following rational and symplectic transformations:
1

z
Dz =_, y1 = —z(aytzwtas), z1 = =, wy = 2w,
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nN | =

2) xo = %, Yo =Yz, 20 = —, Wa = —z(zw+q:y+a2),

1
3) 23 = —z(zy—1), Yz = g 8= z, w3 =w,

1
4) T4=T, Y=Y, 24 = —w(zw—ag), Wy = :l;,

5 1
5) z5 = y(1—a1—az—o3+ty—zy+y +2w—-2yz), ys = 5

1

25 = —(w — -ag3 + 2w — yz), ws = ——,
5 = —(w—y)y(-as yz), ws W@ —7)

1 2
6) z6 = y(1—a1—az—az+ty—zy+y*+2w—2y2), Yo = " 26 = " wg = (W—y)y,

1 1
7 z7 = —y(zy—0ou), y7 = ikt —w(zw—as), wr = -

1 1
8 = —y = — , = — _ = —,
} zs o U8 z(zy+zwtas), 28 zw(zw—a3), ws poom
1 1
9) Tg = —zy(TY—11), Yo = 5, 29 = 2 Wy = —z(zw+:r:y+a2),

1

10 Ti90 = — —ww—a—}-m—wx, =—
)10 = ~(y-w)w(-artay-uz), yo = oo—s

zm=w(1—a1—ag—a3+tw—zw+w2+zy—2ww), Wy =

1
w’

xr
1)z = o = (y—w)w,

1
1 =w(1—a1-—ag—a3+tw—zw+w2+my—2mw), w11 =E'
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By taking suitable choices among the data 1) — 11) in Theorem 1.3, we can
reconstruct the system (1).

Theorem 1.4 Let us consider an algebraic and Hamiltonian differential system
with Hamiltonian H € Clt][z,y, z,w]. We assume that

(A1) deg(H) = 3 with respect to z,y, z, w.

(A2) This system becomes again a holomorphic differential system in each co-
ordinate system (x;,y;, z;, w;) (i =1,2,3,4):

1 z
= E’ n= —:v(:z:y+zw+a2), 21 = oy w = zw,
1
To = —z(zy — 1), Yo = ;, Z2=2z, wy=w,
1
T3 =2, y3 =y, 23 = —w(zw — az), w3z = ot

1 z
g =y(l-on—as—as+ty—zy+y*+2w—2yz), y4 = v’ 2= " wy = (W—y)y.

Then such a system coincides with the system (1).

Remark 1.1 Each coordinate system given in Theorem 1.4 is a holomorphic co-
ordinate system with a three-parameter family of meromorphic solutions of the
system (1) as the initial conditions.

There is the following symplectic transformation in addition to the symplectic
transformations given in Theorems 1.1 and 1.3.

Proposition 1.1 By using the following rational and symplectic transformation

]
2w 4+ as

v: (XY, Z,W)=(z+ ,y,yz,%),

the Hamiltonian H is transformed to the polynomial Hamiltonian H in the coor-
dinate system (X,Y, Z, W)

H=X%Y-XY?~tXY -2 X+(a1+)Y +aot+ X Z-X ZW+Y ZW =Y ZW2+a3Y W,
and satisfies the following condition:
dr Ady+dzAdw—dH Adt =dX AdY +dZ AdW — dH A dt.

Theorem 1.4 and Proposition 0.1 can be checked by a direct calculation.

This paper is organized as follows. In Section 1, the notions of accessible
singularity and local index are reviewed. In Section 2, we will prove Theorem 1.3
by an explicit birational transformation for each step.
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2  Accessible singularities and local index

Let us review the notion of accessible singularity in accordance with (1, 6]. Let B
be a connected open domain in C and # : W — B a smooth proper holomorphic
map. We assume that H C W is a normal crossing divisor which is flat over B.
Let us consider a rational vector field ¥ on W satisfying the condition

e H°(w, Ow(—log H)(H)).

Fixing to € B and P € W,,, we can take a local coordinate system (1, %2, oy Tn)
of W, centered at P such that Hsmooth can be defined by the local equation
z; = 0. Since ¥ € HO(W, Oy (—log H)(H)), we can write down the vector field ¥
near P = (0,0, ...,0,,) as follows:

~__6_+a_8_+a,_2i an 0
”“at 18:1:1 1 0x2

This vector field defines the following system of differential equations

( d.
Fmt_l' = a’l(th2v coeng Ty t)3
di_?_ — a2(£l,£2""') xfut)
dt z !
< @)

dzn, _ an(ZT1,22y ey Ty t)

[ dt 1

Here a;(z1,Z2,....,Zn,t), i = 1,2,...,n, are holomorphic functions defined near
P =(0,.,0, to).

Definition 2.1 With the above notation, assume that the rational vector field v
on W satisfies the condition

7 € HO(W, Ow(—log H)(H)).
We say that © has an accessible singularity at P = (0,0, ...,0,%) if
z; = 0 and a;(0,0,....,0,%) = 0 for every i, 2 <i < n.

If P € Hemooth is not an accessible singularity, all solutions of the ordinary
differential equation passing through P are vertical solutions, that is, the solutions
are contained in the fiber Wy, over t = to. If P € Hgmooth is an accessible
singularity, there may be a solution of (2) which passes through P and goes into
the interior W — H of W.

Let us recall the notion of local index. When we construct the phase spaces of
the higher order Painlevé equations, an object, called the local index, is the key to
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determining when we need to make a blowing-up of an accessible singularity or a
blowing-down to a minimal phase space. In the case of equations of higher order
with favorable properties, for example the systems of type Af,l) [4], the local index
at the accessible singular point corresponds to the set of orders that appears in
the free parameters of formal solutions passing through that point 8].

Definition 2.2 Letv be an algebraic vector field which is given by (2) and (X,Y, 2,
be a boundary coordinate system in a neighborhood of an accessible singularity
P =(0,0,0,0,t). Assume that the system is written as

r %— =a+ fi(X,Y,Z,W,¢),
dY _bY + fo(X,Y,Z,W,t)
dat X ’
dZ _cZ+ f3(X,Y,Z,W,t)
dt X ’
dW _ dW + f4(X,Y, Z, W, t)

{ dt X

near the accessible singularity P, where a,b,c and d are nonzero constants. We
say that the vector field v has the local indez (a,b,¢,d) at P if f1(X,Y,Z,W,t) isa
polynomial which vanishes at P = (0,0,0,0,t) and f;(X,Y, Z,W,t), i = 2,3,4, are
polynomials of order 2 in X,Y,Z,W. Here f; € C[X,Y,Z,W,t] fori=1,2,3,4.

Remark 2.1 We are interested in the case with local index (1,b/a,c/a,d/a) € Z*.
If each component of (1,b/a,c/a,d/a) has the same sign, we may resolve the
accessible singularity by blowing-up finitely many times. However, when different
signs appear, we may need to both blow up and blow down.

3 Resolution of the accessible singularities

To prove Theorem 1.3, the latter part of this paper is devoted to giving an explicit
resolution of accessible singularities of the systems (1) and to construct a family
of phase spaces for the systems. For second-order Painlevé equations, we can
obtain the entire space of initial conditions by adding subvarieties of codimension
1 (equivalently, of dimension 1) to the space of initial conditions of holomorphic
solutions (see [2, 3, 7]). However, in the case of fourth-order differential equations,
we need to add codimension 2 subvarieties to the space in addition to codimension
1 subvarieties. In order to resolve singularities, we need to both blow up and blow
down. Moreover, to obtain a smooth variety by blowing-down, we need to resolve
for a pair of singularities.

2.1. Accessible singularities of the system (1)

Let P be an accessible singular point in the boundary divisor H and (X, Y, Z, W)
a coordinate system centered at P, where {X = 0} C H. Rewriting the systems
in the local coordinate system (X, Y, Z, W), the right hand side of each differential
equation has poles along H. If we resolve the accessible singularity P and the
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right hand side of each differential equation becomes holomorphic in the coordi-
nate system (X', Y',Z',W') e U & C4, then we can use Cauchy’s existence and
uniqueness theorem of solutions. In order to consider a family of phase spaces for
the system (1), let us take the compactification P4 x B of C* x B. Moreover, we
denote the boundary divisor in P by H. Fixing the parameter a, consider the
product P4 x B and extend the regular vector field on C4 x B to a rational vector
field 7 on P* x B. The following lemma shows that this rational vector field & has
the following accessible singular loci on the boundary divisor H x {t} C P* x {t}
for each ¢ € B.

Figure 1: Accessible singularities of the system (1)

Lemma 3.1 The rational vector field © has the following accessible singular loci
(see Figure 1):
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Cl = {(Xl,Yl,Zl,Wl)lxl = Yl = W1 = 0},

C2 = {(X2,Y2, Z2,Ws)|Y2 = Z5 = W, = 0},

P3 = {(X3,Y3,Z3,W3)| X3 = Y3 = Z3 = W3 = 0},

Py = {(X4,Y4, 24, Wy)| X4 =Yy = Zg = Wy = 0},

Py = {(X3,Y3,23,W3)|Y3 = Z3 =0,X5 = 1, W3 = -1},
Co = {(X3,Y3,Z3,W3)|Ya = 0, W5 =1, X3 = 1 — Z3},
Pr = {(X3,Ys, Z3,W3)| X3 = Y3 = Z3 = 0, W5 = 1},

Py ={(X1,1,Z,W)|X, =Y, =2, =0, W, =2},

Py ={(X2,Y2,22,W1)|X2 = Zo =W = 0,Y> = 2},
Pio = {(X4,Y4, 24, Wy)| X4 =Wy =0,Yy = —1,2Z, = 1},
{C11 = {(X4, Y, Zy, Wy)|[Wy = 0,Y3 =1,Z4 =1 — X4}.

Lemma 3.1 can be checked by a direct calculation.

Remark 3.1 By the symmetry
m (IL', Y,2,w, ta aq, (g, 03) — (Z, w,z,Y, ta a3z, g, 0«’l)a

it is easy to see that

m1(C1) = Cs, m(Ps) = Py, m1(Ps) = Pro, m1(Ps) = Py, m(Cs) = Cn1-

By Remark 3.1, it is easy to see that for the accessible singularities Cy, Py, Py, Pyg, C11,
each resolution process is the same as the case for the accessible singularities
Clap3’P81P57
Cs respectively, provided the variables and parameters z,y, z,w, t, a1, as,a3 are
replaced by the transformation ;.

For the case of accessible singular points P; (i = 1,3,5,6,7,8), we calculate
the local index at each point.

Notations

Pl = {(X17Y19Z19Wl) = (0,0,0,0)} € Cl» P6 = {(X3,Y:'37Z31W3) = (110’011)} € 06-

Singular point | Type(dim. of sol.) | Type of local index
Py dim. 2 (-1,-3,0,-2)
P; dim. 3 (—3,—1,-1,-1)
Ps dim. 2 (+3,+1,+4, —2)
P; dim. 2 (+3,+1,0,+2)
P, dim. 2 (-3,—-1,-3,+1)
Ps dim. 2 (=1,-3,—4,+2)

In the case of the accessible singular points Ps and Ps, we give an explicit
description of the local index at each point.
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By using the coordinate system (us, vs, gs, ps) around the point Ps = {(us,v5,85,p5) =
(0,0,0,0)}, the system (1) is rewritten as follows:

Us 3 01 O Uus
d vs | _ 0 10 0 Vs +
dtlgs| |0 04 O gs
Ds -2 0 2 -2/ \ps

To the above system, we make the linear transformation

Us -1/5 0 1/5 0 Uug
]/5 _ 0 1 0 0 Vs
Q] | 0 0 1 0])ie
P5 2/5 0 —2/5 1 Ps
to arrive at
Us 300 O Us
_(i Vsl _{01 0 O Vs n
dt Q5 s 0 0 4 0 Q5 ceve g
Py 0 0 0 -2 Py

and we obtain the local index (+3, +1, +4, —2) at Ps.

By using the coordinate system (ug, vs, g, Ps) around the point Ps = {(us, V6,96, P6) =
(0,0,0,0)}, the system (1) is rewritten as follows:

Ug 3 03O0 Ug
i Ve | _ 0100 Vg +
dt | g6 0 0 0 Of|ags A
D 00 0 2 D6
To the above system, we make the linear transformation
Us 1 010 Ue
‘/6 _ 0100 Vs
QG - 0 010 (71
Py 00 01 De
to arrive at
Us 3000 Us
d | Vs _|(0100 Vs +
dt | Qe 0 0 0 0f|@Qs T
Py 0 0 0:2 Py

and we obtain the local index (+3,+1,0,+2) at Ps.
2.2. Summary of resolution process

Let us start by summarizing the steps (see Figure 2,3,4) which are needed to
resolve the accessible singularities of #:
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Step 1:
Step 2:

. Step 3:
. Step 4:

Step 5:
Step 6:
Step 7:
Step 8:
Step 9:

. Step 10:
. Step 11:
. Step 12:
. Step 13:
. Step 14:
. Step 15:
. Step 16:
Step 17:
. Step 18:

19. Step 19:

Coupled Painlevé IV systems in dimension four

We blow up at two points P; and Pj.

We blow up along the curve L;.

We blow down the 3-fold V.

We blow up along the curve Ly = C; U Cs.
We blow up along the surfaces F; and F5.
We blow down the 3-folds V5 and V3.

We blow up along the curve Lz = C,' U Cy'.
We blow up along the surfaces F3 and Fy.
We blow down the 3-folds V4 and V;.

We blow up along the curve Ly = Cg U Cy;.
We blow up along the surfaces F5 and Fg.
We blow down the 3-folds Vi and V4.

We blow up along the surfaces F; and Fj.
We blow down the 3-folds V3 and V.

We blow up along the surfaces Fy and Fjg.
We blow up along the surfaces F;; and Fjs.
We blow up along the surface Fis.

We blow up along the surface F4.

Now we are ready to prove Theorem 1.3.

2.3. Resolution of the accessible singular locus C;

By the following 3 steps, we can resolve the accessible singular locus C}.

We blow up along the curve Ls = Cs’' UCyy'.

23

Step 0: We take the coordinate system (X,;,Y1, Z;, W;) centered at P;, where
(X1,1,2,,Wy) = (1, ¥, 2 2) and (z,y,2,w) is the original coordinate system
of C4.

Step 2: We blow up along the curve C; = {(X;,Y7,Z;, W)} X1 =1 =W =

0}

’ ’ Y ’ ! Wy

= ==L =2, Wi'=22L
Xi'=X1, 1 X Z 1 U=

Step 7: We blow up along the curve Cy' = {(X{,Y{,Z],W])| Xy’ =Y’

W' =0} ,
Y/ W,

X" =X, Yll,:fl{ , Z" =21, Wl”=T{1-

T'xr'T' T
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. >
P, 3 P7 P, 4
T Step 1
Ly
Py \V
T Step 2

/,//////////

NN

A
P,
l Step 3
Py

Figure 2:
”Step”19:” We blow up along the surface Fiq = {(X{,Y/,Z{,W{)|X\" =
"N+ z,"w; +O£2=0}

Yln + Z]”Wll’ + a9
X7

no__ " mo__ "o __ " mo__ 1"
Xl = 1 Yl _ y Z 19 Wl -_ 1°
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T Step 4

i
7
2]

4

25
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7]\

Figure 4:

We have resolved the accessible singular locus C;. By choosing a new coordinate
system as

(@1, 91, 21,w1) = (X7, -Y,", 2", W),

we can obtain the coordinate system (z,%1, 21, w1 ) in the description of X given
in Theorem 1.3.

2.4. Resolution of the accessible singularity Ps

By the following 3 steps, we can resolve the accessible singularity P;.

Step 0: We take the coordinate system (X3, Ys, Z3, W3) centered at P3, where
(X3a Y3, Z3’ W3) = (:';'a %a %1 % .
Step 1: We blow up at the point Pj

x3=23 yi_vy, 7=

Z3
},3 )

Ys
Step 16: We blow up along the surface Fy = {(X3,Y4, Z4, W3)| X5’ = Y{ =0}

X3

XII=?3”

1 ’ 1 7 1 i
Y =Y3, 3=Z3, W =W3.

. Ste;}: 17: We blow up along the surface Fy; = {(X%,Yy', 2§, W3")| X§ — oy =
Y]/ =0

17
"mo__ Xz —a

X3 ——Ya,,—,

m " n 1 n __ "
}’3 = 3 Z3 = 3 W3 = W3 .
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We have resolved the accessible singularity P;. By choosing a new coordinate
system as

(23,3, 23, w3) = (- X3", Y3", 23", Wy"),
we can obtain the coordinate system (z3,y3, z3,ws) in the description of X given
in Theorem 1.3.
2.5. Resolution of the accessible singularity P,

By the following steps, we can resolve the accessible singularity P;.
Step 0: We take the coordinate system centered at P

1
P1=£7 Q1=_’ R1=E, SI=E-1
) Y Y y
Step 2: We blow up along the curve L; & P! (see Figure 2)
P R
P2=Q_11’ Q=C, R2=Q—i, S2 = 51.

By Step 2, each point on the curve L, is transformed to P2.
Step 3: We blow down the 3-fold V; 2 P? x P! (see Figure 2)

_ _ _ Qe
Ps=P, Q3=Q2, R3=R,, -5'3—5,2_'_1-

The resolution process from Step 2 to Step 3 is well-known as P2-flop. In order to
resolve the accessible singularity P; and obtain a holomorphic coordinate system,
we need to blow down the 3-fold V; & P2 x P! along the P!-fiber. After we blow
down the 3-fold V}, we can resolve the accessible singularity P; by only blowing-
ups.
Step 16: We blow up along the surfaces Fy and Fiq
P3 R3
P==3 =Qs, Ri==2, S,=25s.
“= 0, Qi=Qs 1= 1= 53
By Step 16, each point on each surface F; (i = 9, 10) is transformed to P!.
Step 17: We blow up along the surfaces Fy; and Fjo

R4 — Qg3
Sy

Py —a
P = 4Q4 1

We have resolved the accessible singularity P;. By choosing a new coordinate
system as

y @s=Q4, Rs= Ss = S4.

(z7,y7, 27, w7) = (—Ps,Qs, —Rs, S5),

we can obtain the coordinate system (z7,y7, 27, w7) in the description of X given
in Theorem 1.3.

2.6. Resolution of the accessible singularity P;
By the following steps, we can resolve the accessible singularity Ps.
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Step 0: We take the coordinate system centered at Ps
w
. = — = — = — — 2,
y4! y @ y T = y 1 z
Step 5: We blow up along the surface F; & P! x P! (sce Figure 3)

q1
P2=D1, G2= — TR =71, 82=8}.

2
Step 6: We blow down the 3-fold V3 2 P! x P! x P! (see Figure 3)
= = ra=ry, §3=—02
P3=p2, 93=4q2, T3 2, S3 5242

The resolution process from Step 5 to Step 6 is well-known as P! x P! xP!-flop. The
surface F is isomorphic to P! x P!. By Step 5, each point on F; is transformed to
P!. The 3-fold Vj is isomorphic to P! x P! x P1. In order to resolve the accessible
singularities Py, Py and obtain holomorphic coordinate systems, we need to blow
down the 3-fold V; along another P1-fiber. The surface Fy is isomorphic to P! x P!,
Step 8: We blow up along the surface Fy = P! x P! (see Figure 4)
as

Pa=pP3, q4a=—, T4=T3, 84=83.
D3

Step 9: We blow down the 3-fold Vs = P! x P! x P! (see Figure 4)

P5=P4, q5s=Q4, T5=T4, 85=P4S4.

The 3-fold Vs is isomorphic to P! x P! x P!. In order to resolve the accessible
singularity P and obtain a holomorphic coordinate system, we need to blow down
the 3-folds V;(i = 2, 3) along another P!-fiber.
Step 16: We blow up along the surface Fig
s

Pe=DP5, Q46 =45, "'6=s_5: S¢ = S5-

Step 17: We blow up along the surface Fj

Te — Q3
Pr=DpD6: 97 =4G6, 7‘7=S—, 87 = Sg-
6

Step 19: We blow up along the surface Fi4

pr+ 71787+ a2+ a3
pPs=p7, Q= P , Tg="T7, 88=87.

We have resolved the accessible singularity Ps. By choosing a new coordinate
system as

(38ay8a 38,7-08) = (pS’ —q8, T8, sB)a

we can obtain the coordinate system (zs,ys, 28, ws) in the description of X given
in Theorem 1.3.
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2.7. Resolution of the accessible singular locus Ce

By the following steps, we can resolve the accessible singular locus Cs.
Step 0: We take the coordinate system centered at {(X2, Y2, Zo, Wo)| X5
Wo=1,Y>=2, =0} :

Il

x 1 z w
fhi==--1, g1=-, hy=-, ji=—-1
v Ty M Ty Ty
Step 10: We blow up along the curve Ly = Cs U Cy;
fith . j
o= gy=g1, hy=hy, jo=72L.
g (251

Step 13: We blow up along the curve Ls = Cs' UCyy’

—t ) ;
f3=f2 , g3=g2, ha=hy, .73=‘7—2-
g2 g2

Step18: We blow up along the surface Fi3

—h3js—14+a1+as+a . .
f4=f3 J % LT 2T gi=gs, ha=hs, ji=js.

We have resolved the accessible singular locus Cs. By choosing a new coordinate
system as

(z6, Y6, 26, We) = (— fa, 94, ha, Ja),

we can obtain the coordinate system (zg, g, 26, ws) in the description of X given
in Theorem 1.3. .

2.8. Resolution of the accessible singularity Pj

By the following steps, we can resolve the accessible singularity Ps.
Step 0: We take the coordinate system centered at P

1
F1=E—1» Gi==, =2, n=2+1
Yy Y Y y
Step 11: We blow up along the surface Fj & P! x P!
R+ H
==

Step 12: We blow down the 3-fold Vg = P! x P! x P!

F Go=G,, Hy=H,, Ja=J:.

—_— G2
T I =2

Fy3=F, G3=G2, H3=Hy, Js

The resolution process from Step 11 to Step 12 is well-known as P! x P! x P!-
flop. The surface Fy is isomorphic to P! x P1. By Step 11, each point on Fj is
transformed to P!. The 3-fold Vj is isomorphic to P! x P! x P1. In order to resolve
the accessible singularity P; and obtain a holomorphic coordinate system, we need
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to blow down the 3-fold Vg along another P!-fiber. The surface F; is isomorphic
to P! x PL.
Step 14: We blow up along the surface Fr = P! x P!
F3—t
Gs

Step 15: We blow down the 3-fold V3 2 P! x P! x P!

Fy=

, G4=Gs, Hy=Hz, Jy=Js.

Fs=F;, Gs=G4, Hs=Hy, Js=GuJy.
Step 16: We blow up along the surface Fio

H,
F6=F53 G6=G5) H6=J_:! J6=J5-

Step 17: We blow up along the surface Fip

Hg — o3

Fp=Fs, Gr=Gs, Hr= 7

Jr = Js.

Step 18: We blow up along the surface Fy3

_ F7—H7J7—1+C¥1+(12

FS G7 )

Gs=G7, Hsg=Hy;, Js=J7.

We have resolved the accessible singularity Ps. By choosing a new coordinate
system as .
($5v Ys, 25, w5) = (—F87 GS’ H81 JS)a
we can obtain the coordinate system (zs,¥s, 25, ws) in the description of X' given
in Theorem 1.3.
2.9. Resolution of the remaining accessible singularities

Each procedure is the same as that given in the preceding sections 2.3 through
2.8, provided the variables and parameters z, y, z, w, &1, @2, a3 are replaced by the
transformation

71t (2,Y, 2, w5 01,9, 03) — (2, W, T, Y; 03, g, A1).

Each coordinate system (z;,y;,2;,w;) for j = 2,4,9,10,11 is explicitly given as
follows:

(x4,¥js 25, wj) = T1(Zk, Yk» 26, W), Kk =1,3,8,5,6,respectively.
In sections 2.3 through 2.9, we have resolved all the accessible singularities for
the system (1), thus completing the proof of Theorem 1.3.
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