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Abstract. Let G be a finite group. Regarding the Gruenberg-Kegel graph
or the prime graph of G, denoted by GK(G), the primes dividing the order
of G are divided into the sets 71, 72, ..., Ts(G), where s(G) is the number
of components of GK(G). Therefore the order of G is divided into a product
of co-prime positive integers m,, ma, ...,myg), where m; is the product of
primes in 7;. These integers are called order components of G and OC(G) =
{m1, m2, ...,my)} is called the set of order components of G. In this paper
we will prove that the linear group L,+:(2), where p is a prime number, is
characterized by its set of order components. More precisely we will prove
that if G is a finite group, then OC(G) = OC(Lp+1(2)) if and only if G =
Lp+1(2).

1 Introduction

For a positive integer n, let m(n) be the set of all prime divisors of n. If G is
a finite group, we set 7(G) = 7(|G|). The Gruenberg-Kegel graph of G, or the
prime graph of G, is denoted by GK(G) and is defined as follows. The vertex
set of GK(G) is the set 7(G) and two distinct primes p and q are joined by an
edge if and only if G contains an element of order pg. We denote the connected
components of GK(G) by m, 73, ..., 74g), where s(G) denotes the number of
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connected components of GK(G). If the order of G is even, the notation is chosen
so that 2 € my. It is clear that the order of G can be expressed as the product
of the numbers m;, ma, ..., Ms(G), Where w(m;) = m;, 1 < i < s(G). If the order
of G is even and s(G) > 2, according to our notation mg, ..., ms(G) are odd.
The positive integers my, ma, ...,My(g) are called the order components of G and
OC(G) = {m1, mg, ..,myg)} is called the set of order components of G. It
is a natural question to ask: If the finite groups G and H have the same order
components does it follow G is isomorphic to H? For many simple groups H
with the number of order components s(H) at least 2, the answer to the above
question is affirmative. However if s(H) =1 the answer is negative. However the
simple groups By (g) and C,(q) where n = 2™ > 4 and ¢ is odd, have the same
order components but they are not isomorphic. Hence it is natural to adopt the
following definition.

Definition 1 Let G be a finite group. The number of non-isomorphic finite groups
with the same order components as G is denoted by h(G) and is called the h-
function of G. For any naturel number k we say the finite group G is k-recognizable
by its set of order components if h(G) = k. If h(G) = 1 we say that G is charac-
terizable by its set of order components or briefly G is a characterizable group. In
this case G is uniquely determined by the set of its order components.

Obviously for any finite groups G we have A(G) > 1. The components of the
Gruenberg-Kegel graph GK(P) of any non -abelian finite simple group P with
GK(P) disconnected are found in [17] from which we can deduce the component

orders of P. These information which will be used in proving our main result are
listed in Tables 1, 2 and 3.
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Table 1. The order components of finite simple groups P with s(P) =2

P Restrictions on P m mo
A, 6<n=pp+1p+2 | & P
one of n,n — 2 is not
a prime
P p=1 g’ —1)
Ap-1(9) | (pg) #(3,2),(3,4) ¢() H,.ﬁl (¢ -1) 1 (q—_(m
+1 = . »_
Ala) | (@=1)](p+1) Aot} | L =)
14 p—1 i : P+1
24p-1(q) g II., @ - 0) H‘l)(—pq’m
53
24p(a) | (a+1) | (p+1), ") (g1 — 1) @l
S RRTY
(r.a) #3.8),(5:2) | ][I (¢ - (-1))
244(2) 26 34 5
n—1I . niy
Ba(g) |n=2m>4,qodd | g (" -1) IL_, @ i
p— : P_
B,(3) 37°(3P + 1) H;:] (3%-1) ﬁ2_1)
n—1I . ny1
Culg) |n=2m>2 @ -)[[ @ o
p—1 i P_1
Cp(q) g=2,3 qu (qp + 1) Hi:l (q2‘ 1) ((qu—l))
_ =1 o P_1
Dy(q) |P25 ¢=235 el | N Caly =
(¢ -1)(¢* -1)(¢* - 1)
(g”—1)
Dpyi(g) [9=2,3 [ﬁqp(pﬂ)gpl +1) 2q,q-l)
@' -]l («*-1)

n—1 . n
2Dag) |n=2m>4 il | CEERY el
2D, (2) =2m41>5 2n(n=1(2n 4 1)(2n-1 —1) 2"l 41

n—2 .
2i __
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Table 1. (Continued)

2D,(3) | 5<p#A2m+1 -0 [ (3% - 1) G

2D,(3) [9<n=2"+1+#p Igntn—D(gn 4 1)(37~1 —1) | &
H;;:(:;zi -1)

Galg) | 2<g=e(mod3), e==1 | ¢®(g® —€)(¢® —1)g+¢) ¢ —eg+1

3Da(q) g'%(¢® - 1)(¢* - 1) - +1
(¢"+4°+1)

Fa(g) | godd *(¢® - 1)(¢® - 1)? ¢ —g*+1
(¢*-1)

2F,(2) 211 38 52 13

Es(q) (¢ —1)(¢® —1)(¢® - 1) | LFR
(¢ —1)(¢* - 1)(¢* - 1)

2Eo(q) | a>2 (g2 - 1)~ 1)(¢® - 1) | i
(¢® +1)(P+1)(¢°>-1)

M, 26.33.5 11

Jo 97,33 .52 7

Ru 214,33 ,53.7.13 29

He 210 33 5273 17

McL 27.36.5%.7 11

Co, 221 39 54.72.11.13 23

Cos 210 37 53.7.11 23

Figy 21739 52.7.11 13

HN 214,36 56.7.11 19
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Table 2. The order components of finite simple groups P with s(P)=3(pan

odd prime)
P Restrictions on P my ma m3
An n>6, n=p, p—2 2n(z!—2) D p—2
are primes
Ai(q) 3 < ¢ = ¢(mod 4), g—¢ q (q'z'")
€e==+1
Ai(g) g>2, qeven q g-1 g+1
Az(2) 8 3 7
245(2) 215365 7 11
2D,3) |p=2"+1>5 2.3°p-D(3p-1_1) | BT 4D G74+1)
I, -y
2Dpi1(2) [ p=2"—1,n>2 | 2rp+D(2p 1)
I e -1 2 +1 241 41
Ga(q) g = 0(mod 3) ¢®(¢> - 1) ¢®—q+1 | ¢ +q+1
%Ga(g) | ¢=3"+'>3 ¢*(¢*> - 1) g—V3q+1 | g+v3q+1
Fu(q) q even (¢ —1)%(¢* - 1)* | ¢* +1 ¢ —¢*+1
2Fa(q) | g=22m+1>2 (¢ - 1)@ +1) | - V283+ | ¢+ 285+
g—v2q+1 | g+2g+1
E(2) 263.311527311.13. | 73 127
17.19.31.43
E;(3) 223 363 52 73 112,132,
19.37.41.61.73.547 757 1093
My, 24.32 5 11
Mo 27.32.5.7 11 23
My, 2103357 11 23
Js 27.3%.5 17 19
HiS 29.32.53 7 11
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Table 2. (Continued)
P Restrictions on P | my my | mg3
Suz 213 37 52 7 11 |13
Cos 218 36 537 11 |23
Fig 2183135271113 |17 | 23
F; 215 310 53 72 13 19 | 31
F 241 313 56 7211.13. | 31 | 47
17.19.23

Table 3. The order components of finite simple groups P with s(P) > 3

P Restrictions my meo ms my ms | me
on P - -
Aa(4) 26 3 5 7 -] -
2By(q) | q=22"+1>2 | ¢ g—1 a—-v2q |q+V2q| - | -
+1 +1
2F6(2) 23639527211 | 13 17 19 -] -
Es(g) |g=23 7'0(¢*° — 1) ";ZZTEI q;‘;iziﬁl ¢ —q*
(mod 5) (¢®-1) +1
(-1
(@2-1) - | -
(¢ -1)
(8 —1)
(¢*+1)
(¢*+¢°+1)
My, 27.32 5 7 11 - -
Ji 23.3.5 7 11 19 - -
O'N 29 34573 11 19 31 - -
LyS 28.3750.7.11 | 31 37 67 - -
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Table 3. (Continued)

Fib, 221 316 52 73.11.13 17 23 29 - -
F 216,320 59 76112133, | 41 59 71 - -
17.19.23.29.31.47
Es(q) | 9=0,1,4 | ¢"%°(¢" —1)(¢" — 1) | L=it! [ LHadl T8 _gd [ 74
(mod5) | (¢'% —1)%(g'® —1)? +1 -
(® -1)%(¢" +4* +1)
A 221 33 5.7.113 23 29 31 37 43

In (15] and [16] it is proved that if n = 2™ > 4, then h(B,(q)) = h(Cr(q)) = 2
for ¢ odd and h(Bn(gq)) = h(Cr(q)) = 1 for q even. Apart from the families
Br(g) and Cyr(g), n = 2™ > 4, ¢ odd. The following groups have been proved to
be characterizable by their order components by various authors: All the sporadic
simple groups [2], PSL2(q), 2D, (3) where 9 < n = 2™ 41 is not a prime, 2Dpi1(2)
in [3], [4] and (18], respectively. Some projective special linear (unitary) groups
have been characterized in a series of articles in [10], [11], [12] and [13]. A few of
the alternating or symmetric groups are proved to be characterizable by their order
components in [1] and [14]. Based on these results we put forward the following
conjecture.

Conjecture 1 Let P be a non-abelian finite simple group with s(P) > 2. If G is
a finite group and OC(G) = OC(P), then either G = P or G = B,(q) or Crn(q)
where n = 2™ > 4 and q is an odd number or G = B,(3) or Cp(3) where p is an
odd prime number.

A motivation for characterizing finite groups by the set of their order compo-
nents is the following conjecture due to J. G. Thompson.

Conjecture 2 (Thompson) For a finite group G let N(G) = {n € N| G has a
conjugacy class of size n}. Let Z(G) = 1 and M be a non-abelian finite simple
group satisfying N(G) = N(M). Is it true that G = M?

In [5] it is proved that if s(M) > 3, then the above conjecture holds. Also
in [5] it is proved that if G and M are finite groups with s(M) > 2, Z(G) =
1, N(G) = N(M), then |G| = |M|, in particular s(M) = s(G) and OC(G) =
OC(M). Therefore if the simple group M is characterizable by the set of its order
components, then the Thompson’s conjecture holds for M.
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There is another conjecture due to W. Shi and J. Bi which states:

Conjecture 3 Let G be a group and M a finite simple group. Then G = M if
and only if

() |G| = |M| and .

(b) 7e(G) = me(M) where w.(G) denotes the set of orders of elements of G.

Clearly conditions (a) and (b) above imply OC(G) = OC(M). Therefore if the
group G is characterizable by its order components, then we will deduce G=2M
and conjecture 2 is true for M. According to the main theorem of this paper which
is stated below, conjectures 2 and 3 are true for the simple groups Lp41(2) where
p is a prime number.

In this paper we consider the projective spacial linear group PSL,41(2), p a
prime number, and prove that this group is characterizable by its order compo-
nents. Another names for this group are L,41(2) And Ap(2) in the Lie notation.
More precisely we will prove:.

Main Theorem If a finite group G has the same set of order components as
Lp41(2), then G 22 Lpy1(2).

2 Preliminary results

The structure of finite groups with disconnected Gruenberg-Kegel graph follows
from Theorem A of [19] which will be stated below:

Lemma 1 Let G be a finite group with s(G) > 2. Then one of the following holds:
(1) G is either a Frobenius or 2-Frobenius group.
(2) G has a normal series 1 Q H 9 K < G such that H is a nilpotent
T1—group, % is a non-abelian simple group, % is a w1 —group, |%| divides |Out(-§—)|

and any odd order component of G is equal to one of the odd order components of
K

-

To deal with the first case in the above Lemma we need the following results
which are taken from [6] and [2], respectively.

Lemma 2 (a) Let G be a Frobenius group of even order with kernel and comple-
ments K and H, respectively. Then s(G) =2 and the prime graph components of
G are w(H) and n(K).
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(b) Let G be a 2-Frobenius group of even order. Then 8(G) = 2 and G has
a normal series 1 < H A K < G such that |-f7| = mg, |H| |%| =m; and |%|
divides |§| ~1 and H is a nilpotent m,—group.

Lemma 3 Let G be a finite group with s(G) > 2. If H < G is a w;—group, then
(L5 o) | QA1 =1).

The following result of Zsigmondy [20] is important in some number theoretical
considerations.

Lemma 4 Let n and a be integers greater than 1. There erists a prime divisor p
of a™ —1 such that p does not divide a* —1 for all 1 < i < n, except in the following

cases.
(1)n=2,a=25—-1, where k > 2,
(2)n=6,a=2.

The prime p in Lemma 4 is called a Zsigmondy prime for a™ — 1.

Remark 1 If p is a Zsigmondy prime for a™ — 1, then p > n. Because if p < n,
thenn = kp+r, 0 < r < p, and we can write a® —1 = a"(a*? —a*) +a*+t7 — 1. Since
(p,a) = 1 we have a? = a(mod p), hence a*? = a*(modp), therefore p | ak+7 — 1.
By assumption about p we must have k+r > n which implies k > kp, hence k = O
Therefore n = r < p contradicting p < n.

Next we consider the linear group L,1(2) where p is a prime number. By [9]
and [17], for n € N we have

lifn#p, p+1

S(Ln(2))={ 2ifn=porp+1

where p > 3 is a prime number. Therefore if p > 3 is a prime number, L,1(2) has
two order components which can be seen from Table 1 to be: m; = (") (2Pt —
1) H:;( 2 —1) and mp = 2” — 1. The components of the graph GK (L,+1(2)) are

m = w(2(2P*! — I)H — 1)) and 72 = 7(27 — 1). By [11] the group L3(2)
is characterizable by its order components. Therefore throughout the rest of this

paper we assume p is an odd prime number.
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3 Proof of the main theorem

We assume G is a finite group with OC(G) = {m1, mz}, where m; and mq are
the order components of the group Lp1(2), and use Lemma 1. First we will prove

the following Lemma.

Lemma 5 If G is a finite group with OC(G) = {my,mz}, then G is neither a
Probenius nor a 2-Frobenius group.

Proof. First suppose in the contrary G is a Frobenius group with complement
H and kernel K. By Lemma 2 we have OC(G) = {|H|,|K]|}. Since |H| | |K| -1
we must have |H| < |K|, hence |K| = my = (p“)(2"+l - 1)H -1),
|H| = ma = 2P — 1. Since K is a nilpotent group, it is a direct product of its Sylow
subgroups. Therefore each Sylow subgroup of K is normal in G. If p = 5, then K
has a Sylow 5—subgroup of order 5, hence by Lemma 3 we have 5 = 1(mod mz) =
1(mod 31) a contradiction. Hence we assume p # 5. Let r be a Zsigmondy prime
for 27! — 1 which exists by Lemma 4. From the order of K we see that a Sylow
r—subgroup S of K has order a divisor of 27+ _ 1, hence by Lemma 3 we have
ma | |S| — 1. Therefore |S| — 1 = mak for some k € N. From r < 2P*! —1 and
the last equality we obtain k = 1 or 2. If k = 1, then r = 2” and if k = 2, then
r = 2P*1 _ 1 and both of them are not primes. This contradiction shows that G
can not be a Frobenius group.

Next assume that G is a 2-Frobenius group. By Lemma 2 (b) there is a normal
series 1 9 H 4 K < G for G such that H is a nilpotent 7;—group, |§| = mg
and ||| (|%|-1) =27 — 2 = 2(27~! — 1). Since p # 6, there is a Zsigmondy
prime r for 27 — 1. Therefore 7 { || from which it follows that r | |H]|. Since
the order of the Sylow r—subgroup of H is a divisor of 2? — 1 and H is nilpotent,
from the Lemma 3 we deduce ms | |S| — 1. But then |S| — 1 > mxy, hence |S| > 2P
contradicting |S| | 27 — 1. Finally G is not a 2—Frobenius group and the Lemma

is proved.

The following Lemma is useful in our further investigations. Note that for a
prime 7 and a positive integer n, n, denotes the r—part of n, i. e. n = mn, where
(m,r)=1.

-1 .
Lemma 6 Let r be a prime divisor of (2P™! — 1) l Ip ) (2* — 1). Then for any
1=
positive integer k with r* | |Ly41(2)| we have r* # +1(mod my).
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Proof. First we assume 7 = 3. In this case only 2° — 1 with i even is divisible
by 3. From 2% —1 = 4i—1 = (4—1)(4¢-! + -+4+1) we obtain (22’—1)3 | 3(%)3-
Therefore the 3—part of (27! — )]:[1p (28 — 1) divides ((L)')33 . But for
any n € N and any prime number ¢ we have (n!), | #1457, This is because if
t* <n <t**1, then (n!), = t* where k = [2]+[Z]+-- HE] < 2+E+ -+ 2 =

3 I;T- 7:((11::) = 2=1. Therefore ((2t!)!)3 divides 3!*7'). Hence the largest

posmve integer k for which 3% | |L,.1(2)| is et [”%1-] Now examination of
different positive integers ¢ < k reveals that the congruence r* = £1(mod ms)
does not hold with r = 3

Next assume 7 > 3. Let s be the least positive integer for which r | 28 — 1.
Wehave 3 < s <p—-1lors=p+1 Clearly if r | 2t — 1, then s | . If ¢ = ks,
k € N, then 2* —1 = 2ks — 1 = (25 — 1)(2°(k=1) 4 9s(k=2) 4 ... | 1). Therefore
(28 = 1) | (2° = 1)r(k)r = (2° — 1)(¢),. It follows that the largest power k of 7
such that r* is a divisor of (27+! —1) H:_l(2i 1) is at most k = [EH] 4 [;(;_%1]
But from s > 2 it follows that [2X!] — [E=) =0 or 1.

If (2] — [2=1) = 0, then k = (2] + Frisy) 1)] and since from r* | r "("—')](23

1),%, it follows that r* < my — 1, we cannot have r* = +1(modms). If [Btl] —
[2=1] = 1, then k = (2] + [;(r'%ll;] + 1. Suppose r* = %1 + Imy where I > 0.
Then r* = r r[’:_llﬂaff_-lﬂ] < rmg which implies Img + 1 < rmo, again we obtain

a contradiction.

By the Lemma 1 and 4, if G is a finite group with OC(G) = (Lp+1(2)),
then there is a normal series 1 < H < K < G for G such that is a non-abelian
simple group, H and & 7 are my—group and H is nilpotent. Moreover | K| divides
|Out( | and the odd order component of G is one of the odd order components
ofKands(H)>2 o

Since P = ﬁ is a non-abelian simple group with s(P) > 2, according to the
classification of finite simple groups we have one of the possibilities of Tables 1,2
or 3 for P. We distinguish several cases. :

Case 1 P = 243(2), 2F4(2), Ax(2), A2(4), 245(2), E+(2), E7(3), 2Es(2),
or one of the 26 sporadic simple groups listed in Tables 1,2 or 3. The odd order
component of G is mp = 2P — 1 and it must be one of the odd order components of
the groups listed above. But by Tables 1,2 and 3 we have the following possibilities
for P, m and the prime p. The order of outer automorphism group, Qut(P), of
P is taken from [7].
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Table 4
P my | P |Out(P)|
J2 7 3 2
A2(2) [3o0or7|20r3|2
245(2) | 7 3 3
E/(2) |1271 |7 1
Mo, 7 3 2
Ji 7 3 1
Js 31 5 1
HS 7 3 2
O'N 31 5 2
Ly 31 5 1
Fy 31 5 1
F; 31 5 1

Therefore we can set |%| =t where t = 1,2 or 3, from which it follows that
t|H| = ll%' But |G| = |Lp4+1(2)| and the orders of relevant P is given in [7]
and using Table 4 we can inspect those p for which |P| | |G| = |Lp+1(2)| and
find out that only A3(2) with p = 2 or 3 satisfies this condition. If p = 3, then
t|H| = 23.3.5 implying 5 | H. Since H is a nilpotent normal subgroup of G, its
Sylow 5—subgroup which is cyclic of order 5 must be normal in G and by Lemma
3 we deduce my = 7| 5 — 1 = 4, a contradiction. Therefore p = 2, which implies
G = P = L3(2). This is one of our conclusions with p = 2.

Case 2 P = A, and either n = p/, p’+ 1, p' + 2, one of n or n — 2 is not
prime; or n = p’, p’ — 2 are both prime, where p’ > 6 is a prime.

By Tables 1 and 2, the odd order components of A, are p’ and(or) p' — 2. If
p' —2 =27 —1, then p’ = 2P +1 is not a prime number. Hence 27 — 1 can only be
equal to the odd order component p'. In this case if we let ¢ = |Out(P)|, then we
obtain I_g_% = t|H|. Since p’ > 6, it is well-known that |Out(P)| = 2, hence t =1
or 2.

The largest power of 2 dividing p’ =2P —1is [%'] + [%I] +.--=2P—1, hence a
Sylow 2—subgroup of A, has order 22" 2. But it is easy to prove 27 —2 > plptl)
holds for all primes p > 3. Since Ay < A,, this implies that for p > 3 we have
|P|{|G|.f p =3, then p' =7 and t|H| = 8. If t = 2, then |H| = 4 and by the
Lemma 3, 7| |H| — 1 = 3, a contradiction. Therefore ¢t =1, |H| =8, and H is an
elementary abelian 2—group of order 8. In this case Cg(H) = H and hence % is
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isomorphic to a subgroup of Aut(H) = L3(2). But % = A7 is not a subgroup of

L3(2). This final contradiction proves that P & A,, cannot happen.

Case 3 P is a simple group with s(P) = 2.

In this case P can be any of the groups listed in Table 1, but we consider those
which are not covered in case 1 and 2.

(a) P = Fy(q) or 3Da(q)

In this case we have mp = g —¢? + 1 = 2P — 1. Therefore P?@-1)=2r-2=
22771 —1). If g is odd, then g2 — 1 is a multiple of 8 and the equality does not
hold with any value of p. If g is even, then ¢? is a multiple of 4 and the equality
fails. Therefore P 2 Fy(q) or 3Dy(q) are ruled out.

(b) P = Ga(q), 2 < ¢ = €(mod 3), e = +1.

By Table 1 we have g>—eg+1 = 271 and |G2(g)| = ¢°(¢°—1)(¢%—1). It is easy
to check that for the special case p < 7 we get a contradiction with regard to the
divisibility [P| | |G|. Therefore we assume p > 7. Now calculation shows that (g2 —
€g9)* | |G|, hence from | P| | |G| we obtain 2P~1—1 | (2P+1—1)(2P 1) H::lz(Zi—l).
Let 7 be a Zsigmondy prime for 2°~! — 1. Then r | (2P*! —1)(2” — 1) from which
it follows r | 27*1 —1 or r | 2% — 1. Since we also have r | 2°~! — 1, a contradiction
is derived in this case.

(c) P = Eg(q) or 2Eg(q).

By Table 1 we have 9(63%"7:;%)1 = my, from which it follows that ¢° + 1 =
0(modmg). If ¢ is odd, then by Lemma 6 the above congruence equation has
no solutions. Suppose ¢ is even. From the above equality we obtain ¢3(¢® + 1) =
2(27~! — 1) or 4(3 x 2P~2 — 1) according to (3,¢ F1) =1 or 3, respectively which
cannot happen because ¢ is a power of 2.

(d) P 2D,(3), n = 2™ 41 > 9 not a prime number.

In this case the odd order component is 3"%1 = 27 —1 implying 37~1 —2P+! =
—3, a contradiction.

(e) P2 2Dy (3),p' #2™ 41, p' > 5 is a prime number.

In this case we have &;ﬂ = 2P — 1 implying 3* + 1 = 4ms. Since 3 is an odd
m1—prime, by the Lemma 6 we obtain a contradiction.

(f) P2 2Dy(2), n = 2™ +1 > 5. We must have 27~! + 1 = 27 — 1 implying
27~1 = 2(2P~! — 1), a contradiction.

(8) P =2D,(q), n = 2™ > 4. In this case (—;‘;‘_""_—11) =27 — 1, hence ¢" = 2P or
g™ = 2P*! — 3 according to (2,q +1) =1 or 2, respectively. If (2,q + 1) = 2, then
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q is an odd prime power and by the Lemma 6 we get a contradiction with respect
tog"+1=2m. Ifg" =27, theng=2and p=n=2" 2> 4, a contradiction.

(h) P = Dyya(q), ¢ = 2,3; Dp(9), P 2 5, ¢ = 2,3; Cp(9), = 2,3; Ca(0),
n=2™ >2; B,y(3) or Bp(g), n=2" >4, q odd.

In all of these cases repeated use of tie Lemma 6 yields contradictions and we
do not present the details here.

() P2 2A4p(g), g +1|P' +1, (#,9) # (3,3),(5,2).

In this case we have aq-t-—l =2°P — 1 If ¢ is odd, then we get a contradiction by
the Lemma 6. If g is even, then g? ~! — gP ‘=2 4 ... — g =2(2P"! —1). Therefore
97’ = 3.97 — 4 = 4(3.2P~2 — 1), a contradiction because p' > 3.

(3) P2 2Ay_1(g) or Ay-1(9); (7' 9) # (3,2), (3, 4).

In this case we have mg = (q+1)(:,11+1) or (q_l)p(p }1 1y respectively for 24, _1(q)

or A,,'_l(q): In the following we investigate the case ma = @Tﬁ?fﬁﬁ- The case
¥ 1

mg = mﬁ can be handled similarly. The cases p’ = 3 and 5 can be veri-
fied separately to lead to contradiction. Therefore we assume p’ > 5 and in which
follows Zsigmondy primes exist for the numbers that we dealing with.
If q is odd, then by the Lemma 6, from ¢* +1 = 0(mod ms) a contradiction is
obtained. Therefore we assume q = 2/, f > 1.If (p’,g+1) = 1, then g l—g? 24
.« —g+1=27—1 from which we obtain g2 4. —g=2(2""1 -1).
Hence ¢ = 2 and consequently 27" = 4(3 x 27~2 — 1), a contradiction because
p’ > 3. Therefore we assume (p’,q + 1) = p/, hence p’ | ¢ + 1 and since ¢ = 2/, we
can write

2P 41=(27 +1)p'(2P -1) (1)

Now let 7 be a Zsigmondy prime for 22/ P — 1. Hence 7 | 2/7" 4 1, and conse-
quently by (1) 7 | 2° — 1 because 7 { g+ 1 and r { p’. Since r is assumed to be a
Zsigmondy prime for 227 — 1, we obtain p > 2fp’ > f.

Next we consider the order of P & 24,,_,(g). We have |P| = mzquaz;l‘ H _1 q -
(—1)?) where g = 2/. Let { be a Zsigmondy prime for q2(” -2 1= 22”” -2 - 1
Since L | g”~2 +1 | |P|, from |P] | |G| we obtain I | 2("3") H —1). Hence
1|29 —1 for some j < p+1. We deduce that j > 2f(p’—2), hence p+1 >2f(p'—2).

Now we set | ,G{I = t which must be a divisor of |Out(P)| = 2(p',q¢+1)f = 2p'f.
From X = P we obtain ¢|H||P| = |G|, hence using (1) we obtain the following
1dent1ty.
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tH O - ) =2 ) [T e -y @)
Note that in (2) we have g = 2/, a power of 2.

Finally assume’k is a Zsigmondy prime for 2°P*1 — 1. Then from (2) it follows
that k | ¢|HI[]" (¢ — (<1)"). It k | ¢, then k | £, hence k < f. But k is
a Zsigmondy prime for 2°*! — 1 and by the Remark 1, k > p+1 > p > f,
contradicting k < f. If k | ¢’ =9 —1 = 2f®'~3) _ 1, for some 1 < j < p’ — 1, then
f(p'—3) Z p+1andsince f(p' —1) > f(»' - j) > p+1 we obtain p+1 < f(p'—1)
contradicting p + 1 > 2f(p’ — 2) which was obtained earlier. Therefore k | |H|.
But in this case a Sylow k—subgroup of H has order k and from the Lemma 3 it
follows that my = 2P — 1 | k — 1 from which we get a contradiction with respect
to k | 2P+! — 1. This final contradiction rules out the possibility of P 2 2A4,_;(g).
The case P = A, _1(q) is treated similarly.

(k) P= Ap(q), ¢ — 1| p+ 1. In this case we have 9% =2P—-1.1f ¢ is odd
then by the Lemma 5 we obtain a contradiction. We assume ¢ is even and write
14”24 ... 4 q=2(2P"! — 1) from which it follows g = 2 and p' = p. But
This will imply P = A,(2) = Lp+1(2), hence |H| =1 and G = K ~ L,4,(2). This
is what we aim to prove.

Up to present all simple groups P with s(P) = 2 have been considered. Next
we consider simple groups P with s(P) = 3 tabulated in Table 2.

Case 4 P is a simple group with s(P) = 3. Since in case 2 we considered the
alternating group A, with both p’ and p’ — 2 prime numbers, hence we start with
the next group in Table 2.

(a) P = Ai(g), 3 < ¢ = ¢(mod4), ¢ = +1. The odd order components are g
and "—;’—e.

First we assume q = 2P — 1. If ¢ = r™ is a power of a prime 7, then 2P —r™ =1
and by [8] there is no solution for this equation with m > 1. Hence m = 1 and
g = 2° —1 is a prime number. Therefore |Out(P)| =2 and |&| =t, where ¢ =1 or
2. From £ = P> A,(q) and | €| = t we obtain ¢ |H| = 2P(P~1)/2(2p+1 _1)(2P-2 —
1)---(22 —1). Clearly p > 3. Assume p # 5 and let p’ be a Zsigmondy prime for
2P+1_1. Then p’ | |H| and a Sylow p’—subgroup of H has order p’. By the Lemma
3, mg=27—1|p —1. Hence p’ —1 = u(2P — 1), and since p' < 2P+! — 1, we
obtain p’ — 1 < 2(2P — 1) implying u = 1 or 2, and in both cases a contradiction
with the assumption on p’ is obtained. If p = 5, then ¢ |H| = 219.34.5.72 and a
similar argument with a Sylow 5—subgroup of H results a contradiction.
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Next we assume 5%5 =97 _1.Ife = —1, then ¢ = 2°t! — 1 = 3/, because
op+1 _ 1 is divisible by 3. But by [8] there is no solution to 2P*! — 3/ = 1.
Therefore we assume € = 1. Hence ¢ = 271! — 3 = 7/, power of a prime r. Clearly
f < p+1. It is well-known that |Out(P)| = 2f, hence |G| = t|H| |P|, where t | 2.
Substituting for |G| and |P| we obtain 2t [H|(2PT! — 3)(2P~! — 1)(2P*! — 5) =
2(’3") H:lel (2i—1). Assume p # 5 and let p’ be a Zsigmondy prime for 2°+! —1. We
have p’ | 2t |H| (2P+!—3)(2P~!—1)(2P*! —5). Then by the Remark 1, p’ > p+1 > f,
so p' { t because p’ is odd. Since 27! —3 and 2P+! —5 are prime to 2P*! —1 hence
' | |H|. Therefore the order of a Sylow p'—subgroup of H is a divisor of 2P*! —1
and since H is a nilpotent normal subgroup of G, we deduce by the Lemma 3 that
mg = 2Pt — 1 < |S| — 1, a contradiction.

(b) P = Ay(q), ¢ > 2, q even.

In this case the odd order components are g—1 and g+1. Therefore g1 = 27 -1
and similar to (a) above, we reach a contradiction.

(c) P=2D,(3),p' =2™+1 > 5. In this case we have u;l or &;ﬂ =2P-1
implying 37 ! + 1 = 0(mod m2) or 37 + 1 = 0(mod m2), which are impossible by
the Lemma 6.

(d) P2 2Dy 41(2), p' = 2" — 1, n > 2. In this case we have 27+ +1 =27 — 1
implying 27 +! = 2(2P—1 —1), a contradiction. If 27 +1 = 2P —1, then 2P +2 = 2P
which is obviously impossible.

(€) P = Ga(9), 3 | ¢; 2Ga(g), g = 3*™*! > 3; Fu(q), ¢ even, *Fu(q), ¢ =
22m+1 5 2 TIn all of these cases equating my with one of the odd order components
of the group concerned results a contradiction in an easy step.

Case 5 In this last case we consider simple groups P with s(P) > 4. According
to Table 3 there remain only the groups 2Bs(g), ¢ = 22™+! > 2; and Es(q) to be
considered.

First suppose P 2 2B,(q), ¢ = 22™*! > 2. The odd order components are
g—1, g—v2q+1and g++/2g+1. If g+ /2 +1 = 2P — 1, then 22m+1 £ 2m+1 =
2(2P~! — 1) which is a contradiction because m > 0. If g—1 = 27 — 1, then ¢ = 27,
hence |2B5(g)| = 2%P(2P — 1)(2% + 1) and we must have 22P(2P — 1)(2% + 1) |
|Lp+1(2)| - If p' be a Zsigmondy prime for 247 — 1, then p’ > 4p and p' | 2%P + 1,
then p’ | |Lp4+1(2)], a contradiction.

Next let P 2 Eg(q). According to Table 3 if we equate the odd order component
of P with ms we obtain equations of the form ¢* + 1 = 0(mod my) where k =
10,12,15, which is a contradiction by the Lemma 6 if ¢ is odd. Therefore we
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assume ¢ is even. By the Table 3 all the odd order components of P are of the
form ¢f(q) + 1, where f(g) is a polynomial in q. If ¢f(g) + 1 = 2P — 1, then we
must have ¢ = 2 and examination of each case results a contradiction.

Since we have considered all the cases for the simple group P, by case 1 and
case 3 (k) we deduce that G = L,;1(2) and the main theorem is proved.
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