A quantitative characterization of the linear group $L_{p+1}(2)$ where p is a prime number

To the memory of Walter Feit

Mohammad R. Darafsheh and A. Mahmiani

(Received July 21, 2006) (Accepted August 25, 2006)

Abstract. Let G be a finite group. Regarding the Gruenberg-Kegel graph or the prime graph of G, denoted by GK(G), the primes dividing the order of G are divided into the sets $\pi_1, \pi_2, ..., \pi_{s(G)}$, where s(G) is the number of components of GK(G). Therefore the order of G is divided into a product of co-prime positive integers $m_1, m_2, ..., m_{s(G)}$, where m_i is the product of primes in π_i . These integers are called order components of G and $OC(G) = \{m_1, m_2, ..., m_{s(G)}\}$ is called the set of order components of G. In this paper we will prove that the linear group $L_{p+1}(2)$, where p is a prime number, is characterized by its set of order components. More precisely we will prove that if G is a finite group, then $OC(G) = OC(L_{p+1}(2))$ if and only if $G \cong L_{p+1}(2)$.

1 Introduction

For a positive integer n, let $\pi(n)$ be the set of all prime divisors of n. If G is a finite group, we set $\pi(G) = \pi(|G|)$. The Gruenberg-Kegel graph of G, or the prime graph of G, is denoted by GK(G) and is defined as follows. The vertex set of GK(G) is the set $\pi(G)$ and two distinct primes p and q are joined by an edge if and only if G contains an element of order pq. We denote the connected components of GK(G) by π_1 , π_2 , ..., $\pi_{s(G)}$, where s(G) denotes the number of

Mathematical Subject Classification (2000): 20D06, 20D60.

Key words: Prime graph, order component, linear group.

connected components of GK(G). If the order of G is even, the notation is chosen so that $2 \in \pi_1$. It is clear that the order of G can be expressed as the product of the numbers $m_1, m_2, ..., m_{s(G)}$, where $\pi(m_i) = \pi_i, 1 \le i \le s(G)$. If the order of G is even and $s(G) \ge 2$, according to our notation $m_2, ..., m_s(G)$ are odd. The positive integers $m_1, m_2, ..., m_{s(G)}$ are called the order components of G and $OC(G) = \{m_1, m_2, ..., m_{s(G)}\}$ is called the set of order components of G. It is a natural question to ask: If the finite groups G and G have the same order components does it follow G is isomorphic to G? For many simple groups G with the number of order components G at least G, the answer to the above question is affirmative. However if G and G are G and G are components but they are not isomorphic. Hence it is natural to adopt the following definition.

Definition 1 Let G be a finite group. The number of non-isomorphic finite groups with the same order components as G is denoted by h(G) and is called the h-function of G. For any natural number k we say the finite group G is k-recognizable by its set of order components if h(G) = k. If h(G) = 1 we say that G is characterizable by its set of order components or briefly G is a characterizable group. In this case G is uniquely determined by the set of its order components.

Obviously for any finite groups G we have $h(G) \geq 1$. The components of the Gruenberg-Kegel graph GK(P) of any non-abelian finite simple group P with GK(P) disconnected are found in [17] from which we can deduce the component orders of P. These information which will be used in proving our main result are listed in Tables 1, 2 and 3.

Table 1. The order components of finite simple groups P with s(P) = 2

P	Restrictions on P	hite simple groups P with $s(P) = \frac{1}{2}$	
		m_1	m_2
\mathbb{A}_n	6 < n = p, p + 1, p + 2;	$\frac{n!}{2p}$	p
	one of $n, n-2$ is not		
	a prime		
$A_{p-1}(q)$	$(p,q) \neq (3,2), (3,4)$	$q^{\binom{p}{2}} \prod_{i=1}^{p-1} (q^i - 1)$	$\frac{(q^p-1)}{(q-1)(p,q-1)}$
$A_p(q)$	$(q-1)\mid (p+1)$	$q^{\binom{p+1}{2}}(q^{p+1}-1)\prod_{i=2}^{p-1}(q^i-1)$	$\frac{(q^p-1)}{(q-1)}$
$^2A_{p-1}(q)$		$q^{\binom{p}{2}} \prod_{i=1}^{p-1} (q^i - (-1)^i)$	$\frac{(q^p+1)}{(q+1)(p,q+1)}$
$^2A_p(q)$	$(q+1)\mid (p+1),$	$q^{\binom{p+1}{2}}(q^{p+1}-1)$	$\frac{(q^p+1)}{(q+1)}$
	$(p,q) \neq (3,3), (5,2)$	$\prod_{i=1}^{p-1} (q^i - (-1)^i)$	
$^{2}A_{3}(2)$		$2^6.3^4$	5
$B_n(q)$	$n=2^m\geq 4,\ q \text{ odd}$	$q^{n^2}(q^n-1)\prod_{i=1}^{n-1}(q^{2i-1})$	$\frac{(q^n+1)}{2}$
$B_p(3)$		$\frac{q^{n^{2}}(q^{n}-1)\prod_{i=1}^{n-1}(q^{2i-1})}{3^{p^{2}}(3^{p}+1)\prod_{i=1}^{p-1}(3^{2i-1})}$	$\frac{(3^p-1)}{2}$
$C_n(q)$	$n=2^m\geq 2$	$q^{n^2}(q^n-1)\prod_{i=1}^{n-1}(q^{2i-1})$	$\frac{(q^n+1)}{(2,q-1)}$
$C_p(q)$	q = 2, 3	$q^{p^{2}}(q^{p}+1)\prod_{i=1}^{j-1}(q^{2i-1})$	$\frac{(q^p-1)}{(2,q-1)}$
$D_p(q)$	$p\geq 5, \ q=2,3,5$	$q^{p(p-1)} \prod_{i=1}^{p-1} (q^{2i-1})$	$\frac{(q^p-1)}{(q-1)}$
		$(q^5-1)(q^3-1)(q^2-1)$	
$D_{p+1}(q)$	q = 2, 3	$\frac{1}{(2,q-1)}q^{p(p+1)}(q^p+1)$	$\frac{(q^p-1)}{(2,q-1)}$
		$(q^{p+1}-1)\prod_{i=1}^{p-1}(q^{2i}-1)$	
$^2D_n(q)$	$n=2^m \ge 4$	$q^{n(n-1)} \prod_{i=1}^{n-1} (q^{2i} - 1)$	$\frac{(q^n+1)}{(2,q+1)}$
$^{2}D_{n}(2)$	$n=2^m+1\geq 5$	$2^{n(n-1)}(2^n+1)(2^{n-1}-1)$	$2^{n-1} + 1$
		$\prod_{i=1}^{n-2} (2^{2i} - 1)$	

Table 1. (Continued)

rable r. (Continued)		
$^{2}D_{p}(3)$	$5 \le p \ne 2^m + 1$	$3^{p(p-1)} \prod_{i=1}^{p-1} (3^{2i} - 1)$	$\frac{(3^p+1)}{4}$
$^{2}D_{n}(3)$	$9 \le n = 2^m + 1 \ne p$	$\frac{1}{2}3^{n(n-1)}(3^n+1)(3^{n-1}-1)$	$\frac{(3^{n-1}+1)}{2}$
		$\prod_{i=1}^{n-2} (3^{2i} - 1)$	
$G_2(q)$	$2 < q \equiv \epsilon \pmod{3}, \ \epsilon = \pm 1$	$q^6(q^3-\epsilon)(q^2-1)(q+\epsilon)$	$q^2 - \epsilon q + 1$
$^3D_4(q)$		$q^{12}(q^6-1)(q^2-1)$	$q^4 - q^2 + 1$
! 		(q^4+q^2+1)	
$F_4(q)$	q odd	$q^{24}(q^8-1)(q^6-1)^2$	$q^4 - q^2 + 1$
		(q^4-1)	
$^{2}F_{4}(2)'$		$2^{11}.3^3.5^2$	13
$E_6(q)$		$q^{36}(q^{12}-1)(q^8-1)(q^6-1)$	$\frac{(q^6+q^3+1)}{(3,q-1)}$
		$(q^5-1)(q^3-1)(q^2-1)$	
$^{2}E_{6}(q)$	q > 2	$q^{36}(q^{12}-1)(q^8-1)(q^6-1)$	$\frac{(q^6-q^3+1)}{(3,q+1)}$
		$(q^5+1)(q^3+1)(q^2-1)$	
M_{12}		$2^6.3^3.5$	11
J_2		$2^7.3^3.5^2$	7
Ru		2 ¹⁴ .3 ³ .5 ³ .7.13	29
He		$2^{10}.3^3.5^2.7^3$	17
McL		$2^7.3^6.5^3.7$	11
Co_1		$2^{21}.3^{9}.5^{4}.7^{2}.11.13$	23
Co_3		2 ¹⁰ .3 ⁷ .5 ³ .7.11	23
Fi_{22}		2 ¹⁷ .3 ⁹ .5 ² .7.11	13
HN		2 ¹⁴ .3 ⁶ .5 ⁶ .7.11	19

Table 2. The order components of finite simple groups P with s(P) = 3 (p an odd prime)

\overline{P}	Restrictions on P	m_1	me	T m-
A_n	$n > 6, \ n = p, \ p - 2$		m_2	m_3
1 n		$\frac{n!}{2n(n-2)}$	<i>p</i>	p-2
	are primes			
$A_1(q)$	$3 < q \equiv \epsilon \pmod{4},$	$q-\epsilon$	q	$\frac{(q+\epsilon)}{2}$
	$\epsilon = \pm 1$			
$A_1(q)$	q>2, q even	q	q-1	q+1
$A_{2}(2)$		8	3	7
$^{2}A_{5}(2)$		$2^{15}.3^{6}.5$	7	11
$^{2}D_{p}(3)$	$p = 2^m + 1 \ge 5$	$2.3^{p(p-1)}(3^{p-1}-1)$	$\frac{(3^{p-1}+1)}{2}$	$\frac{(3^p+1)}{4}$
		$\prod_{i=1}^{p-2} (3^{2i} - 1)$	2	1
$^{2}D_{p+1}(2)$	$p=2^n-1,\ n\geq 2$	$2^{p(p+1)}(2^p-1)$		
		$\prod_{i=1}^{p-1} (2^{2i} - 1)$	$2^{p} + 1$	$2^{p+1}+1$
$G_2(q)$	$q \equiv 0 \pmod{3}$	$q^6(q^2-1)^3$	$q^2 - q + 1$	$q^2 + q + 1$
$^2G_2(q)$	$q = 3^{2m+1} > 3$	$q^3(q^2-1)$	$q-\sqrt{3}q+1$	$q + \sqrt{3}q + 1$
$F_4(q)$	q even	$q^{24}(q^6-1)^2(q^4-1)^2$	$q^4 + 1$	$q^4 - q^2 + 1$
$^2F_4(q)$	$q=2^{2m+1}>2$	$q^{12}(q^4-1)(q^3+1)$	$q^2 - \sqrt{2q^3} +$	$q^2 + \sqrt{2q^3} +$
			$q-\sqrt{2q}+1$	$q+\sqrt{2q}+1$
$E_{7}(2)$		$2^{63}.3^{11}.5^{2}.7^{3}.11.13.$	73	127
		17.19.31.43		
$E_{7}(3)$		$2^{23}.3^{63}.5^{2}.7^{3}.11^{2}.13^{2}.$		
		19.37.41.61.73.547	757	1093
M_{11}		$2^4.3^2$	5	11
M_{23}		2 ⁷ .3 ² .5.7	11	23
M_{24}		210.33.5.7	11	23
J_3		$2^7.3^5.5$	17	19
HiS		$2^9.3^2.5^3$	7	11

Table 2. (Continued)

P	Restrictions on P	m_1	m_2	m_3
Suz		$2^{13}.3^{7}.5^{2}.7$	11	13
Co_2		$2^{18}.3^{6}.5^{3}.7$	11	23
Fi_{23}		$2^{18}.3^{13}.5^{2}.7.11.13$	17	23
F_3		$2^{15}.3^{10}.5^3.7^2.13$	19	31
F_2		$2^{41}.3^{13}.5^{6}.7^{2}.11.13.$	31	47
		17.19.23		

Table 3. The order components of finite simple groups P with s(P) > 3

P	Restrictions	m_1	m_2	m_3	m_4	m_5	m_6
	on P			·		-	-
$A_{2}(4)$		26	3	5	7	-	-
$^{2}B_{2}(q)$	$q=2^{2m+1}>2$	q^2	q-1	$q-\sqrt{2q}$	$q + \sqrt{2q}$	-	-
				+1	+1		
$^{2}E_{6}(2)$		$2^{36}.3^{9}.5^{2}.7^{2}.11$	13	17	19	_	-
$E_8(q)$	$q\equiv 2,3$	$q^{120}(q^{20}-1)$	$\frac{q^{10}-q^5+1}{q^2-q+1}$	$\frac{q^{10} + q^5 + 1}{q^2 + q + 1}$	q^8-q^4		
	(mod 5)	$(q^{18}-1)$			+1		
		$(q^{14}-1)$					
		$(q^{12}-1)$				-	-
		$(q^{10}-1)$					
		(q^8-1)				l	
		$(q^4 + 1)$					
		(q^4+q^2+1)					
M_{22}		$2^7.3^2$	5	7	11	-	- '
J_1		2 ³ .3.5	7	11	19	-	-
O'N		$2^9.3^4.5.7^3$	11	19	31	-	-
LyS		2 ⁸ .3 ⁷ .5 ⁶ .7.11	31	37	67	-	-

Fi_{24}'		$2^{21}.3^{16}.5^{2}.7^{3}.11.13$	17	23	29	-	-
F_1		$2^{46}.3^{20}.5^{9}.7^{6}.11^{2}.13^{3}.$	41	59	71	-	-
		17.19.23.29.31.47					
$E_8(q)$	$q\equiv 0,1,4$	$q^{120}(q^{18}-1)(q^{14}-1)$	$\frac{q^{10}-q^5+1}{q^2-q+1}$	$\frac{q^{10}+q^5+1}{q^2+q+1}$	q^8-q^4	$\frac{q^{10}+1}{q^2+1}$	
	(mod 5)	$(q^{12}-1)^2(q^{10}-1)^2$	•		+1	3 ,-	-
		$(q^8-1)^2(q^4+q^2+1)$				'	
J_4		$2^{21}.3^3.5.7.11^3$	23	29	31	37	43

Table 3. (Continued)

In [15] and [16] it is proved that if $n=2^m \geq 4$, then $h(B_n(q))=h(C_n(q))=2$ for q odd and $h(B_n(q))=h(C_n(q))=1$ for q even. Apart from the families $B_n(q)$ and $C_n(q)$, $n=2^m \geq 4$, q odd. The following groups have been proved to be characterizable by their order components by various authors: All the sporadic simple groups [2], $PSL_2(q)$, $^2D_n(3)$ where $9 \leq n=2^m+1$ is not a prime, $^2D_{p+1}(2)$ in [3], [4] and [18], respectively. Some projective special linear (unitary) groups have been characterized in a series of articles in [10], [11], [12] and [13]. A few of the alternating or symmetric groups are proved to be characterizable by their order components in [1] and [14]. Based on these results we put forward the following conjecture.

Conjecture 1 Let P be a non-abelian finite simple group with $s(P) \geq 2$. If G is a finite group and OC(G) = OC(P), then either $G \cong P$ or $G \cong B_n(q)$ or $C_n(q)$ where $n = 2^m \geq 4$ and q is an odd number or $G \cong B_p(3)$ or $C_p(3)$ where p is an odd prime number.

A motivation for characterizing finite groups by the set of their order components is the following conjecture due to J. G. Thompson.

Conjecture 2 (Thompson) For a finite group G let $N(G) = \{n \in \mathbb{N} \mid G \text{ has a conjugacy class of size } n\}$. Let Z(G) = 1 and M be a non-abelian finite simple group satisfying N(G) = N(M). Is it true that $G \cong M$?

In [5] it is proved that if $s(M) \geq 3$, then the above conjecture holds. Also in [5] it is proved that if G and M are finite groups with $s(M) \geq 2$, Z(G) = 1, N(G) = N(M), then |G| = |M|, in particular s(M) = s(G) and OC(G) = OC(M). Therefore if the simple group M is characterizable by the set of its order components, then the Thompson's conjecture holds for M.

There is another conjecture due to W. Shi and J. Bi which states:

Conjecture 3 Let G be a group and M a finite simple group. Then $G \cong M$ if and only if

- (a) |G| = |M| and
- (b) $\pi_e(G) = \pi_e(M)$ where $\pi_e(G)$ denotes the set of orders of elements of G.

Clearly conditions (a) and (b) above imply OC(G) = OC(M). Therefore if the group G is characterizable by its order components, then we will deduce $G \cong M$ and conjecture 2 is true for M. According to the main theorem of this paper which is stated below, conjectures 2 and 3 are true for the simple groups $L_{p+1}(2)$ where p is a prime number.

In this paper we consider the projective spacial linear group $PSL_{p+1}(2)$, p a prime number, and prove that this group is characterizable by its order components. Another names for this group are $L_{p+1}(2)$ And $A_p(2)$ in the Lie notation. More precisely we will prove:

Main Theorem If a finite group G has the same set of order components as $L_{p+1}(2)$, then $G \cong L_{p+1}(2)$.

2 Preliminary results

The structure of finite groups with disconnected Gruenberg-Kegel graph follows from Theorem A of [19] which will be stated below:

Lemma 1 Let G be a finite group with $s(G) \geq 2$. Then one of the following holds:

- (1) G is either a Frobenius or 2-Frobenius group.
- (2) G has a normal series $1 ext{ } ext{ }$

To deal with the first case in the above Lemma we need the following results which are taken from [6] and [2], respectively.

Lemma 2 (a) Let G be a Frobenius group of even order with kernel and complements K and H, respectively. Then s(G) = 2 and the prime graph components of G are $\pi(H)$ and $\pi(K)$.

(b) Let G be a 2-Frobenius group of even order. Then s(G) = 2 and G has a normal series $1 \le H \le K \le G$ such that $\left| \frac{K}{H} \right| = m_2$, $|H| \left| \frac{G}{K} \right| = m_1$ and $\left| \frac{G}{K} \right|$ divides $\left| \frac{K}{H} \right| - 1$ and H is a nilpotent π_1 -group.

Lemma 3 Let G be a finite group with $s(G) \geq 2$. If $H \subseteq G$ is a π_i -group, then $(\prod_{j=1, j\neq i}^{s(G)} m_j) \mid (|H|-1)$.

The following result of Zsigmondy [20] is important in some number theoretical considerations.

Lemma 4 Let n and a be integers greater than 1. There exists a prime divisor p of $a^n - 1$ such that p does not divide $a^i - 1$ for all $1 \le i < n$, except in the following cases.

(1)
$$n=2$$
, $a=2^k-1$, where $k \geq 2$,

(2)
$$n=6$$
, $a=2$.

The prime p in Lemma 4 is called a Zsigmondy prime for $a^n - 1$.

Remark 1 If p is a Zsigmondy prime for $a^n - 1$, then p > n. Because if $p \le n$, then n = kp + r, $0 \le r < p$, and we can write $a^n - 1 = a^r(a^{kp} - a^k) + a^{k+r} - 1$. Since (p,a) = 1 we have $a^p \equiv a \pmod{p}$, hence $a^{kp} \equiv a^k \pmod{p}$, therefore $p \mid a^{k+r} - 1$. By assumption about p we must have $k + r \ge n$ which implies $k \ge kp$, hence k = 0. Therefore n = r < p contradicting $p \le n$.

Next we consider the linear group $L_{p+1}(2)$ where p is a prime number. By [9] and [17], for $n \in \mathbb{N}$ we have

$$s(L_n(2)) = \left\{ egin{array}{l} 1 ext{ if } n
eq p, \ p+1 \ 2 ext{ if } n = p ext{ or } p+1 \end{array}
ight.$$

where $p \geq 3$ is a prime number. Therefore if $p \geq 3$ is a prime number, $L_{p+1}(2)$ has two order components which can be seen from Table 1 to be: $m_1 = 2^{\binom{p+1}{2}}(2^{p+1} - 1) \prod_{i=2}^{p-1} (2^i - 1)$ and $m_2 = 2^p - 1$. The components of the graph $GK(L_{p+1}(2))$ are $\pi_1 = \pi(2(2^{p+1} - 1) \prod_{i=2}^{p-1} (2^i - 1))$ and $\pi_2 = \pi(2^p - 1)$. By [11] the group $L_3(2)$ is characterizable by its order components. Therefore throughout the rest of this paper we assume p is an odd prime number.

3 Proof of the main theorem

We assume G is a finite group with $OC(G) = \{m_1, m_2\}$, where m_1 and m_2 are the order components of the group $L_{p+1}(2)$, and use Lemma 1. First we will prove the following Lemma.

Lemma 5 If G is a finite group with $OC(G) = \{m_1, m_2\}$, then G is neither a Frobenius nor a 2-Frobenius group.

Proof. First suppose in the contrary G is a Frobenius group with complement H and kernel K. By Lemma 2 we have $OC(G) = \{|H|, |K|\}$. Since $|H| \mid |K| - 1$ we must have |H| < |K|, hence $|K| = m_1 = 2^{\binom{p+1}{2}}(2^{p+1} - 1)\prod_{i=2}^{p-1}(2^i - 1)$, $|H| = m_2 = 2^p - 1$. Since K is a nilpotent group, it is a direct product of its Sylow subgroups. Therefore each Sylow subgroup of K is normal in G. If F = 1, then F = 1 has a Sylow 5-subgroup of order 5, hence by Lemma 3 we have $F = 1 \pmod{m_2} = 1 \pmod{31}$ a contradiction. Hence we assume $F = 1 \pmod{31}$ and $F = 1 \pmod{31}$ which exists by Lemma 4. From the order of $F = 1 \pmod{31}$ we have $F = 1 \pmod{31}$ and $F = 1 \pmod{31}$ and F =

Next assume that G is a 2-Frobenius group. By Lemma 2 (b) there is a normal series $1 ext{ } ext{$

The following Lemma is useful in our further investigations. Note that for a prime r and a positive integer n, n_r denotes the r-part of n, i. e. $n = mn_r$ where (m,r) = 1.

Lemma 6 Let r be a prime divisor of $(2^{p+1}-1)\prod_{i=1}^{p-1}(2^i-1)$. Then for any positive integer k with $r^k \mid |L_{p+1}(2)|$ we have $r^k \not\equiv \pm 1 \pmod{m_2}$.

Proof. First we assume r=3. In this case only 2^i-1 with i even is divisible by 3. From $2^{2i}-1=4^i-1=(4-1)(4^{i-1}+\cdots+4+1)$ we obtain $(2^{2i}-1)_3\mid 3(i)_3$. Therefore the 3-part of $(2^{p+1}-1)\prod_{i=1}^{p-1}(2^i-1)$ divides $((\frac{p+1}{2})!)_33^{\frac{p+1}{2}}$. But for any $n\in\mathbb{N}$ and any prime number t we have $(n!)_t\mid t^{\left\lfloor\frac{n-1}{t-1}\right\rfloor}$. This is because if $t^u\leq n< t^{u+1}$, then $(n!)_t=t^k$ where $k=\left\lfloor\frac{n}{t}\right\rfloor+\left\lfloor\frac{n}{t^2}\right\rfloor+\cdots+\left\lfloor\frac{n}{t^u}\right\rfloor\leq \frac{n}{t}+\frac{n}{t^2}+\cdots+\frac{n}{t^u}=\frac{n}{t}\frac{1-\frac{u}{t}}{1-\frac{1}{t}}\leq \frac{n(1-\frac{1}{n})}{t(1-\frac{1}{t})}=\frac{n-1}{t-1}$. Therefore $((\frac{p+1}{2})!)_3$ divides $3^{\left\lfloor\frac{p-1}{4}\right\rfloor}$. Hence the largest positive integer k for which $3^k\mid |L_{p+1}(2)|$ is $\frac{p+1}{2}+\left\lfloor\frac{p-1}{4}\right\rfloor$. Now examination of different positive integers $t\leq k$ reveals that the congruence $r^k\equiv \pm 1 \pmod{m_2}$ does not hold with r=3.

Next assume r > 3. Let s be the least positive integer for which $r \mid 2^s - 1$. We have $3 \le s \le p - 1$ or s = p + 1. Clearly if $r \mid 2^t - 1$, then $s \mid t$. If t = ks, $k \in \mathbb{N}$, then $2^t - 1 = 2^{ks} - 1 = (2^s - 1)(2^{s(k-1)} + 2^{s(k-2)} + \dots + 1)$. Therefore $(2^t - 1)_r \mid (2^s - 1)_r(k)_r = (2^s - 1)_r(\frac{t}{s})_r$. It follows that the largest power k of r such that r^k is a divisor of $(2^{p+1} - 1) \prod_{i=1}^{p-1} (2^i - 1)$ is at most $k = [\frac{p+1}{s}] + [\frac{p-1}{s(r-1)}]$. But from s > 2 it follows that $[\frac{p+1}{s}] - [\frac{p-1}{s}] = 0$ or 1.

If $\left[\frac{p+1}{s}\right] - \left[\frac{p-1}{s}\right] = 0$, then $k = \left[\frac{p-1}{s}\right] + \left[\frac{p-1}{s(r-1)}\right]$ and since from $r^k \mid r^{\left[\frac{p-1}{s(r-1)}\right]}(2^s - 1)r^{\frac{p-1}{s}}$, it follows that $r^k < m_2 - 1$, we cannot have $r^k \equiv \pm 1 \pmod{m_2}$. If $\left[\frac{p+1}{s}\right] - \left[\frac{p-1}{s}\right] = 1$, then $k = \left[\frac{p-1}{s}\right] + \left[\frac{p-1}{s(r-1)}\right] + 1$. Suppose $r^k = \pm 1 + lm_2$ where l > 0. Then $r^k = r r^{\left[\frac{p-1}{s}\right] + \left[\frac{p-1}{s(r-1)}\right]} \le rm_2$ which implies $lm_2 \pm 1 \le rm_2$, again we obtain a contradiction.

By the Lemma 1 and 4, if G is a finite group with $OC(G) = OC(L_{p+1}(2))$, then there is a normal series $1 \subseteq H \subseteq K \subseteq G$ for G such that $\frac{K}{H}$ is a non-abelian simple group, H and $\frac{G}{K}$ are π_1 -group and H is nilpotent. Moreover $\left|\frac{G}{K}\right|$ divides $\left|Out(\frac{K}{H})\right|$ and the odd order component of G is one of the odd order components of $\frac{K}{H}$ and $S(\frac{K}{H}) \ge 2$.

Since $P = \frac{K}{H}$ is a non-abelian simple group with $s(P) \geq 2$, according to the classification of finite simple groups we have one of the possibilities of Tables 1,2 or 3 for P. We distinguish several cases.

Case 1 $P \cong {}^2A_3(2)$, ${}^2F_4(2)'$, $A_2(2)$, $A_2(4)$, ${}^2A_5(2)$, $E_7(2)$, $E_7(3)$, ${}^2E_6(2)$, or one of the 26 sporadic simple groups listed in Tables 1,2 or 3. The odd order component of G is $m_2 = 2^p - 1$ and it must be one of the odd order components of the groups listed above. But by Tables 1,2 and 3 we have the following possibilities for P, m_2 and the prime p. The order of outer automorphism group, Out(P), of P is taken from [7].

Table 4						
P	m_2	p	Out(P)			
J_2	7	3	2			
$A_{2}(2)$	3 or 7	2 or 3	2			
$2A_{5}(2)$	7	3	3			
$E_{7}(2)$	127	7	1			
M_{22}	7	3	2			
J_1	7	3	1			
J_4	31	5	1			
HS	7	3	2			
O'N	31	5	2			
Ly	31	5	1			
F_2	31	5	1			
F_3	31	5	1			

Therefore we can set $\left|\frac{G}{K}\right| = t$ where t = 1, 2 or 3, from which it follows that $t |H| = \frac{|G|}{|P|}$. But $|G| = |L_{p+1}(2)|$ and the orders of relevant P is given in [7] and using Table 4 we can inspect those p for which $|P| \mid |G| = |L_{p+1}(2)|$ and find out that only $A_2(2)$ with p = 2 or 3 satisfies this condition. If p = 3, then $t |H| = 2^3.3.5$ implying $5 \mid H$. Since H is a nilpotent normal subgroup of G, its Sylow 5-subgroup which is cyclic of order 5 must be normal in G and by Lemma 3 we deduce $m_2 = 7 \mid 5 - 1 = 4$, a contradiction. Therefore p = 2, which implies $G \cong P = L_3(2)$. This is one of our conclusions with p = 2.

Case 2 $P \cong \mathbb{A}_n$ and either n = p', p' + 1, p' + 2, one of n or n - 2 is not prime; or n = p', p' - 2 are both prime, where p' > 6 is a prime.

By Tables 1 and 2, the odd order components of \mathbb{A}_n are p' and (or) p'-2. If $p'-2=2^p-1$, then $p'=2^p+1$ is not a prime number. Hence 2^p-1 can only be equal to the odd order component p'. In this case if we let t=|Out(P)|, then we obtain $\frac{|G|}{|P|}=t\,|H|$. Since p'>6, it is well-known that |Out(P)|=2, hence t=1 or 2.

The largest power of 2 dividing $p'=2^p-1$ is $[\frac{p'}{2}]+[\frac{p'}{4}]+\cdots=2^p-1$, hence a Sylow 2-subgroup of $\mathbb{A}_{p'}$ has order 2^{2^p-2} . But it is easy to prove $2^p-2>\frac{p(p+1)}{2}$ holds for all primes p>3. Since $\mathbb{A}_{p'}\leq \mathbb{A}_n$, this implies that for p>3 we have $|P|\nmid |G|$. If p=3, then p'=7 and $t\mid H\mid=8$. If t=2, then |H|=4 and by the Lemma 3, $7\mid |H|-1=3$, a contradiction. Therefore t=1, |H|=8, and H is an elementary abelian 2-group of order 8. In this case $C_G(H)=H$ and hence $\frac{G}{H}$ is

isomorphic to a subgroup of $Aut(H) = L_3(2)$. But $\frac{G}{H} \cong \mathbb{A}_7$ is not a subgroup of

 $L_3(2)$. This final contradiction proves that $P \cong \mathbb{A}_n$ cannot happen.

Case 3 P is a simple group with s(P) = 2.

In this case P can be any of the groups listed in Table 1, but we consider those which are not covered in case 1 and 2.

(a)
$$P \cong F_4(q)$$
 or ${}^3D_4(q)$

In this case we have $m_2 = q^4 - q^2 + 1 = 2^p - 1$. Therefore $q^2(q^2 - 1) = 2^p - 2 = 2(2^{p-1} - 1)$. If q is odd, then $q^2 - 1$ is a multiple of 8 and the equality does not hold with any value of p. If q is even, then q^2 is a multiple of 4 and the equality fails. Therefore $P \cong F_q(q)$ or ${}^3D_4(q)$ are ruled out.

(b)
$$P \cong G_2(q)$$
, $2 < q \equiv \epsilon \pmod{3}$, $\epsilon = \pm 1$.

By Table 1 we have $q^2 - \epsilon q + 1 = 2^p - 1$ and $|G_2(q)| = q^6(q^6 - 1)(q^2 - 1)$. It is easy to check that for the special case $p \le 7$ we get a contradiction with regard to the divisibility $|P| \mid |G|$. Therefore we assume p > 7. Now calculation shows that $(q^2 - \epsilon q)^2 \mid |G|$, hence from $|P| \mid |G|$ we obtain $2^{p-1} - 1 \mid (2^{p+1} - 1)(2^p - 1) \prod_{i=1}^{p-2} (2^i - 1)$. Let r be a Zsigmondy prime for $2^{p-1} - 1$. Then $r \mid (2^{p+1} - 1)(2^p - 1)$ from which it follows $r \mid 2^{p+1} - 1$ or $r \mid 2^p - 1$. Since we also have $r \mid 2^{p-1} - 1$, a contradiction is derived in this case.

(c)
$$P \cong E_6(q)$$
 or ${}^2E_6(q)$.

By Table 1 we have $\frac{q^6\pm q^3+1}{(3,q\mp 1)}=m_2$, from which it follows that $q^9\pm 1\equiv 0\pmod{m_2}$. If q is odd, then by Lemma 6 the above congruence equation has no solutions. Suppose q is even. From the above equality we obtain $q^3(q^3\pm 1)=2(2^{p-1}-1)$ or $4(3\times 2^{p-2}-1)$ according to $(3,q\mp 1)=1$ or 3, respectively which cannot happen because q is a power of 2.

(d)
$$P \cong {}^2D_n(3)$$
, $n = 2^m + 1 \ge 9$ not a prime number.

In this case the odd order component is $\frac{3^{n-1}+1}{2} = 2^p - 1$ implying $3^{n-1} - 2^{p+1} = -3$, a contradiction.

(e)
$$P \cong {}^{2}D_{p'}(3), p' \neq 2^{m} + 1, p' \geq 5$$
 is a prime number.

In this case we have $\frac{3^{p'}+1}{4}=2^p-1$ implying $3^{p'}+1=4m_2$. Since 3 is an odd π_1 -prime, by the Lemma 6 we obtain a contradiction.

(f)
$$P \cong {}^2D_n(2)$$
, $n = 2^m + 1 \ge 5$. We must have $2^{n-1} + 1 = 2^p - 1$ implying $2^{n-1} = 2(2^{p-1} - 1)$, a contradiction.

(g)
$$P \cong {}^2D_n(q)$$
, $n=2^m \geq 4$. In this case $\frac{q^{n+1}}{(2,q+1)}=2^p-1$, hence $q^n=2^p$ or $q^n=2^{p+1}-3$ according to $(2,q+1)=1$ or 2, respectively. If $(2,q+1)=2$, then

q is an odd prime power and by the Lemma 6 we get a contradiction with respect to $q^n + 1 = 2m_2$. If $q^n = 2^p$, then q = 2 and $p = n = 2^m \ge 4$, a contradiction.

(h)
$$P \cong D_{p'+1}(q)$$
, $q = 2,3$; $D_{p'}(q)$, $p' \ge 5$, $q = 2,3$; $C_{p'}(q)$, $q = 2,3$; $C_n(q)$, $n = 2^m \ge 2$; $B_p(3)$ or $B_n(q)$, $n = 2^m \ge 4$, q odd.

In all of these cases repeated use of the Lemma 6 yields contradictions and we do not present the details here.

(i)
$$P \cong {}^{2}A_{p'}(q), q+1 \mid p'+1, (p',q) \neq (3,3), (5,2).$$

In this case we have $\frac{q^{p'}+1}{q+1}=2^p-1$. If q is odd, then we get a contradiction by the Lemma 6. If q is even, then $q^{p'-1}-q^{p'-2}+\cdots-q=2(2^{p-1}-1)$. Therefore $2^{p'}=3.2^p-4=4(3.2^{p-2}-1)$, a contradiction because p'>3.

(j)
$$P \cong {}^{2}A_{p'-1}(q)$$
 or $A_{p'-1}(q)$, $(p',q) \neq (3,2)$, $(3,4)$.

In this case we have $m_2=\frac{q^{p'}+1}{(q+1)(p',q+1)}$ or $\frac{q^{p'}-1}{(q-1)(p',q-1)}$, respectively for $^2A_{p'-1}(q)$ or $A_{p'-1}(q)$. In the following we investigate the case $m_2=\frac{q^{p'}+1}{(q+1)(p',q+1)}$. The case $m_2=\frac{q^{p'}-1}{(q-1)(p',q-1)}$ can be handled similarly. The cases p'=3 and 5 can be verified separately to lead to contradiction. Therefore we assume $p'\geq 5$ and in which follows Zsigmondy primes exist for the numbers that we dealing with.

If q is odd, then by the Lemma 6, from $q^{p'}+1\equiv 0 \pmod{m_2}$ a contradiction is obtained. Therefore we assume $q=2^f$, $f\geq 1$. If (p',q+1)=1, then $q^{p'-1}-q^{p'-2}+\cdots-q+1=2^p-1$ from which we obtain $q^{p'-1}-q^{p'-2}+\cdots-q=2(2^{p-1}-1)$. Hence q=2 and consequently $2^{p'}=4(3\times 2^{p-2}-1)$, a contradiction because $p'\geq 3$. Therefore we assume (p',q+1)=p', hence $p'\mid q+1$ and since $q=2^f$, we can write

$$2^{fp'} + 1 = (2^f + 1)p'(2^p - 1) \tag{1}$$

Now let r be a Zsigmondy prime for $2^{2fp'} - 1$. Hence $r \mid 2^{fp'} + 1$, and consequently by (1) $r \mid 2^p - 1$ because $r \nmid q + 1$ and $r \nmid p'$. Since r is assumed to be a Zsigmondy prime for $2^{2fp'} - 1$, we obtain $p \geq 2fp' > f$.

Next we consider the order of $P \cong {}^2A_{p'-1}(q)$. We have $|P| = m_2 q^{\frac{p'(p'-1)}{2}} \prod_{i=1}^{p'-1} (q^i - (-1)^i)$ where $q = 2^f$. Let l be a Zsigmondy prime for $q^{2(p'-2)} - 1 = 2^{2f(p'-2)} - 1$. Since $l \mid q^{p'-2} + 1 \mid |P|$, from $|P| \mid |G|$ we obtain $l \mid 2^{\binom{p+1}{2}} \prod_{i=1}^{p} (2^i - 1)$. Hence $l \mid 2^j - 1$ for some $j \leq p+1$. We deduce that $j \geq 2f(p'-2)$, hence $p+1 \geq 2f(p'-2)$.

Now we set $\left|\frac{G}{K}\right| = t$ which must be a divisor of |Out(P)| = 2(p', q+1)f = 2p'f. From $\frac{K}{H} \cong P$ we obtain t|H||P| = |G|, hence using (1) we obtain the following identity:

$$t |H| q^{p'(p'-1)/2} \prod_{i=1}^{p'-1} (q^i - (-1)^i) = 2^{\binom{p+1}{2}} (2^{p+1} - 1) \prod_{i=1}^{p-1} (2^i - 1)$$
 (2)

Note that in (2) we have $q = 2^f$, a power of 2.

Finally assume k is a Zsigmondy prime for $2^{p+1}-1$. Then from (2) it follows that $k\mid t\mid H\mid \prod_{i=1}^{p'-1}(q^i-(-1)^i)$. If $k\mid t$, then $k\mid f$, hence $k\leq f$. But k is a Zsigmondy prime for $2^{p+1}-1$ and by the Remark 1, $k\geq p+1>p>f$, contradicting $k\leq f$. If $k\mid q^{(p'-j)}-1=2^{f(p'-j)}-1$, for some $1\leq j\leq p'-1$, then $f(p'-j)\geq p+1$ and since $f(p'-1)\geq f(p'-j)\geq p+1$ we obtain $p+1\leq f(p'-1)$ contradicting $p+1\geq 2f(p'-2)$ which was obtained earlier. Therefore $k\mid |H|$. But in this case a Sylow k-subgroup of H has order k and from the Lemma 3 it follows that $m_2=2^p-1\mid k-1$ from which we get a contradiction with respect to $k\mid 2^{p+1}-1$. This final contradiction rules out the possibility of $P\cong {}^2A_{p'-1}(q)$. The case $P\cong A_{p'-1}(q)$ is treated similarly.

(k) $P \cong A_{p'}(q)$, $q-1 \mid p+1$. In this case we have $\frac{q^{p'}-1}{q-1}=2^p-1$. If q is odd then by the Lemma 5 we obtain a contradiction. We assume q is even and write $q^{p'-1}+q^{p'-2}+\cdots+q=2(2^{p-1}-1)$ from which it follows q=2 and p'=p. But This will imply $P\cong A_p(2)=L_{p+1}(2)$, hence |H|=1 and $G=K\simeq L_{p+1}(2)$. This is what we aim to prove.

Up to present all simple groups P with s(P) = 2 have been considered. Next we consider simple groups P with s(P) = 3 tabulated in Table 2.

Case 4 P is a simple group with s(P) = 3. Since in case 2 we considered the alternating group $\mathbb{A}_{p'}$ with both p' and p' - 2 prime numbers, hence we start with the next group in Table 2.

(a) $P \cong A_1(q)$, $3 < q \equiv \epsilon \pmod{4}$, $\epsilon = \pm 1$. The odd order components are q and $\frac{q+\epsilon}{2}$.

First we assume $q=2^p-1$. If $q=r^m$ is a power of a prime r, then $2^p-r^m=1$ and by [8] there is no solution for this equation with m>1. Hence m=1 and $q=2^p-1$ is a prime number. Therefore |Out(P)|=2 and $\left|\frac{G}{K}\right|=t$, where t=1 or 2. From $\frac{K}{H}\cong P\cong A_1(q)$ and $\left|\frac{G}{K}\right|=t$ we obtain $t|H|=2^{p(p-1)/2}(2^{p+1}-1)(2^{p-2}-1)\cdots(2^2-1)$. Clearly $p\geq 3$. Assume $p\neq 5$ and let p' be a Zsigmondy prime for $2^{p+1}-1$. Then $p'\mid |H|$ and a Sylow p'-subgroup of H has order p'. By the Lemma 3, $m_2=2^p-1\mid p'-1$. Hence $p'-1=u(2^p-1)$, and since $p'\leq 2^{p+1}-1$, we obtain $p'-1\leq 2(2^p-1)$ implying u=1 or 2, and in both cases a contradiction with the assumption on p' is obtained. If p=5, then $t\mid H\mid =2^{10}.3^4.5.7^2$ and a similar argument with a Sylow 5-subgroup of H results a contradiction.

Next we assume $\frac{q+\epsilon}{2}=2^p-1$. If $\epsilon=-1$, then $q=2^{p+1}-1=3^f$, because $2^{p+1}-1$ is divisible by 3. But by [8] there is no solution to $2^{p+1}-3^f=1$. Therefore we assume $\epsilon=1$. Hence $q=2^{p+1}-3=r^f$, power of a prime r. Clearly f< p+1. It is well-known that |Out(P)|=2f, hence $|G|=t\,|H|\,|P|$, where $t\,|\,2f$. Substituting for |G| and |P| we obtain $2t\,|H|\,(2^{p+1}-3)(2^{p-1}-1)(2^{p+1}-5)=2^{\binom{p+1}{2}}\prod_{i=1}^{p+1}(2^i-1)$. Assume $p\neq 5$ and let p' be a Zsigmondy prime for $2^{p+1}-1$. We have $p'\,|\,2t\,|H|\,(2^{p+1}-3)(2^{p-1}-1)(2^{p+1}-5)$. Then by the Remark $1,\,p'>p+1>f$, so $p'\,|\,t$ because p' is odd. Since $2^{p+1}-3$ and $2^{p+1}-5$ are prime to $2^{p+1}-1$ hence $p'\,|\,|H|$. Therefore the order of a Sylow p'-subgroup of P is a divisor of P and since P is a nilpotent normal subgroup of P, we deduce by the Lemma 3 that P and P and P is a nilpotent normal subgroup of P, we deduce by the Lemma 3 that P and P is a contradiction.

(b) $P \cong A_1(q), q > 2, q$ even.

In this case the odd order components are q-1 and q+1. Therefore $q\pm 1=2^p-1$ and similar to (a) above, we reach a contradiction.

- (c) $P \cong {}^2D_{p'}(3)$, $p' = 2^m + 1 \ge 5$. In this case we have $\frac{3^{p'-1} + 1}{2}$ or $\frac{3^{p'} + 1}{4} = 2^p 1$ implying $3^{p'-1} + 1 \equiv 0 \pmod{m_2}$ or $3^{p'} + 1 \equiv 0 \pmod{m_2}$, which are impossible by the Lemma 6.
- (d) $P \cong {}^2D_{p'+1}(2)$, $p' = 2^n 1$, $n \geq 2$. In this case we have $2^{p'+1} + 1 = 2^p 1$ implying $2^{p'+1} = 2(2^{p-1} 1)$, a contradiction. If $2^{p'} + 1 = 2^p 1$, then $2^{p'} + 2 = 2^p$ which is obviously impossible.
- (e) $P \cong G_2(q)$, $3 \mid q$; ${}^2G_2(q)$, $q = 3^{2m+1} > 3$; $F_4(q)$, q even, ${}^2F_4(q)$, $q = 2^{2m+1} > 2$. In all of these cases equating m_2 with one of the odd order components of the group concerned results a contradiction in an easy step.

Case 5 In this last case we consider simple groups P with $s(P) \ge 4$. According to Table 3 there remain only the groups ${}^2B_2(q)$, $q = 2^{2m+1} > 2$; and $E_8(q)$ to be considered.

First suppose $P \cong {}^2B_2(q)$, $q = 2^{2m+1} > 2$. The odd order components are q-1, $q-\sqrt{2q}+1$ and $q+\sqrt{2q}+1$. If $q \pm \sqrt{2q}+1=2^p-1$, then $2^{2m+1}\pm 2^{m+1}=2(2^{p-1}-1)$ which is a contradiction because m>0. If $q-1=2^p-1$, then $q=2^p$, hence $|{}^2B_2(q)|=2^{2p}(2^p-1)(2^{2p}+1)$ and we must have $2^{2p}(2^p-1)(2^{2p}+1)$ $|L_{p+1}(2)|$. If p' be a Zsigmondy prime for $2^{4p}-1$, then p'>4p and $p'\mid 2^{2p}+1$, then $p'\mid |L_{p+1}(2)|$, a contradiction.

Next let $P \cong E_8(q)$. According to Table 3 if we equate the odd order component of P with m_2 we obtain equations of the form $q^k \pm 1 \equiv 0 \pmod{m_2}$ where k = 10, 12, 15, which is a contradiction by the Lemma 6 if q is odd. Therefore we

assume q is even. By the Table 3 all the odd order components of P are of the form qf(q) + 1, where f(q) is a polynomial in q. If $qf(q) + 1 = 2^p - 1$, then we must have q = 2 and examination of each case results a contradiction.

Since we have considered all the cases for the simple group P, by case 1 and case 3 (k) we deduce that $G \cong L_{p+1}(2)$ and the main theorem is proved.

References

- [1] S. H. Alavi and A. Daneshkhah, A new characterization of alternating and symmetric group, J. Appl. Math. Comput. 17 (1) (2005), 245-258.
- [2] G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3 (1) (1996), 49-58.
- [3] G. Y. Chen, A new characterization of $PSL_2(q)$, Southeast Asian Bull. Math. **22** (1998), 257-263.
- [4] G. Y. Chen, ${}^2D_n(3)$ (9 $\leq n = 2^m + 1$ not a prime) can be characterized by its order components, J. Appl. Math. Comput. 19 (1-2) (2005), 353-362.
- [5] G. Y. Chen, On Thompson's conjecture. J. Algebra 185 (1996), 184-193.
- [6] G. Y. Chen, On Frobenius and 2-Frobenius groups, J. Southwest China Normal Univ. 20 (5) (1995), 485-487.
- [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [8] P. Crescenzo, A diophantine equation which arises in the theory of finite groups, Adv. Math. 17 (1975), 25-29.
- [9] N. Iiyori and H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, Proc. Japan Acad. (Ser. A), 67 (1991), 82-83.
- [10] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3,q) where q is an odd prime power, J. Pure. Appl. Algebra 170 (2-3) (2002), 243-254.
- [11] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3,q) for $q=2^n$, Acta Math. Sinica 18 (3) (2002), 463-472.

- [12] A. Iranmanesh, B. Khosravi and S. H. Alavi, A characterization of PSU(3,q) for q > 5, Southeast Asian Bull. Math. **26** (2) (2002), 33-44.
- [13] A. Khosravi and B. Khosravi, A new characterization of PSL(p,q), Comm. Algebra 32 (2004), 2325-2339.
- [14] A. Khosravi and B. Khosravi, A new characterization of some alternating and symmetric groups, Int. J. Math. Math. Sci. 45 (2003), 2863-2872.
- [15] Behrooz Khosravi, Behnam Khosravi and Bahman Khosravi, The number of isomorphism classes of finite groups with the set of order components of $C_4(q)$, Appl. Algebra Engrg. Comm. Comput. 15 (2005), 349-359.
- [16] A. Khosravi and B. Khosravi, r-recognizability of $B_n(q)$ and $C_n(q)$ where $n = 2^m \ge 4$, J. Pure Appl. Algebra 199 (2005), 149-165.
- [17] A. S. Kondratev, On prime graph components of finite simple groups, Math. USSR Sbornik, 190 (6) (1989), 787-797.
- [18] H. Shi and G. Y. Chen, ${}^2D_{p+1}(2)$ (5 < $p = 2^m 1$) can be characterized by its order components, Kumamoto J. Math. 18 (2005), 1-8.
- [19] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487-513.
- [20] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 256-284.

M. R. Darafsheh

Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Tehran, Tehran, Iran e-mail: darafsheh@ut.ac.ir

A. Mahmiani

University of Payame Noor, Gonbade Kavoos, Iran