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Abstract. In this present paper three wide classes of complex vector func-
tional equations are considered. First we solve a class of linear functional
equations with operation addition between the arguments and after this some
functional equations with operation multiplication between the arguments
are solved. A second class of quadratic complex vector functional equations
with constant complex coefficients is solved by its linearization and use of
a matrix method. A third class of functional equations solved in the paper
is the class of nonhomogeneous linear hypercomplex vector functional equa-
tions with noncommutative properties. All the considered classes of complex
vector functional equations appear for the first time in the literature.

1 Introduction

Our focus in the present article will particularly be on the area of complex vector
functional equations which are the newest mathematical discipline that has rapid
development in the recent years. These kinds of functional equations are very
often hard to handle and for many of them mathematics has not yet determined
a general solution.

Motivated by this idea we continue to study this topic and this article aims
at providing new general classes of complex vector functional equations solved by
methods given in [1]-[4]. The results presented here supplement and generalize
some of our previous results [5]-[7].

2 Preliminaries
Let A be an n x n complex matrix. Suppose that by elementary transformations

the matrix A is transformed into A = P, DP,, where P; and P, are regular matrices
and D is a diagonal matrix with diagonal entries 0 and 1 such that the number
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of the units is equal to the rank of the matrix A. The matrix B = Py 'DP[!
satisfies the equality ABA = A. This means that the matrix equation AXA = A
has at least one solution for X.

If A satisfies the identity

A"+ kAT o+ ke A= 0,

where k,_1 # 0 and O is the zero n x n matrix, then the matrix
1

r—1

X=-c (AT 2+ K A" 3 4+ 4 ko),
where I is the unit n x n matrix, is also a solution of the equation AXA = A.
Now we recall the following theorem proved in [1].

Theorem 2.1 If B satisfies the condition ABA = A, then

1° AX=0 <= X=({I-BAQ (X and Q are n x m matrices);

2 XA=0 <+ X=QU-AB) (X and @ are m x n matrices);

3 AXA=A << X =B+Q-BAQAB (X and Q arenxn
matrices);

4 AX=A << X=I+({I-BAQ;

5 XA=A < X=I+Q(I-AB).

Throughout this article, if not stated otherwise, V is an n-dimensional complex
vector space. The vectors from V will be denoted by Z; = (zi1,..., zin)T 1<i<g
n), O = (0,0,...,0)T is the zero vector in V, I = (1,1,...,1)T. We define multi-
plication of two arbitrary vectors U = (uy,...,un)T and V = (v1,...,v,)T in V
as UV = (wv1,...,unv,)T. Further on, for o € N we define U* = (u$,... ,uf,‘)T,
and we denote [U| = (jua],-- ., |ua|)T, where |ui| is the modulus of the complex
number ug.

3 Some complex vector functional equations with
operations between the arguments

In this section some simple complex vector functional equations which extend our
previous results obtained in [7] will be solved.

Theorem 3.1 The general continuous solution of the functional equation

f(z Zi) = fi(Zs) (3.1)
i=1 i=1
is given by

f(U)=CU+ Xn: A; (3.2)
i=1
and
f,(U) =CU+A; (1 <1< n), (33)

where C is a constant complex matriz and A; (1 <i < n) are complex vectors.
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Proof. If we set Z; = O (1 < ¢ < n) in (3.1), we obtain

n

F(0)=)"A,

i=1

where A; = f;(0) (1 £i<n).
Now, if we put successively n — 1 variables in (3.1) to be equal to the zero
vector, then we get

(Zy) = fi(Zh)+Az+---+ A,
f:(zz) = A1+ fo(Z2) +--- + Ay, (3.4)
f(zn) = A +Ax+-+ fn(zn)'
By summation of the above equations we obtain
n n n
D FZ) =) f(Z)+(n-1)) A,
i=1 i=1 i=1
or n n n
D filZ) =) f(Z)-(n-1)) A (3.5)
i=1 i=1 i=1
From (3.5) and (3.1) it follows that
n n n
f(3oz) =3 f@)-n-DY A,
i=1 i=1 i=1
or
n n
(> 2:) = fz)+B, (3.6)
i=1 i=1
where "
B=—-(n-1)) A, (3.7)
i=1
The general continuous solution of the equation (3.6) is
B
f(U)=CU - —7 (3.8)

where C is a constant complex matrix and B is an arbitrary constant complex
vector.
From (3.8), (3.7) and (3.4) the formulae (3.2) and (3.3) immediately follow. O

Theorem 3.2 The general continuous solution of the complex vector functional

equation
f(z Zi) = Zfi(Zi) +B (3.9)
i=1 i=1
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is given by
= B
f(U)=CU+i=ZIAi— — (3.10)
and B
fi(U)=CU+A; - —— (1<1i<n), (3.11)

n—1

where C is a constant complez matriz, B and A; (1 <1 < n) are constant complex
vectors.

Proof. The proof of this theorem is analogous to that of the previous Theorem 3.1.
O

Theorem 3.3 The general continuous solution of the functional equation

1) =2 k) #0) G
is given by the following formulae
f(U)=CU+ i A (3.13)
=
and
fi(U) = %C’U +A; (1Zi<n), (3.14)

where C and A; are as in the previous theorems.

Proof. The proof of this theorem is completely analogous to the proof of Theo-
rem 3.1. O

Theorem 3.4 The functional equation

1Eyz) - S H(22,) (k40 (3.15)
i=1 i=1 P

=1

where n > m, r = () = CI* and the summation is over all combinations of m
vectors chosen among Z; (1 < i < n), has a general continuous solution given by

m T
f(U)=kr—CU + Z A; | (3.16)

i=1

and
fi(U)=CU+A; (1Ligr), (3.17)

where C is a constant complex matriz and A; (1 < i < r) are constant complez
vectors.



New wide classes of complex vector functional equations 55

m
Proof. By introduction of the substitution T; = Z;,, we obtain
=1

r n n
n—1 mf{n
ZTi = (m_ 1) ZZ, = E(m) ZZ,-.
=1 i=1 i=1
Using the above expression, the functional equation (3.15) transforms into the
following equation
1 r r
f(% ;Ti) = ; fi(Ts),

whose solution is given by Theorem 3.3. [

Theorem 3.5 The general continuous solution of the general Jensen’s complex
vector functional equation

HERARES A (3.18)
i=1 i=1
is given by
f(U)=CU + % 3 A (3.19)
=1
and
fi(U)y=CU+A; (1<i<n), (3.20)

where C is a constant complex matriz and A; (1 < i < n) are constant complex
vectors.

Proof. If we substitute f(U/n) = F(U) and F;(U) = f;(U)/n (1 <i<n)in
equation (3.18), we get the equation form (3.1), and after that the formulae (3.19)
and (3.20) immediately follow. O

Theorem 3.6 The general continuous solution of the functional equation

P P P
f(z Zir-r ) Zni) =" filZyir- . Zni) (3.21)
i=1 i=1 i=1

is given by the formulae

n P
f(Zr,e o 20) =) CiZi+ ) A; (3.22)
=1 i=1
and n
flZ1,.- . Zn) =) CiZ;+ A (1<i<p), (3.23)
j=1

where C; (1 < i < n) are constant complez matrices and A; (1 < i < p) are
constant complex vectors.
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Proof. If we put in (3.21)

Zio=Z13=---=Z1,=0, ... Zpp=2Zpz=---=2Zyp=0,
and introduce the notations A; = £;(0,0,...,0) (1 < i < p), we obtain

f(Z11,291,...,Zm) = f1i(Z11,2Z21,- - -, Zn1) + Az + - + A,
More generally, if for 2 < 7 < p we put
Z,;=0, ... Z,;=0 for 1<j<p, j#4

we obtain
f(2Z14,29iy...\Zpi) = Ay + -+ Ay + fi(Z1iy Zos,y - -, D) + Ay + - + Ay
We can write the above equalities in the form

p
filZ1,Zoiy - Zni) = f(Zri, Doir - Ze) + A — D _A; (1<i<p). (3.24)
j=1

After a substitution of (3.24) into (3.21), we get

P p
P Zair Y %) = Zf(zl,,zzu  Zoni) = —1)ZA,,
i=1 i=1
or

P P ,
f(z Zy,.. sz) = Zf(zliaZ%a ey Zni) + B, (3-25)
i=1 i=1

i=1

where »
—-(p-1)>_ A (3.26)
i=1
The general continuous solution of the equation (3.25) is
= B
f(Z1,Zs,...,2Z,) = zciz,- -oo1 (3.27)

According to (3.27), (3.26) and (3.24) there follow the formulae (3.22) and (3.23).
0O

Theorem 3.7 The general continuous solution of the functional equation

P P P
F(O°Zui s Y Bns) = filkZuiy o kZo)) (R #£0)  (3:28)
i=1 i=1 i=1
is given by

(2., 2q) = Zc,z +ZA (3.29)

i=1
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and "
1 .
fi(zla" » n = EZCJZ} +A; (1 <t Sp)v (330)
where C; (1 < i < n) are constant compler matrices and A; (1 < i < p) are
constant complex vectors.

Proof. Analogous to the previous theorem we obtain the following equalities

P
filkZuiy . KZni) = f(Z1is. ., Zni) + A = Y A; (1<i<p)
j=1

which substituted in (3.28) give an equation of the form (3.25) from where imme-
diately follow the formulae (3.29) and (3.30). d0
Now, we will give one more general result.

Theorem 3.8 The complex vector functional equation

P p P
F(0 200 D Zai) =Y filbriZuis- - huiZni) + B, (3.31)
i=1 i=1 i=1

where B is a constant complex vector and ks; # 0 (1 <s<n; 1<i<p), hasa
general continuous solution given by the following formulae

n P B
f(Z1,. Za) =) CiZi+ ) Ai- Y (3.32)
i=1 i=1
and
£i(Zs )_Z 1 ez, +A——B— (1<i<p) (3.33)
? n k 1 — - L]

where C; (1 < i < n) are constant complex matrices and A; (1 < i < p) are
constant complex vectors.

Proof. The proof of this theorem is completely the same as the proof of Theo-
rem 3.6. a

Theorem 3.9 The general continuous solution of the functional equation
f1(a1Z1 + a2Zs,a3Z3) + fa(a1Z2 + a2Z3,a3Zy) + f3(a1Zs + a2Z,, 0322%4
= aaf1(a1Zy + a222,0323) f2(a1Z3 + a2Z3,03Z1) f3(a1Z3 + a2Zy, a3Zs),

where a; (i = 1,2,3,4) are complex constants such that o} = 1, ad =1, and
azaq # 0, is given by the following relations

2
a a203U1—2a1U2 a aga3U1—2a1U2
1 CiCzexp (C;).Re—;—a‘12 = + O4Im—1—3az‘13 -I

f1(U,Ug) =

A /_0,4 C]C2 exp (CsReazaza:;S;a—:fa]UQ + C4Ima¥aza:g;1;a—3201U2) + 1
(3.35)
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2 U U
(Ci =C (alazas 1+a1Uq2
a20a3

), i=1,2,3,4),

1 Ci exp (CéRe2Ug—a]aga;U1 + CZImZUg_a’azaQU‘ ) -1

303 3a3

f2(Uls U2) = -

v—aq C} exp (CéRe2Ug—%a|C;2aaU] +C{Im ZUZ—%la‘;zaaUI) +1
(3.36)
(C: = Ci (M) , ’l:= 1’3'4),
as
£2(U2,Uy) 1 Caexp (C’gReL“fi?U;_;:g%_U' n é41m26202U;a—3a2a3U1) 1
3 1,V2) =

V04 C~'2 exp (C~'3Re2_“§ﬂzus+:§a3_m + C’4Im 2021 anga—sazzasUl +1I
(3.37)

3 2 2
(= (“2a3U‘:“‘a2U2) ,i=2,3,4),
3

where C; (i = 1,2, 3,4) are arbitrary functions V — C. However, some components
of fi (i=1,2,3) may be given by one of the following relations:

1 1 .
fi(U,Ug) = F—, f2(U,Ug) = iTa’ f3(U1,Us) arbitrary, (3.38)

\/——a4’ v—a4
or
1 ) 1
f(U102) =F o=, f2(U1,Uy) arbitrary, f3(U1,U) == (3.39)
or
1
fl (Ula U2) = ]
—ay
1 2U, — a1a2a3U; a1a9a3U; + U
= - 1+ P .
fz(Ul,U2) \/_—az ( + 0 ( 303 3 a3 (3 40)
1 202asUs — a2a3U; a2a3U; + a2a,U;
U , U - _ 1 P 1 2 2 1
f3( 1 2) \/—_0.4( + 2( 30,3 ’ as )
where P, Py : V2 — C are such that
supp,P; Nsuppa P =0 (3.41)

with
suppo,P; ={VeV|3aUeV: P(U,V)#0}, i=12

Proof. If we introduce the substitutions

Z, =U;+U;3/3, Zo = ala%(Uz +U3/3), Z3 = afa.g(—Ul —U2+U3/3),
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then from the equation (3.34) we obtain

fi (al (U1 +Uz + ;Us),a?aga;; (—Ul ~Us+ %))

+ fa (‘1102(3U3 - Ul),a3 (% + Ul)) + f3 (a2(§U3 - Uz) aia3az (U2 + l;3))
(3.42)
= a4fy (0.1 (Ul + Uy + U3) alagag(—Ul U, + —))

fz(am( Us - ul),as(%ml)) fs( (2us-v), alagaa(uﬁ%g))

By introducing new functions g1, g2, g3 by the formulae

X

f1(a1Uy,a2az03U,) = 1 1(Ul —2Us

,/—a4g 3
2 U
91(U1,U2) = V=asfi (al (gUz + Ul),afazas (?2 - Ul)) )

,U1+U2) —

1 2U, - U
f2(a?adUy,a3U,) = - ,—-—_a492( 23 LU, +U2) =
(3.43)
2(U1,U2) = —Q4j2 0102 —-U2 Ul ,a3 E_‘_Ul ,
g v 3 3
1 2U,-U
fa(azUl,alagasUz) = —\/—fa( 23 l,Ul +U2) =
U,
93(U1,Uz) = —v/=a4fs (az( U, - U1) a1a2a3(? + Ul))
the functional equation (3.42) takes the following form
U, Us) + ¢g3(Us, U
91(U1 + U, U3) = 92(U1, Us) + 95(Uz, Us) (3.44)

I+ 92(Uy,Us)gs(Uz, Us)”

Now we will distinguish the following cases:

1° Let g;(U1,Uz) # I (i = 1,2,3). For simplicity of notation we assume that
all components of g1, g2, g3 are not 1. If this is not the case, we obtain the formulae
for the respective components in 20 — 40,

Introducing new functions h; (i = 1,2,3) given by

hi(Up,U3) -1
h’i(Ula U3) +1I

I+ gi(Ul, U3)

gi(U1,U3) = 1-4:,(U;,Us)

== hi(Ul,Us) = (1 = 1,2, 3),

(3.45)
the equation (3.44) reduces to the following form

h1(Uy + Uz, U3) = he(U;, Uz)h3(U2, Us),
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whose general continuous solution is

hi1 (Ul,Ua) = (Us)Cg(U:;) exp [C3(U3)R€U1 + C4(U3)ImU1] , (3 46)
hi(Uy,Us) = Ci—1(Us)exp[C3(Us)ReU; + C4(Us)mUy] (i = 2,3),

where C; (V +— C) are arbitrary functions. However, some components may satisfy
h1 =0, hy =0, ha arbitrary, (3.47)

or
h, =0, ho arbitrary, hs =0. (348)

Therefore, according to (3.46), (3.47), (3.48), (3.45) and (3.43) we obtain (3.35)-
(3.37), or (3.38), or (3.39) (with the upper signs).

20 Let g3 = 1. Then g; =1, g2 can be arbitrary and we obtain (3.39) with the
lower sign.

3% Let go = 1. Then g1 =1, g3 can be arbitrary and we obtain (3.38) with the
lower sign.

4° Let g; = 1. Then we obtain the equation

(92(U1,Us) — 1) (g3(Uz, Us) — 1) = 0.

Its general solution is
92(U1,U3) =1+ Pi(U;,U3),  g3(Uz, Us) = 1 + P»(Uz, Us),

where the functions Py, P> : V2 — C satisfy (3.41). This leads to (3.40) and the
proof is complete. O

Next we will consider some other complex vector functional equations, which
will be interesting for the enrichment of this relatively new theory.

Theorem 3.10 The general solution of the complex vector functional equation
F(Z1Z9) = 21" f(Z2) + 237 (Z1) + AZT 237, (3.49)

where A is a constant complex vector and oy, az € N, oy # «a, is given by the
formula

f(U)=B((U* -U") — AU, (3.50)
where B is an arbitrary constant complex vector.

Proof. Since a; # o, we can choose a vector C so that all components of
C2 — C™ gre nonzero. Setting Z; = U, Z; = C and using f(UC) = f(CU), we
deduce the relation

U £(C) + C*2 f(U) + AU C*2 = C* f(U) + U2 f(C) + ACH1 U

or

f(U) _ f(C) (Uaz _ Ua‘) + Ca?gaéa‘

- ot (U —U™) — AU,
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Therefore the general solution of the functional equation (3.49) is (3.50) with

_ f(C) + AC®

B= e om m

Now we shall find the general solution of equation (3.49) in the case oy = a.

Theorem 3.11 The general solution of the complex vector functional equation
f(2122) = Z§ f(Z2) + 23 f(Z1) + A(Z1Z,)°, (3.51)

where A is a constant complex vector and o € N, is given by the formula

f(U)=U*Bh|Ul-A), (3.52)
where B is an arbitrary constant complez vector and In |U| := (In |wy|,...,In |u,])T
with the convention that if uy = 0 for some k € {1,...,n}, then the corresponding

component of In |U| is assumed 0.
Proof. We can write equation (3.51) in the form
F(ZaZ0) + A(ZaZ0)" = Z [£(Z2) + AZS] + Z5 [£(Z1) + AZS).
Clearly, the function g(U) := f(U) + AU? satisfies
9(Z1Z2) = Z79(Z2) + Z5 9(Z,).
In particular, we have g(O) = g(I) = O. Further on, for Z, = Z, = U we obtain
9(U?) = 2U°g(U).
For U with nonzero components we have

9(U?) _, (V)

U2 Ue

(3.53)

In general, for all nonzero components of U the corresponding components of g
satisfy an equation of the form (3.53).
Thus, A(U) := g(U)/U* satisfies

h(U?) = 2h(U).

The general solution of this equation is A(U) = BIn |U|, where B is an arbitrary
vector and In|U| was defined in the statement of the theorem. Now we derive
successively g(U) = BU® In|U]| and (3.52). A straightforward verification shows
that (3.52) satisfies equation (3.51). O

Theorem 3.12 The functional equation

H2422) = 277 9(Z2) + 237 (Z1) (o, 22 €N) (3.54)
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has a general solution given by

f(U) = B(U* -U)+CU*,
(3.55)
g(U) = BU®-U") if o#a
or
- yo C
f(U) U*(BIn|U|+C), (3.56)

g(U) = Bh|U| i oa=a=aq,

where B and C = f(I) are arbitrary constant complex vectors and In|U| was
defined in Theorem 3.11.

Proof. By the substitution of Z; = I into (3.54) we obtain
9(Z2) = f(Z2) — F(NZ3*. (3.57)
Using (3.54) and (3.57), we get
F(Z1Z2) = 7Y f(Z2) + Z3* f(Z1) — F(DZT 237,

This is an equation of the form (3.49). In the case a; # o2 we apply Theorem 3.10
al:.]nd obtain (3.55). In the case a1 = a2 we apply Theorem 3.11 and obtain (3.56).
Theorem 3.13 The general solution of the functional equation

f(Z1Z9) = 27" h(Zs) + Z379(Z1) (01, 02 €N) (3.58)
is given by the following formulae

f(U) = B(U*—U™)+ CU®%,
9(U) B(U® — U%) + CU* — DU%, (3.59)
R(U) B(U% —U™)+ DU if a; # o

or

f(U) = U*(Bh[U+C),
9(U) U®(BIn|U| + C - D), (3.60)
A(U) = U*Bh[U|+D) f a1 =z =a,

where B, C = f(I) and D = h(I) are constant complex vectors and In |U| is as in
Theorem 3.11.

Proof. If we put Z; = I in (3.58), there follows the relation

f(Z2) = h(Z2) + 9()Z5". (3.61)
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Analogously, for Z; = I we obtain
f(Z1) = ZT' h(X) + g(Zy). (3.62)

Finally, for Z, = Z; =1, we have f(I) = g(I) + h(I). By substituting h(Z,) from
(3.61) and g(Z,) from (3.62) into (3.58), we get

f(2.22) = 27" f(Z2) + 237 f(Z1) - (D)2 237

To this equation we can apply Theorem 3.10 for a; # a3 or Theorem 3.11 for
@1 = a to obtain respectively the formulae (3.59) or (3.60). a

Theorem 3.14 The general solution of the functional equation

m n m

DD UV =S [URF(V) + Ve f(U) + AUSVE],  (3.63)

i=1 j=1 i=1 j=1

where A is a constant complex vector and oy, as € N, is given by the formula
(3.50) for ay # oy and by the formula (3.52) for a; = as.

Proof. Equation (3.63) can be obtained by summation of equations of the form
(3.49) for each pair of variables (U;, V), so the formula (3.50) for a; # as and
(3.52) for a3 = a2 give a solution of equation (3.63). It remains to show that each
solution of equation (3.63) has the form given by (3.50) for a; # a3 and (3.52) for
a)] = Qo.

First we see that f(O) = O. Next we put into (3.63) Uy = Z;, V; = Zs,
U;=V;=0for 2<i<m,2<j<n and we obtain (3.49). Thus any solution
of (3.63) must be given by (3.50) or (3.52). O

Theorem 3.15 The general solution of the functional equation

m n m n

DD AUV =D [UR(V) + VEF(U)] (a1, a2 €N)

i=1j=1 =1 j=1
is given by the formula (3.55) for a; # ao and by the formula (3.56) for a; = as.

Proof. The proof of this theorem is analogous to that of the previous Theo-
rem 3.14. O

Theorem 3.16 The general solution of the functional equation

m n m n

SN UV =3 [URK(V;) + V2g(U)]  (on, az €N)

i=1 j=1 i=1 j=1
is gwen by the formula (3.59) for oy # aq and by the formula (3.60) for oy = az.

Proof. For the proof of this theorem holds the same as for the previous Theo-
rem 3.15. O
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Theorem 3.17 The general continuous solution of the complex vector functional

equation
f (1'[ z,-) =Y filZ), (3.64)
i=1 i=1

where f and f; (1 < i < n) map the subset of V consisting of all vectors with
nonzero components into V, is given by

fZ)=ChjZ|+3 A f(Z)=ChjZl+A; (1<i<n), (3.65)
i=1

where C is a constant complex matriz, A; (1 < i < n) are arbitrary constant
complez vectors, andIn |Z| = (In|z1],In|z1), ..., In|2,|)T for Z = (21, 22,...,2a)7.

Proof. First we shall prove the theorem under the assumption that Z; (1 < i < n)
are real vectors with positive components.
By the identity Z = exp(InZ), from (3.64) it follows that

f (expz In Z,-) = Z fi(exp(In Z;)).

=1 i=1

If we introduce the notations

InZ;=U;, f(exp(U)) =g(U), fi(exp(U))=g:i(U) (1<i<n),
we obtain the equation
n n
g (Z Ui) =" g:(Uy).

i=1 i=1

According to Theorem 3.1, the general continuous solution of this equation is
n
g(U)=CU+Y A;, g(U)=CU+A; (1<i<n),
i=1

where C is a constant complex matrix, and A; (1 < ¢ < n) are arbitrary constant
complex vectors. Thus

f(Z):Clnz+2nin, f(Z)=ChZ+A; (1<i<n), (3.66)

i=1
where Z is a real vector with positive components.
From (3.66) it follows that
) =A; (1<i<n), f)=) A
i=1

Now we shall prove (3.65) for all complex vectors with nonzero components.
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If in (3.64) we put Z; = Z, Z; =1 for j # i, we obtain
[(Z)=f2)->A; (1<ign) (3.67)
J#i

Thus (3.64) can be transformed into a functional equation with one unknown

function f:
f (H Zi) =) f(Z)-(n-1)> A, (3.68)
i=1 i=1 j=1

Let us denote w, = exp (2%f). Then w? = 1, w, # 1. If we put in (3.68)
Z,=...=2, =w,l, we obtain

F@O) =nflwd) —(n—1)>_ A;,
Jj=1

ice., nf(wal) = F(I) + (n — 1) (1) = nf(T) and f(wal) = £(1).
Next, for any k (1 £ k < n) we put in (3.68) Z; = --- = Z = wpI, Zg41 =
.+ =Z, =1 to obtain f(wkI) = f(I).
Now let us consider a complex vector w with |w| = I. Any component of w has
the form exp(27ir), 0 < r < 1. We can represent the real number r in the form

[e ]
r= Zrkn"‘, 0<ry<n. (3.69)

Then f(w) = f(I). This equality is easy to see for those components for which
the sum (3.69) is finite. For an infinite sum we apply the continuity of f.

Finally, for a complex vector Z with nonzero components we have Z = |Z|w
with |w| =1 and

F(Z) = f(1Z]) + f(w) + (n = 2)f(T) — (n = 1)£(T),

i.e., f(Z) = f(|Z]). Now from (3.67) we find fi;(Z) = fi(|Z]) (1 £ i < n) and this
implies (3.65). O

Theorem 3.18 The general continuous solution of the functional equation

n n n
f (Hzilv--anzim) =ij(zj1,~-,zjm) + A,
i=1 i=1 j=1

wherem > 1, n > 2, Z,; (1 <7 <n; 1< 3 < m) are vectors with nonzero
components and A is a constant complex vector, is given by

f(ZTI}'--azrm) = EC lanrJI-I-ZD _
Jj=1

il A
flZets o Tom) = Z jI|Zej| + D, - —— (1<7<n),

where C; are arbitrary constant complex matrices and D; are arbitrary constant
complex vectors.
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Proof. The proof is similar to the proof of the previous theorem. O

Theorem 3.19 The general continuous solution of the functional equation

(szl, szm) =Hfj(z.1'1""’zjm)’
ji=1

wherem > 1, n > 2, Z,; (1 <r <mn; 1< j < m) are vectors with nonzero
components, is given by

f(zrly rm) = CHZ"‘J’

fr(Zrs- s Zpm) Cl/n].-.[zgj (1<r<n),

where C is an arbitrary constant complez vector and o is an arbitary integer
number, or

f(Zpy,. .. 1 Lrm) = CH lzfjla’

m
(2, ..., Zr) = cl/n H Izrjla 1<r< n),
=1

where C is as above and c is an arbitrary complez number.

Proof. It is similar to that of the previous theorem. a

Theorem 3.20 The general continuous solution of the equation

zZ+n S ZZi+n? ) ZiZiZi+ - +nP-1Hz Zf,

1<i<j<p 1<i<j<k<p i=1

where the complex vectors Z; (1 < i < p) and the complex constant n are such that
Z; + nl are vectors with nonzero components, is given by

P
f(Z)=Kinl+nZ|+) Ci fi(Z)=Kh[I+aZ|+C; (1<i<p),
i=1

where K is an arbitrary constant complez matriz and C; (1 < i < p) are arbitrary
constant complez vectors.

Proof. The proof of this theorem is similar to that of Theorem 3.1. Namely, we
put p — 2 of the variables to be equal to the zero vector, etc. O
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4 Some quadratic complex vector functional equa-
tions

Here we will first consider a homogeneous quadratic complex vector functional
equation of the form

a1f(21)9(Z2, 23, Z4) + a2 f(Z2)g(23,24,Zy)
+ a3f(Z3)9(Z4,Z1,Z2) + a4 f(Z4)g(Z1, Z2,Z3) = O,

where a;, az, ag, a4 are constant complex vectors, f: V+— Vandg: V3 — V.
It is easy to see that if a component of the function f is identically 0, then the
respective component of the function g may be arbitrary. Thus it suffices to
consider the scalar equation

a1f(Z1)9(Z2, Z3,Z4) + a2f(Z2)9(Z3,Z4,Z,)
+  a3f(Z3)9(Z4, 21, Z2) + a4 f(24)g(Z1, 22, 2Z3) =0,

where a;,a,a3,a4 are complex constants, f : V+— C and g: V3 — C. Equation
(4.2) has trivial solutions for which f = 0 and g is arbitrary. We shall call a
general solution of (4.2) the set of all other solutions of this equation. Obviously,
the general solution includes other trivial solutions of the form g = 0, f arbitrary.

First we will find the general solution of some particular cases of equation (4.2),
and after that we will prove a general result for equation (4.2) by reducing it to
one of these particular cases using a matrix method. Finally, we will consider some
equations which generalize equation (4.2).

(4.1)

(4.2)

Theorem 4.1 The general solution of the functional equation

F(Z1)9(Z2,Z3,Z4) + f(Z2)9(Z3,Z4,Z,)

4.3
+  f(23)9(Z4,Z1,Z2) + f(Z4)9(Z1,Z2,Z3) = 0 “3
is given by
g(U,V,W) F(U)G,(V,W) — F(W)G,(U, V) (4.4)
+ F(V)[G2(W,U) - Gg(U,W)],

where F: V — C and Gy, G2 : V2 — C are arbitrary functions.

Proof. If we exclude the trivial case f(Z,) = 0, g arbitrary, then there is a
constant complex vector A; such that f(A;)=C #0. W
Putting Z, = Zy = Z3 = Z4 = A,, from (4.3) it follows that

g(Al,Al,Al) =0. (4.5)
For Z; = Z; = A,, from (4.3) we obtain

C9(A1,Z3,24) + Cg(Z3, Z4, A1) + f(Z3)g(Z4, A1, A1) + f(Za)g(A1, A1, Z3) = 0.
(4.6)
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From (4.6), for Z3 = A1, having in view (4.5), we get
g(A1,A1,Z4) + 9(A1,Z4, A1) + 9(Z4,A1, A1) =0. (4.7)
If we set Z; = Z3 = A, and if we introduce the notations
g(U,A,,V)=K(U,V) and g(A1,U,A,)=-2CH(U), (4.8)
(4.3) yields

[K(Zz,Z4)—f(Zz)H(Z4)—f(Z4)H(Zz)]"'[K(Z4,Zz)—f(Z4)H(Z2)—f(Za)Hé4Z§))] =0,
which is a cyclic equation, so that its general solution is '

K(U,V) =g(U,A,;, V) = P(U,V)-P(V,U)+ f(U)H(V)+ f(V)H(U), (4.10)

where P: V2 — C is an arbitrary function.
With the notation g(U,A;,A;) = —CL(U), the relation (4.6), because of
(4.7) and (4.8), implies

9(A1,23,Z4) = —g(Z3, Za, A1) + f(Z3)L(Z4) — f(Za)L(Z3) — 2f(Z4) H(Zs).
(4.11)
With Z; = A, taking into account (4.10) and (4.11), from (4.3) we obtain

Cy(Za,Z3,Z4) = —(Z2)S(Z3, Za) + f(Z4)S(Z2, Z3) + f(Z3)[P(Z2, 24) — P(Z4,22))
—(Z2)f(Z3)H(Z4) + f(Z3)f(Z4)H(Z2) — f(Z2)f(Z4)L(Z3) + f(Z3)f(Z4)L(Z2)

with S(U,V) = g(U, V,A,).
Now if we introduce the notations

f(Q) = F(U),
Gi(U,V) = —é[S(U,V)—I—F(V)L(U)],

G(UV) = - 5[P(UV) - F(V)H(U)),

we obtain (4.4).
On the other hand, all functions of the form (4.4) satisfy the equation (4.3). O

Theorem 4.2 The general solution of the complex vector functional equation

£(21)9(Z2, 23, Z4) — f(Z2)9(Z3,Z4,Z1)

(4.12)
+ f(z3)g(zda Zla Z2) - f(Z4)g(Z1, Z2, Z3) =0
is given by
fU) = F(U),
9(U,V,W) = F(U)G1(V, W)+ F(W)G:(U,V) (4.13)

- F(V)[G2(W,U) - Go(U,W)] + AF(U)F(V)F(W),

where F: V — C and Gy, G2 : V? — C are arbitrary functions and A is an
arbitrary constant.
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Proof. In this case we also suppose that there is a constant complex vector A;
such that f(A;)=C #0.

If we put Z; = Z3 = A, and if we introduce the notations g(U, A;,V) =
K(U,V)and g(A,,U, A,) = 2CH(U), equation (4.12) is reduced to the equation
(4.9) whose general solution is determined by (4.10).

If we substitute Z; = Z, = A, into (4.12), we get

9(A1,Z3, Z4) = g(Z3, Z4, A1)~ f(Z3) L(Z4)— f(Z4) L(Z3)+2H (Z3) f(Zs)+Bf(Z3) f (Za),

(4.14)
where we have introduced the notations g(U, A, A;) = CL(U) and g(A1,A1, A;) =
BC? and have used the equality

g(AlaA-laU) = g(Ala UsAl) —g(UvAl)Al) + BCf(U),

which is obtained from (4.12) for Z; = Zy = Z3 = A; and Z4 = U.
Now, if we again put Z; = A, into (4.12), then because of (4.10) and (4.14),
we obtain

C9(Z2,23,24) = f(Z2)S(Z3,Za) + f(24)S(Z2, Z3) + f(Z3)[P(Z2, 24) — P(24,Zs)]
—f(22)f(Z3)H(Za) + f(Z3) f(Za)H(Z2) — f(Z3)f(Z4)L(Z2)
—F(22)f(Z4)L(Z3) + Bf(22)f(Z3)f(Z4),

with S(U,V) =g(U,V,A,).
By introducing the notations

f(U) = F@),
GI(UV) = 5[S(U,V)- FUILWV)),
Go(U. V) = é[P(U, V) - FU)H(V)],
we arrive at the formulae (4.13). W

Theorem 4.3 The general solution of the functional equation

F(Z1)9(22,23,24) £if(Z2)g(Z3,Z4,Z,)

(4.15)
= f(Z3)9(Z4,21,Z2) Fif(Z4)9(Z1,Z2,23) = 0
is given by
f(G) = F(U),
g(U,V, W) = FiF(U)G(V,W)+ F(W)G(U,V) (4.16)

+ F(V)[P(U,W) + P(W,U)] + BF(U)F(V)F(W),

where F : V +— C and G, P : V? — C are arbitrary functions and B is an
arbitrary constant.
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Proof. Again we suppose that there is a constant complex vector A; such that
f(A1)=C #0.
If we set Z, = Z3 = A, and if we introduce the notations g(U,A;,V) =
K(U,V) and g(A,,U, A;) = +iCH(U), (4.15) yields
K(Z3,24) — f(Z2)H(Z4) = K(Z4,Z2) — f(Z4)H(Zy),
which is a cyclic equation, so that its general solution can be written in the form

K(U,V) = f(U)H(V) + CP(U,V) + CP(V,U), (4.17)

where P : V? - C is an arbitrary function.
Setting Z; = Z» = A, the functional equation (4.15) yields

Cg(Ay,Z3,24)+iCy(Z3, Za, A1) — f(Z3)g(Za, A1, A1) Fif(Zs)g(Ar, Ay, Z3) = 0.
(4.18)
We put into equation (4.18) Z3 = A,, Z4 = U and obtain

g(A1, A1, U) = CH(U) + CL(U) - BCF(U), (4.19)

where we have introduced the notations g(U, A, A1) = CL(U) and Fig(A1, Ay, Ay) =
BC?2. Now we substitute (4.19) into (4.18) and obtain

9(A1,Z3, Zy) = Fig(Z3, Za, A1)+ f(23)L(Za)£if (Z4)H(Z3) i f (Z4) L(Z3)FiB f(Z3) f(Za)-
(4.20)
With Z; = A,, taking into account (4.17) and (4.20), from (4.15) we obtain

Cg(Zz, Z3, Z4) = :F’if(ZQ)S(Z:;, Z4) + f(Z4)S(Z2, Zg) + f(Z3) [P(Zz, Z4) + P(Z4, ZQ)]
+if(Z2) f(Z4)L(Z3) — f(Z3)f(Z4)L(Z2) + Bf(Z2)f(Z3)f(Z4)
with S(U, V) = g(U, V, A,).

Now if we introduce the notations
f(U) =" F(U),
GU,V) = F5[S(U,V)-F(V)L(U)],

we obtain (4.16). o
Theorem 4.4 The equation
f(Zl)g(Zz, Z3, Z4) + (1 + i)f(Zg)g(Z;;, Z4, Z]) + ’if(Z3)g(Z4, Z, Z2) =0. (4.21)

has a general solution

f(U) F(U), (4.22)
9(U,V,W) = F(U)F(V)H(W)-(1Fi)F(U)F(W)H(V) FiF(V)F(W)H(U),

where F, H: V — C are arbitrary functions.
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Proof. Equation (4.21) can be written in the form

F(Z1)9(Z2, Z3, Z4)+ f(Z2)9(Z3, Z4, Z1) i [ £ (Z2)g(Z3, Z4, 21 )+ f(Z3)9(Z4, 21, Z2)] = 0.

By a cyclic permutation of the variables this equation implies

£(22)9(Z3, Za, 1) +f(Z3)9(Za, Z1, L) i £(23)9(Z4, 21, Z2)+£(24)9(Z1, Z2, Z3)) = 0.

From the last two equations we deduce
F(Z1)9(Z2, 23, Z4)+ f(Z2)g(Z3, Z4, Z1)+ £ (Z3)9(Z4, 21, Z2)+ [ (Z4)g(Zn, Z2, Z3) = O,

whose general solution according to Theorem 4.1 is given by the formulae (4.4).
We substitute these into (4.21) and obtain
:F’iF(Zl)F(ZQ)Gl(Z,g, Z4) + F(Zg)F(Zg)Gl(Z4, Zl)
+iF(Z3)F(24)G1(Z1, Z2) — F(Z1)F(24)G1(Z2, Z3) (4.23)
+(1 £ 8)F(Z2)F(Z4)[G2(Z1, Z3) — G2(Z3,Z,1)]
+(1 F Z)F(Zl)F(Z3) [G2(Z4, Z2) - Gz(Zg, Z4)] =0.
We put into this equation Zy = Z> = A,, Z3 = U, Z4 = V and obtain
FiC?G1(U, V) + CF(U)G1(V, Ay) £ iF(U)F(V)G1(A1, A1) — CF(V)G1(A,,U)
+(1 £4)CF(V)[G2(A1,U) — G2(U, Ay)] (4.24)
+(1 F§)CF(U)[Go(V, A1) — G(A1, V)] = 0. -
If we introduce the notation

B =Gi(A1,Ay)/C?,
. i
éGlAl,U)-{— C’

N(V) = FEGI(V,A1) = T2 [Ga(V, A1) = GalAs, V),

from equation (4.24) we can express

G:1(U,V) = BF(U)F(V) + F(U)N(V) + F(V)M(U). (4.25)

+

=
=
I

[G2(A1v U) - G?(Ua Al)] )

We substitute this expression into (4.23) and obtain
F(Z1)F(Z3)F(Z3)[M(Z4) FiN(Z4)] F iF(Z1)F(Z2)F(Z4)[M(Z3) ¥ iN(Zs3)]
— F(Z1)F(Z3)F(Z4)[M(Z2) F iN(Z3)]  iF(Z2)F(Z3)F(Z4)[M(Z1) F iN(Z,))
+(1 + i) F(22) F(24)[G2(Z1,Z3) — G2(Z3,Z1))
+(1 F1)F(Z1)F(Z3)[G2(Z4, Z2) — G2(Z2,Z4)] = 0.
From this equality for Z; = Zs = A we find

1+
2

G2(Z1, Z3)-G2(Z3, Zl) = {F(Zl) [M(Z:;):F’I,N(Zg)] —F(Z3) [M(Zl):FZN(Zl)] }
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We substitute this expression and (4.25) into the formula for g in (4.4) and deduce

(4.22) with

1+4
2

H(U) = - === [M(U) - N(U)]. |

Theorem 4.5 The equation
f(Z1)9(Z2, 23, Z4) — (1 F 1) f(22)9(Z3, 24, Z1) F if(Z3)9(Z4, Z1,Z2) = 0.
has a general solution

f(U) = F(U), (4.26)
g(U,V, W) F(U)F(V)H(W) + (1 £i)F(U)F(W)H(V) £ iF(V)F(W)H(U),

where F, H : V — C are arbitrary functions.

Proof. The proof is similar to that of the previous theorem, making use of the
result of Theorem 4.2. O

Theorem 4.6 The general solution of the functional equation
f(21)9(Z2, 23, Z4) + f(Z3)9(Z4,Z1,Z) =0 (4.27)
is given by the formulae
f(U) = F(U)
9(U,V,W) = F(V)[G(W,U)-G(U,W), (428
where F: V— C and G : V? — C are arbitrary functions.

Proof. Let us assume that f(A;) = C # 0. Then, for Z; = A, from (4.27) we
get

9(Z2,Z3,Z4) = f(Z3)M(Z4,Z>), (4.29)

where M(U,V) = — 5g(U,A,,V).
Substituting (4.29) into (4.27), we obtain

F(Z1)f(Z3)M(Z4, Z2) + f(Z3)f(21)M(Z2,Z4) = 0. (4.30)
For Z, = Z3 = A; equation (4.30) yields
M(Z2,Z4) + M(Z4,Z2) = 0,
whose general solution is
M(Z2,Z4) = G(Z2,Z4) — G(Z4,Z5),

where G : V? — C is an arbitrary function.
Therefore, with the notation f(U) = F(U), we get the formulae (4.28). O
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Theorem 4.7 The general solution of the functional equation

f(Zl)g(Z2a Z39 Z4) - f(Z3)g(Z4, Zl, Z?) =0 (4‘31)
is given by the formulae
f(U) = F(U) (4.32)
9(U,V,W) = F(V)[G(U,W)+GW,U)],

where F: V- C and G : V2 — C are arbitrary functions.
Proof. If f(A,) = C # 0, then the equation (4.31) for Z; = A, yields
g(ZQ, Z3, Zq) = f(Z3)M(Z4, Zg), (4.33)

where M(U,V) = ég(U, A, V)
Substituting (4.33) into (4.31), we get

f(Z21)f(Z3)M(Z4, Z2) — f(Z3)f(Z:1)M(Z3,Z4) =0,
from which for Z, = Z3 = A; we have
M(Z2,Z4) — M(Z4,Z5) = 0.
The general solution of this equation is
M(U,V)=G(U,V)+G(V,U), (4.34)

where G : V? — C is an arbitrary function.
If we put f(U) = F(U), by virtue of (4.33) and (4.34) we have (4.32). ]

Theorem 4.8 The general solution of the functional equation

f(Z21)9(Z2,2Z3,Z4) + f(Z2)g(23,24,21) =0 (4.35)
18
f(U) = F(U), (436)
g(U,V, W) =0,

where F : V — C is an arbitrary function.

Proof. If f(A;) = C #0, then for Z; = A; (1 < j < 4), from (4.35) we obtain
g(A1,Aq,A1) =0. For Z, = A, the equation (4.35) is reduced to

9(2Z2,Z3,24) = f(Z2)M(Z3,2Z4), (4.37)

where M(U,V) = — ég(U, V,A,).
Inserting (4.37) into (4.35), we have

F(Z1)f(Z2)M(Z3,Z4) + f(Z2)f(Z3)M(Z4,2Z,) = 0, (4.38)
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from which, for Z, = Z; = A4, we get

M(Z3,Z4) = f(Z3)N(Z4), (4.39)
where 1 1
N(U)=- EM(U1 Ay) = @Q(U,Al,Al)-
Therefore, by virtue of (4.39), from (4.38) we get

F(Z1)f(Z2) f(Z3)N(Z4) + £(Z2)f(Z3) f(Z4)N(Z1) = 0. (4.40)
Equation (4.40), for Z; = Zy = Z3 = A, and Z4 = U, yields
CN(U) + f(U)N(A;) =0.
Since N(A;) = Zzg(A1, A1, Ay) = 0,- we have
N(U) =0. (4.41)
By virtue of (4.41), (4.39) and (4.37) we may conclude that
9(U,V,W) =0. D

Theorem 4.9 The general solution of the functional equation

f(Z1)9(Z2,Z3,24) — f(Z2)9(Z3,2Z4,2Z1) =0 (4.42)
is given by
f(U) = FQ), (4.43)
g(U,V,W) = BF(U)F(V)F(W),

where F : V — C is an arbitrary function and B is an arbitrary constant.
Proof. Let f(A;) = C # 0. Then, for Z, = A,, equation (4.42) becomes
0(Z2, B, Za) = f(Za) M (Zs, Za), 4

where the notation .
M(U,V) = 59(U, V, Ay)

has been introduced.
If (4.44) is inserted into (4.42), then the following equation is obtained

F(21)f(Z2)M(Z3, Z4) — (Z2)f(Z3)M (24, Z1) =0, (4.45)
which, for Z] = Z2 = Al, Z3 =T and Z4 = V, yields

M(U,V) = f(U)N(V), (4.46)
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where

1 1
N(U) = oMU A = @Q(U, AL A)y).
By virtue of (4.46), equation (4.45) becomes
f(Z1)f(Z2)f(Z3)N(Z4) — f(Z2)f(Z3)f(Za)N(Z1) =0
which, for Z; =2, = Z3 = A; and Z4 = U, gives

N(U) = Bf(U), (4.47)
where ; )
B = EN(AI) = EQ(AI’AhAI)-

Using (4.44), (4.46) and (4.47), we find
9(U,V, W) = Bf(U)F(V)f(W). =
Theorem 4.10 The general solution of the functional equation
f(21)9(Z2,Z3,Z4) +if(Z2)g(Z3,Z4,Z,) = 0 (4.48)
is (4.36).

Proof. The theorem can be proved in the same way as Theorem 4.8. Here we
give an alternative proof.
The equation (4.48) implies

f(Z1)9(Z2,Z3,24) + f(Z3)9(Z4,Z1,Z3) = 0.

According to Theorem 4.6 its general solution is given by (4.28). We substitute
this into (4.48) to obtain

F(Z1)F(23)[G(Z4,Z2) — G(Za2, Zu)) £ iF(Z2)F(Z4)[G(Z1, Z3) — G(Z3,Z1)] = 0.
(4.49)
Let A; be such that F(A;) =C #0. We put into (4.49) Z, =Z3=A,,Z>o=TU
and Z4 = W. Thus ‘
Cc? [G(W, U) - G(U,W)] =0.

This shows that G(W,U) = G(U, W) and a substitution into (4.28) yields
g(U,V, W) =0. (]
Now we shall prove the following general result.
Theorem 4.11 The general solution of the functional equation

a1f(Z1)9(22, Z3, Z4) + a2f(Z2)9(Z3, 24, Z1)

(4.50)
+ a3f(Z3)9(Z4,Z1,2Z3) + aaf(Z4)9(Z1, Z2,Z3) = 0,
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where a; (i = 1,2,3,4) are complex constants, is determined by the formulae

10
20
30
40
50
60
70
80
90
10°
11°
12°

(4.36) if (a1 + (1,3)2 - (a2 + a4)2 #0 and (al - (13)2 + (0.2 — a4)2 #0;
(4.36) if (a1 + a3)?® — (a2 +a4)? # 0 and az — ag = +i(a; — a3) #0;
(4.28) if a? — a% # 0, a3 = a1, ag = az;

(4.36) ifay +az = a2 +as #0, (a1 —a3)? + (a2 — as)? #0;

(4.22) if a1 + a3 = a2 + a4 # 0, a2 — ag = xi(a) — a3);

(4.4) Zf a1 = a2 =agz = a4 75 0,’

(443) ifas + a4 = —((11 +a3) #0, (a1 — 03)2 + (a2 — a4) #0;

(4 26) ifas+aq4= —(al +a3) #0,a— a4 = :I:z(al —03) #0;
(4.13) if a1 = —ag = a3 = —aq4 #0;

(4.32) ifa; +a3 = a2 +a4 =0, a3 +a3 #0;

(4.16) if a1 + a3 = ag + a4 =0, ag = tia; #0;

f(U) = F(U) and g(U,V,W) = G(U,V, W) where F: V— C and

G : V3 C are arbitrary functions if a1 = az = a3 = a4 = 0.

Proof. If we introduce the substitution f(Z,)g(Zs,Z3,Z4) = h(Z1,Z2,Z3,Z,),

from (4.50) there follows the equation

Now we can use Theorem 2.1 from [1]. By a cyclic permutation of the vectors in

a1h(Zy,Z2,23,24) + a2h(Z2,Z3,24,7Z,)
+  a3h(Z3,Z4,2Z1,22) + ash(Z4,Z1,Z2,2Z3) = 0.

(4.51) we obtain the following system of equations

If we put h(Z;, Zi11,Ziy2,Ziq3) =
becomes

a1h(Z1,Z2, Z3, Z4) + 02h(Z2, 23, Z4, Z,)
+ h(Z Z4,7Z,, 2) + a4h(Z4, Z,,2Z-, 3)
ash(Zy,2Z2,Z3,Z4) + a1h(Z2,23,Z4,Z;)
+ a2h(Z3,24,Z1,2Z5) + ash(Z4,Z4,2,,23) =0,
a3h(Z1, 22, Z3, Z4) + aah(Z2, 23, 24, Z,)
+ alh(Z3, Z4,7Z,, ZQ) + (12h(Z4, Z,,2,, Z3) =0,
aoh(Z1,Z2,Z3,24) + azh(Zy,Z3,24,7,)
( )

+ aah(Z3,Z4,2Z1,Z2) + a1h(Z4,2y,Z5,Z3) = 0.

Rt (Ziys = Zs, i = 1,2,3,4), the system (4.52)

arh! + ash? + ash® + agh? =0,
ash' + a1h® 4+ agh® + azh? =0,
aah.l + a4h2 + a1h3 + a2h4 =0,
ash! + azh? + agh® + a1 h* = 0.

By the notations a; + ag = 2M, az + a4 = 2P, a1 — a3z = 2N, a2 — a4 = 2Q), i.e.

=M+N, ay =

P+Q@,a3 =M—N, a4 = P — @, the above system (4.53)

(4.51)

(4.52)

(4.53)
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takes the form

M(h' + A% + P(h? + h*) + N(h! = 8%) + Q(R* — h*) =0,
P(r' + 1) + M(R* + h*) - Q(h' — 1®) + N(B* — b*) =0,
M(h' +B%) + P(K* + h*) — N(h' — p®) — Q(h* — h*) =0,
P(h! +B%) + M(B? + h*) + Q(h' — B®) — N(h® — 1*) =0,

which is equivalent to the system

M(R' + 1% + P(R* + h*) =0,

P(R' + h3) + M(R* + h*) =0,

(hl _ h3) + Q(h2 _ h4) 0, (454)
- Q(h'=h®) + N(h? - h%) =0.

The determinant of the linear system (4.54) is
A= [(a1 + a3)2 — (a2 + a4)2] [(al - a3)2 + (ag — a4)2] = 16(M2 - P2)(N2 + Qz)
We can decompose the system (4.54) into two subsystems:

M(R' + B®) + P(h? + h') =0, P(h' + h%) + M(h? + %) =0, (4.55)
N(h' = r) +Q(h?-h*) =0, —Q(h'—A3) + N(h®—h*) =0, (4.56)

whose determinants are respectively M2 — P2 and N2 + Q2.

The following statements hold:

1° If M2 — P2 £ 0, the system (4.55) is equivalent to the equation h! + A% =

2° If M = P =0, the system (4.55) is equivalent to the equation 0 = 0;

3° If P = M # 0, the system (4.55) is equivalent to the equation h! + A% +
h3+ht=0;

4° If P = —M +# 0, the system (4.55) is equivalent to the equation h! — A% +
h3 —ht =

5°If N 2 + Q2 # 0, the system (4.56) is equivalent to the equation k! — h® = 0;

6° If N = Q =0, the system (4.56) is equivalent to the equation 0 = 0;

7° If Q = +iN # 0, the system (4.56) is equivalent to the equation h' £ ih% —
h3 Fiht =0.

By virtue of the above seven statements we conclude that:

1 If M2 — P%2 £0, N?+Q? # 0, the system (4.54) is equivalent to the system
hl 4+ h3 =0, h! —h3 =0, i.e. to the equation h = 0;

2'If M2 — P2 #£0, Q = £iN # 0, the system (4.54) is equivalent to the system
h' + k%3 =0, h! £ ih%2 — B3 Fih? =0, i.e. to the equation h! £ih? = 0;

3 If M2 — P?2 #£0, N = Q = 0, the system (4.54) is equivalent to the system
ht +h3=0,0=0, i.e. to the equation h! + h3 = 0;

4 IfP=M#0, N24+Q? #0, the system (4.54) is equivalent to the system
h' —h® =0, R' + h2 + h® + h* =0, i.e. to the equation h! + A% = 0;
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5 IfP=MG4#0, Q= xiN # 0, the system (4.54) is equivalent to the
system A! + A% + A3 + h? = 0, h! £4h% — k3 F ih* = 0, i.e. to the equation
' 4+ (1 +i)h% +iRd =0;

6/ If P=M # 0, N =Q =0, the system (4.54) is equivalent to the equation
R*+h2+ R +hi=0;

TIfP=—-M#0, N2+ Q? # 0, the system (4.54) is equivalent to the system
hl —h3 =0, h! — h2 + h® — h* =0, i.e. to the equation k! — h? = 0;

8 IfP=-M#+#0,@ = +iN # 0, the system (4.54) is equivalent to the
system h! — h2 + h® — h* = 0, h! £ ih? — K3 Fih* = 0, i.e. to the equation
R'— (1 Fi)h?2Find =0

9 IfP=—-M#0, N=0Q =0, the system (4.54) is equivalent to the equation
h'—h2 4+ A% —hi =0,

10’ If M = P =0, N24Q? # 0, the system (4.54) is equivalent to the equation
hl—h3=0;

11If M =P =0, Q = £iN # 0, the system (4.54) is equivalent to the
equation h! +ih% — k3 Fiht =0

122 If M = P =0, N =@ =0, the system (4.54) is equivalent to the equation
0=0.

Therefore, the following result holds:

Lemma 4.12 The functional equation (4.50) is equivalent to the equation:
1°  £(Z1)9(Z2,Z3,24) = 0 if (a1 + a3)® — (a2 + a4)? # 0 and (a; — a3)® +
(a2 —ag)® #0;
2°  f(Z1)9(Z2,Z3,Z4) xif(Z2)g(Z3,Z4,Z,) = 0 if (a1 +a3)® — (a2 +aq)2 #0
and ag — a4 = :I:i(a1 e a3) 7é 0,‘
3° f(Z1)g(ZQ,Z3,Z4) + f(Z3)g(Z4,Z1,Z2) =0 ifas = a1, a4 = as and
a? —a2 #0;
1 2 ’
4 f(21)9(22,Z3,24) + f(Z2)9(Z3,24,Z1) =0 if a1 +a3 = az + a4 # 0 and
(al — (1.3)2 + (az - a4)2 #0;
5°  f(Z1)9(Z2,23,Z4) + (1 £ 3)f(Z2)9(Z3, Z4,Z1) £ if(Z3)9(Z4,21,Z2) =0
ifa; + a3 =ag + a4 #0 and ag — aq = ti(a; —a3) #0;
6°  f(Z1)9(Z2,Z3,24)+f(Z2)9(Z3, Z4,Z1)+ f(Z3)9(Z4, 21, Z2)+ [ (Z4)g9(Z1,Zy, Z3) =
0 'ifal =Qa2=0a3 = a4 %0;
7 f(Z1)9(Z2,Z3,24) — f(Z2)9(Z3,24,Z1) =0 if a2 + a4 = —(a1 +a3) #0
and (a1 — a3)® + (a2 — aqg)® #0;
8  f(Z1)9(22,23,Z4) — (1T 1) f(Z2)9(Z3,24,7Z1) Fif(Z3)9(Z4,21,2Z2) =0
if ag + ag = —(a1 + a3) # 0 and a2 — a4 = *+i(ay — a3) # 0;
9°  f(Z21)9(Z2,23,24)—f(Z2)9(Z3,2Z4,21)+ f(Z3)9(Z4, 21, Z3)— f(Z4)9(Z1, 22, Z3) =
0ifay =—ag=a3=—aq #0; :
10° f(zl)g(Z2,Z3, Z4) - f(Z3)g(Z3,Z4,Z1) =0ifar+az=as+a34 =0
~anda?+ak #0; .
11°  f(Z1)9(Z2, Z3, Z4)£if(Z2)9(Z3, Za, Z1)— f(Z3)9(Za, Z1, Z2)Fif (Z4)9(Z1, Z2, Zs3)
=0ifay +a3 =az+ a4 =0 and az = *ia; #0;
12° 0=0ifa;=a3=a3=a4=0.
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Combining Lemma 4.12 and Theorems 4.1-4.10 we get the proof of Theorem
4.11. O
Now we will give a general result.

Theorem 4.13 The general solution of the functional equation
n
D aif(Z)9(Zir1, Zivas o, Zign-1) =0 (n>1, Znypi=2), (457)
=1

where a; (1 < i < n) are complex constants, f : V— C,g: V"1 = C, is
determined by the following formulae

f(Z) = F(Z),

(4.58)
9(z2aZ3s---,Zn) 'u(Zl,Zg,...,Zn)
g(ZSv"azn,Zl) di { 1 1 1 } 'U(Z2,...,Zn,zl)

. = 18 ) yosoy )
; E\F(Z1) F(Z2)' " F(Za)
g(zl,Z2,...,Zn_1) 'U(Zn,Zh...,Zn_l)
where
ay Q2 - Qp bl b2 LR bn
an a1 - Qp-i b by o+ bpa
A= , B =
a azg -+ Q1 b2 b3 e bl

is a nonzero n x n constant cyclic matriz with complex entries such that AB = O,
F: VYV — C is an arbitrary nonzero function, and the function v : V* — C is
chosen in such a way that the j—th component of the vector in the right-hand side
of (4.58) does not depend on Z;.

Proof. By the substitutions

F(Z:)9(Ziv1,Zive,- - -y Lign—1) = M(Zi,Ziy1,- ., Zign-1) (1 <i<n)
(4.59)
the functional equation (4.57) reduces to the linear equation

n
> aih(Zi,Zisr,. o Zign1) =0 (n>1, Zpyi=Z) (4.60)

i=1

By a cyclic permutation of the vectors Z,Zs,...,Z, in (4.60) we obtain the
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following linear system of equations
alh(Zl,Zg,...,Zn) + a2h(Z2,...,Zn,Z1)
+ "'+anh(zngzla'“)zn—l)=07

anh(Z1,Z,...,2,) + a1h(Zo,...,Zyn,Z)
+ ""Fan—lh(zn,zl,--u,zn—l)=0,

: (4.61)
agh(Zl, Zy,..., Zn) + a3h.(Z2, ceey i, Zl)
+ oot al(Zn,2y,...,Z,-1)=0.
If we introduce the notation
MZy, 2o, ..., 2y)
WNZs,...,2Zn,7,)
H=|. )
WNZn,Zy,...,Zpn—1)
then the system (4.61) can be written in a matrix form as
AH = 0. (4.62)

According to Theorem 2.1 from [1] (see also Theorem 18.1 in the monograph [5])
the general solution of (4.62) is given by

H =BV, (4.63)

where
’U(Zl, Zg, ceay Zn)

V= "U(Z21"'7Z‘nyzl)

’U(Zn, Zl?‘ . ’Zn—l)

v: V" — C is an arbitrary function, the matrix B is as in the statement of the
theorem. If f = 0, then in (4.63) H = V = O and g may be arbitrary. If this
is not the case, we put f(Z) = F(Z), where F : V — C is an arbitrary nonzero
function, and from (4.63) and (4.59) we deduce (4.58). O

5 Some nonhomogeneous hypercomplex vector func-
tional
equations

In this section we shall consider some linear vector functional equations such that
their coefficients and the components of the vector functions do not necessarily
commute. So we may assume that these coefficients belong to some noncommu-
tative associative division algebra, say, the algebra of quaternions H, and V is an
n-dimensional vector space over H.
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Theorem 5.1 The nonhomogeneous vector functional equation

n n
> 0if(ZisZisr,- s Zign1) = Y 9(Zi, Zit1, .-, Zign—1)bi

i=1

i=1

+h(Z4,2Z,,...,2,)

(5.1)

(n>1, Znyi = Zy),

where a;, b; € H (1 < i < n) are constants, f, g: V" — V are unknown functions
and h: V" — V is a given function, has a general solution given by the following

formulae
f(24,Zy,...,Z,) WMZy,2s,...,2,)
f(Zy,Zs,...,7,) WZs,2Zs,...,7,)
. = .( (5.2)
HZn, 24, ..., 25 ) MZpn,21,...,2Zn-1)
U(ZI,Z2,...,Zn) u(z2,Z3v"-7Zl) u(znszla"'azn—l)
u(ZQ,Z:;,...,Zl) u(Z3,Z4,...,Z2) u(Zl,Zg,...,Zn)
+R | . b
U(Zn,Z],...,Zn_l) u(ZI,Z2,...,Zn) u(zn—lvz’na"‘vzn—2)
’U(Zl,ZQ,...,Zn)
v(Z2,Z3,...,Z1)
+(In — RA) | .
’U(Zn,Zl,...,Zn_l)
and
g(zlaz2$“-’zn) g(z2az31"'vzl) g(znazla--'vzn—l)
g(ZZsz:‘l,"'azl) g(Z39Z41'°-az2) Q(ZI,ZZ,--wZn)
g(zn»zls"-,zn—l) g(Zl,Zg,...,Zn) g(zn—l’zm--wzn—Z)
(5.3)
WZy, Za, ..., Zn)
MZy,23,...,7Z,)
=—(In—AR) . s
MZp,Z,...,20_1)
wW(Z1, 2, Zn)  w(Z2,Zs,...,7Z) W(Zn, 21y -y Znmt)
+ u(Zg,Z;;,...,Z]) ‘U.(Z3,Z4,...,Z2) U(Zl,ZQ,...,Zn)
u(zn1zly---’zn—l) u(ZlaZ2"")zn) u(z‘n—lvzna"'vzn—2)
u(Zl,Zg,...,Zn) u(Z2,Z3,...,Z1) u(Zn,Zl,,..‘,Zn_l)
u(Z2,Z3,...,Z1) ’U,(Z3,Z4,...,Z2) u(Zl,Zg,...,Zn)
~(In—AR)
u(Zn,Zl,...,Zn_l) U(ZI,ZQ,...,Zn) u(Zn_l,Zn,...,Zn_g)

bs,
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if and only if
MZy,2Zo,...,2,) 0]
h(Zs,2Z3,...,2,) 0]
(I. — AR) | . (l-sb)=1]. |, (5.4)
h(Z‘na Zl?"'7zn—1) O
where
a; as an by
a, a Qn_1 b2
A = y b = . ]
as ag a) bn

I, is the unit n X n matriz, the n X n matriz R and the n-dimensional row vector s
satisfy the relations ARA = A and bsb = b respectively, and u and v are arbitrary
functions V™ — V.

Proof. By a cyclic permutation of the vectors in (5.1) we obtain

a1f(Z1,2Z2,...,2Z,) + a2 f(Z2,23,...,Z1)+ -+ anf(Zn,Z1,...,Zp—1)
=9(Z1,Z2,...,Z,)b1 + 9(Z2,2Z3,...,Z, )by + - - -
+g(Zn, Zy,..., Zn_l)bn + h(Zl, Z,,..., Zn),
anf(Z1,Za,...,Zn) +a1f(Z2,Z3,...,Z1) + -+ @n-1f(Zn, Z1, ...
= g(Zz, Zs,..., Z1)b1 +g(Z3, Z,..., Zg)bz + e
+9(Z1,22,...,2,)b, + h(Z2,2Z3,...,7Z,),

’ Zn—l)

a'2f(zl:z2s . 1Zn) +a3f(22,Z3,... 7ZI) +--- +alf(zna zla' . 7Zn—1)
= g(Zn,Zl, ces ,Zn—l)bl +g(Zl, Z,... , Zn)bz 4
+g(zn—l7 Zna ceey Z‘n—2)bn + h(Zm zla sy Zn—l)a

i.e., in a matrix form

AF = Gb +H, (5.5)
where
f(Z1,2y,...,2Z,) hZ1,2Z2,...,2,)
f(z21z3)'--,zl) h(Zz,Zg,...,Zl)
= . ’ H= .
f(z'n)zlw"yzn—l) h(Zn,Zl,...,Zn_l)
and
g(zlaz2$-"’zn) Q(Z2;Z3,---azl) g(zn’zl,"‘az‘n—l)
G— 9(Z2,Z3:---azl) g(z3az47”'az2) g(zl,z21~"’zn)

g(Zn,Zl, e ,Zn—l) g(Zl, Zg, ‘e

9(Zn-1,2n,...,Zy_3)
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The necessity of (5.4} follows from the premultiplication and postmultiplication
of (5.5) with I, — AR and 1 —sb, respectively. Here we should note that if b # 0,
then sb = 1. In this case (5.4) reduces to O = O. On the other hand, if b = 0,
then s can be arbitrary.
To establish the sufficiency of condition (5.4), note that it can be written in
the form
ARH + (I, - AR)Hsb = H, (5.6)

thus showing that (5.5) admits F = RH and G = —(I, — AR)Hs as a solution.
Now let us suppose that (5.4), or equivalently (5.6) is satisfied. If we introduce
the matrices

U(Z1,Z2,...,Zn) ’U,(Z2,Z3,...,Z]) et u(zn'lzlv"'vzn—l)
_ u(z2,Z3,...,Z1) u(Z3,Z4,...,Z2) ’u(zl,Z2,...,Zn)
u(zn,Z1,...,Zn_1) u(Zl,Zz,...,Zn) me u(Zn_l,Zn,...,Zn_g)

and
’U(Zl, Z2, ey Zn)
’U(Z2, Z3, veey Zl)

’U(Zn, Zl, ceey Zn—l)
then formulae (5.2) and (5.3) take the form

F=RH+RUb+(In—RA)V, G =—(In—AR)Hs+U—(I,—AR)Ubs. (5.7)

Substituting the above expressions for F' and G into (5.5), it is easily seen that
they really satisfy this equation.

Now we shall show that an arbitrary solution of (5.5) can be obtained from
the formulae (5.7) for a suitable choice of U and V. Indeed, let Fp and Gy satisfy
(5.5), i.e.,

AFy =Gob + H. (5.8)

Taking V = Fy and U = G, the equations (5.7) become
F = Fy — R(AFy — Gob — H)

and

G = Go — (I, — AR)(Gob + H)s,

respectively. But in view of (5.8), they provide in fact F = Fp and G = Gy, thus
completing the proof. O

It is easy to show that in the case b; = 0 (1 £ ¢ < n) the above theorem reduces
to Theorem 3.1 proved in [1], here restated as

Corollary 5.2 The equation AF = H is consistent if and only if ARH = H, in
which case the general solution is F = RH + (I — RA)V, where V is an arbitrary
vector.
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If the given vector function h(Z,,Z,,...,Z,) = O, then the above corollary re-
duces to Theorem 2.1 proved in [1], here given as

Corollary 5.3 The equation
AF =[0,0,...,0]T
has a general solution F = (I — RA)V, where V is any vector.
Corollary 5.4 The vector functional equation
n
> 0if(ZisZisr, -, Lignor)b = h(Z1, 22, ..., Zn)
i=1
(n>1’ Zn+’iEZiv 1S35n)v

has a general solution

f(Z4,24,...,2,) h(Z1,2,,...,2Z,)
f(ZQ,Z;;,...,Zl) —R h(Z2,Z3,...,Z1) —1
f(zn’zlv""zn—l) h(zn,ZI,-.-,Zn_l)

u(Zl, ZQ, ey Zn)
u(Zz, Zs, ey Z1)
+(I. — RA) | . (5.9)

u(Zn, Zl, ey Zn—l)
if and only if

WNZ,,2Z,,...,2,) hZy, Zo,...,2Z,)
WZs, Zs, . .., Z) W(Za, Zs, ..., Z1)
AR| =. , (5.10)
h(znszla"')zn—l) h(zn,Z1,...,zn_1)
where
a Q -+ Qp
Qn a1 -*°- an-1
A=
a2 a3 -+ @

and the matriz R is such that ARA = A holds, and v : V" — V is an arbitrary
Sfunction.

Proof. If we put
f(zlsz2a- .. ’Zn)
f(Z2,2Zs,...,2Z)

f(zm Zla' ey Zn-l)
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H as in Theorem 5.1, then we can apply Corollary 5.2. The consistency condition
ARH = H is, in fact, (5.10). From the general solution F = RH + (I — RA)V
we can derive (5.9) by postmultiplication with b~! and replacing the arbitrary
function v by . O

Theorem 5.5 The vector functional equations

n
Za,-if(zi, ZH.], ceey Zi+n_1)bj = hj(Zl, Z2, ey Zn) (] = 1, 2) (511)
i=1
(n>1, Zpnyi =2, 1<i<n),
where aji € H(j =1,2, 1 <i<n)andb; € H (j =1,2) are constants and
@ V' =V (j = 1,2) are given functions, have a common solution with a
projector P

F(Z1, 2, . Z) W21, 2. ., Zo)
f(Z2,Z3,...,Z1) h2(z2’ ZS’-"sZI) —1
. = Rp . b2
f(thzla"'azn—l) h2(Zn,Z1,...,Zn_1) (5.12)
hl(zl’ Z27---’Zn) h2(Z11Z2i“"Zn)
hY(Zs,Z3,...,Z,) h%(Zs,Zs,...,Z)
+P<{ Ry . b;l—RQ . b2_1
h’l(znazlv"'azn—l) hz(zn’ Zl,..-,zn_l)
if and only if
h\(Z1,25,...,Z,) h*(Zy,Zs,...,Zx)
h(Zs, Za, .. .. Z h2(Zg. Zs, . ... %)
R . (22,25 y b;'= AR, | . b;! (5.13)
B (Zn, Za, .., Tn1) W2 (Zn, Za, .., Tn1)

for some matrices R, Ry and A such that the row space of A is

Row A = Row A; N Row A,,

where
a1 aj2 - Qjn
a. al .0 a _1
in ¢ jin .
Aj = . (_] = 1,2)
aj2 Q@3 -t G5l

Proof. We transform the functional equation (5.11) into a matrix form. By a
cyclic permutation of the vectors in (5.11) we obtain

a1 f(Z1,2s,...,2,)bj + ajof(Z2,Z3,...,Z1)bj+ -+ + @jnf(Zn,Z1,y. .., Zn-1) = K,
anf(Z1,Z2; - -, Zn)bs + a1 f(Z2, 23, .., Z1)bj ++ -+ jin1 f(Zn, 21, - ., ) = B3,

ajof(Z1,Za,. .., Zn)bj + ajaf(Za, 23, ..., Z1)bj + -+ + 1 f(Zn, D, - - ., Zn1) = R,
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(.7 = 1,2),
i.e., in a matrix form
AjFb;=H;  (j=1,2), (5.14)

where

f(Z1,Zs,...,2y,) h; W(Zy,Zs,..., 20n)

f(Z2,Z3,...,7) R, hi(Za,Z3,...,Z)

=1 and H;=| . = .
f(zmzla---;zn—l) h'111 hj(zn,21,...,zn_1)

If for some F (5.14) holds, then
AR H1bT! = AR A FbibT! = AF = ARy A3 Fbab; ' = ARy Hobs !,

which shows the necessity of (5.13).
To prove the sufficiency it is important to observe that for some subspace £

RowAs =Row A& L,

in which case
Row A; N L = {0},

and consequently there exists an idempotent matrix P such that A; P = A,, while
Row A2 P C Row A. Assuming now that (5.13) is satisfied, then

F=F+P(F, - F)

with Fj = R;H;b ' (j = 1,2) satisfies the two equations in (5.14). O
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