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Abstract. The Maillet determinant associated with a Dirichlet character is
considered.

1 Introduction

In this note we consider the Maillet determinant associated with a Dirichlet char-
acter. Let m ≥ 3 be a natural number which is fixed, and a, b stand for ra-
tional integers which both are relatively prime to m. Assume that m is odd
or divisible by 4. Denote by Rm(a) the least positive residue of a modulo m:
a ≡ Rm(a) (mod m), 1 ≤ Rm(a) ≤ m− 1. The Maillet determinant Dm is defined
by

Dm = det

(
Rm(ab−1)

)
a,b∈S

,

where S = {1 ≤ a < m/2
∣∣ (a,m) = 1} and b−1 is the multiplicative inverse of b

modulo m, and provides the formula for the relative class number h−m of the m-th
cyclotomic number field K [2], [14], [16]:

Dm =
(−m)

φ(m)
2 −1

QK

∏
χ∈X(1)

∏
p|m

(
1− χ(p)

)
h−m,

whereQK is the unit index ofK (cf. [13] Chap. 3), φ(m) is the Euler function,X(1)

is the set of primitive Dirichlet characters with conductors dividing m such that

χ(−1) = −1 and
∏
p|m

indicates the product taken over primes dividing m. Carlitz

[1] and Fujisaki [6] generalized the Maillet determinant by using the Bernoulli
polynomials of higher degree.
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2 A. Endô

On the other hand the determinant of the Demjanenko matrix, which is one
having 0 and 1 as elements, also provides the formula for the relative class number
of the cyclotomic number fields [8]. Tsumura [15] and Hirabayashi [10] unified the
Maillet determinant and the Demjanenko matrix.

Now, denote by R′
m(a) the absolutely least residue of a modulo m: a ≡

R′
m(a) (mod m),−m/2 < R′

m(a) < m/2. Let

S′
m(a) = (−1)R

′
m(a),

T ′
m(a) =


(−1)

R′
m(a)

2 if R′
m(a) ≡ 0 (mod 2),

0 if R′
m(a) ≡ 1 (mod 2),

U ′
m(a) =


0 if R′

m(a) ≡ 0 (mod 2),

(−1)
R′

m(a)−1

2 if R′
m(a) ≡ 1 (mod 2).

Further for odd m > 3 denote by R
(3,k)
m (a), k = 0, 1, the residues of a modulo

m which satisfy

−m
3
< R(3.k)

m (a) <
m

3
, or

−2m

3
< R(3,k)

m (a) <
2m

3
and R(3,k)

m (a) ≡ k (mod 2).

Let

S
(3,0)
m (a) =

1

2
(1− (−1)R

(3,0)
m (a)3)

=


−1 if R

(3,0)
m (a) ≡ 0 (mod 2),

2 if R
(3,0)
m (a) ≡ 1 (mod 2),

U
(3,1)
m (a) =


0 if R

(3,1)
m (a) ≡ 0 (mod 2),

(−1)
R

(3,1)
m (a)−1

2 if R
(3,1)
m (a) ≡ 1 (mod 2).

2 Theorems

Let H be a subgroup of the multiplicative group Gm = (Z/mZ)×, Z being the
ring of rational integers, with index n not containing −1; then H corresponds
to an imaginary subfield of degree n in K. Further, let S be a subset of {1 ≤
a ≤ m − 1 | (a,m) = 1} which forms a complete system of representatives of
Gm/(H,−1).

Now, letBk(x) be the Bernoulli polynomial of degree k: B1(x) = x−1/2, B2(x) =
x2 − x + 1/6, . . . . Let ψ be a real Dirichlet character modulo f, (f,m) = 1 and
define a matrix ∆m,k,H(ψ) of degree n/2 by
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∆m,k,H(ψ) =

(∑
c∈H

f−1∑
d=0

ψ
(
Rm(ab−1c) + dm

)
Bk

(Rm(ab−1c) + dm

fm

))
a,b∈S

.

Denote by X the set of primitive Dirichlet characters χ with conductors dividing
m which satisfy χ(H) = 1, and by X(k) the subset of X consisting of χ ∈ Xsuch
that χ(−1) = (−1)k. For a Dirichlet character χ with conductor fχ, let Bk,χ be

the generalized Bernoulli number belonging to χ : Bk,χ = fk−1
χ

fχ−1∑
a=0

χ(a)Bk(a/fχ).

The following theorem can be proved in a way similar to the proof of Theorem
4 in [5] by using abelian group determinant relation:

Theorem 1. If ψ(−1) = (−1)k
′
, then

det∆m,k,H(ψ) =
∏

χ∈X(k+k′)

1

2(fm)k−1

∏
p|m

(
1− χψ(p)pk−1

)
Bk,χψ.

Let ψ0 be the trivial character modulo f , and ψD(a) =

(
D

a

)
the Kronecker

character for the discriminant D of a quadratic number field.
By considering det∆m,1,{1}(ψ) where ψ = ψ0 with f = 4, ψ = ψ−4, ψ = ψ−8

and ψ = ψ8 Theorem 1 together with Lemma in the next section allows us to
calculate the determinants whose (a, b) entries are R′

m(ab−1), S′
m(ab−1), T ′

m(ab−1)
and U ′

m(ab−1), respectively, because we see

R′
m(ab−1) = ±m

3∑
d=0

ψ0

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

4m

)
,

S′
m(ab−1) = −ψ−4(m)2

3∑
d=0

ψ−4

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

4m

)
,

T ′
m(ab−1) = −ψ−8(m)

7∑
d=0

ψ−8

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

8m

)
,

U ′
m(ab−1) = ±(−1)

m−1
2 ψ8(m)

7∑
d=0

ψ8

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

8m

)
,

where 2a ≡ ±a′ (mod m), a′ ∈ S (cf. [7], [11], [12]). When m is a power of an odd
prime, these determinants have already been calculated up to sign in [3], [4].

From now on we assume that H = {1}. We obtain the following:

Theorem 2. Assume that (m, 6) = 1 and H = {1}.

(1) det

(
R

(3,0)
m (ab−1)

)
a,b∈S



4 A. Endô

=
(
− m

2

)φ(m)
2

∏
χ∈X(1)

χ(2)
(
1− χ(3)

)∏
p|m

(
1− χ(p)

)
B1,χ.

(2) det

(
S
(3,0)
m (ab−1)

)
a,b∈S

=
(
ψ−3(m)

3

2

)φ(m)
2

∏
χ∈X(0)

χ(6)
∏
p|m

(
1− χψ−3(p)

)
B1,χψ−3 .

(3) det

(
R

(3,1)
m (ab−1)

)
a,b∈S

=
(
− m

2

)φ(m)
2

∏
χ∈X(1)

(
1− χ(2)

)(
1− χ(3)

)∏
p|m

(
1− χ(p)

)
B1,χ.

(4) det

(
U

(3,1)
m (ab−1)

)
a,b∈S

=
(
(−1)

m−1
2 ψ12(m)

1

2

)φ(m)
2

∏
χ∈X(1)

χ(3)
∏
p|m

(
1− χψ12(p)

)
B1,χψ12 .

In the particular case where m = p > 3 is a prime, we have the following:

Corollary. For an integer c prime to p let fp(c) indicate the multiplicative
order of c modulo p.

(1) det
(
R

(3,0)
p (ab−1)

)
̸= 0 if and only if fp(3) ≡ 0 (mod 2).

(2) det
(
S
(3,0)
p (ab−1)

)
̸= 0 if and only if p ≡ 2 (mod 3).

(3) det
(
R

(3,1)
p (ab−1)

)
̸= 0 if and only if fp(2) ≡ fp(3) ≡ 0 (mod 2).

(4) det
(
U

(3,1)
p (ab−1)

)
̸= 0 for all primes p > 3.

3 Proof of Theorem 2

Let u be an integer prime to m. Then, for any a ∈ S there exists a′ ∈ S such that
ua ≡ ±a′ (mod m); thus u induces a permutation σu of elements in S as follows:
ua ≡ ±a′ (mod m), σu(a) = a′ ∈ S. Let µu be the number of a ∈ S such that
ua ≡ −σu(a) (mod m), and sgnσu the signature of σu, that is, sgnσu = 1 or −1
according as σu is even or odd.

Lemma. For an integer u prime to m, we have∏
χ∈X

χ(u) = (−1)µu and
∏

χ∈X(0)

χ(u) = sgnσu.
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Proof. The first is immediate from that
∏
χ∈X

χ(u) ≡ u
φ(m)

2 ≡ (−1)µu (mod m),

and for the second see Hirabayashi [10].

Proof of Theorem 2. (1) We consider the case ψ = ψ0 with f = 3. We have
that if 3a ≡ ±2a′ (mod m), a′ = σ2−13(a) ∈ S, then

2∑
d=0

ψ0

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

3m

)

=
2∑
d=0

ψ0

(
Rm(a′b−1) + dm

)(Rm(a′b−1) + dm

3m
− 1

2

)

=



2Rm(a′b−1)

3m
if Rm(a′b−1) ≡ 0 (mod 3),

2Rm(a′b−1)− 2m

3m
if Rm(a′b−1) ≡ m (mod 3),

2Rm(a′b−1)−m

3m
if Rm(a′b−1) ≡ 2m (mod 3)

= ±R
(3,0)
m (ab−1)

m
,

which implies(
R

(3,0)
m (ab−1)

)
a,b∈S

= m

(
±

2∑
d=0

ψ0

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

3m

))
a,b∈S

.

Since (−1)µ2−13sgnσ2−13 =
∏

χ∈X(1)

χ(6) by Lemma, it follows from Theorem 1 that

det

(
R

(3,0)
m (ab−1)

)
a,b∈S

= m
φ(m)

2

∏
χ∈X(1)

χ(6) det∆m,1,{1}(ψ0)

=
(
− m

2

)φ(m)
2

∏
χ∈X(1)

χ(2)
(
1− χ(3)

)∏
p|m

(
1− χ(p)

)
B1,χ,
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because B1,χψ0 =
(
1− χ(3)

)
B1,χ.

(2) In this case, f = 3 and ψ−3(a) = ±1 according as a ≡ ±1 (mod 3) unless
a ≡ 0 (mod 3). We have that if 3a ≡ ±2a′ (mod m), a′ = σ2−13(a) ∈ S, then

2∑
d=0

ψ−3

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

3m

)

=
1

3

2∑
d=0

ψ−3

(
Rm(a′b−1) + dm)

)
d

=


−1

3
ψ−3(m) if Rm(a′b−1) ≡ 0,m (mod 3),

2

3
ψ−3(m) if Rm(a′b−1) ≡ 2m (mod 3)

=
ψ−3(m)

3
S(3,0)
m (ab−1),

which yields(
S
(3,0)
m (ab−1)

)
a,b∈S

= ψ−3(m)3

( 2∑
d=0

ψ−3

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

3m

))
a,b∈S

.

Since sgnσ2−13 =
∏

χ∈X(0)

χ(6) by Lemma it follows from Theorem 1 that

det

(
S
(3,0)
m (ab−1)

)
a,b∈S

=
(
ψ−3(m)3

)φ(m)
2

∏
χ∈X(0)

χ(6) det∆m,1,{1}(ψ−3)

=
(
ψ−3(m)

3

2

)φ(m)
2

∏
χ∈X(0)

χ(6)
∏
p|m

(
1− χψ−3(p)

)
B1,χψ−3 .

(3) We consider the case ψ = ψ0 with f = 12. We have that if 3a ≡
±a′ (mod 12), a′ = σ3(a) ∈ S, then

11∑
d=0

ψ0

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

12m

)

=
11∑
d=0

ψ0

(
Rm(a′b−1) + dm

)(Rm(a′b−1) + dm

12m
− 1

2

)
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=



Rm(a′b−1)

3m
if Rm(a′b−1) ≡ 0 mod 3),

Rm(a′b−1)−m

3m
if Rm(a′b−1) ≡ m (mod 3),

Rm(a′b−1) +m

3m
if Rm(a′b−1) ≡ 2m (mod 6),

Rm(a′b−1)− 2m

3m
if Rm(a′b−1) ≡ 5m (mod 6)

= ±R
(3,1)
m (ab−1)

m
,

which implies(
R

(3,1)
m (ab−1)

)
a,b∈S

= m

(
±

11∑
d=0

ψ0

(
Rm(a′b−1) + dm

)
B1

(Rm(a′′b−1) + dm

12m

))
a,b∈S

.

Hence it follows from Theorem 1 and Lemma that

det

(
R

(3,1)
m (ab−1)

)
a,b∈S

= m
φ(m)

2

∏
χ∈X(1)

χ(3) det∆m,1,{1}(ψ0)

=
(
− m

2

)φ(m)
2

∏
χ∈X(1)

(
1− χ(2)

)(
1− χ(3)

)∏
p|m

(
1− χ(p)

)
B1.χ,

because B1,χψ0 =
(
1− χ(2)

)(
1− χ(3)

)
B1,χ.

(4) In this case, f = 12 and ψ12(a) = 1 or −1 according as a ≡ 1, 11 (mod 12)
or 5, 7 (mod 12) unless (a, 12) ̸= 1. We have that if 3a ≡ ±a′, a′ = σ3(a) ∈ S, then

11∑
d=0

ψ12

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

12m

)

=
1

12

11∑
d=0

ψ12

(
Rm(a′b−1) + dm

)
d

=


ψ12(m) if Rm(a′b−1) ≡ 2m, 3m, 4m, 5m (mod 12),

−ψ12(m) if Rm(a′b−1) ≡ 8m, 9m, 10m, 11m (mod 12),

0 if Rm(a′b−1) ≡ 0,m (mod 6)
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= ±(−1)
m−1

2 ψ12(m)U
(3,1)
m (ab−1),

which yields(
U

(3,1)
m (ab−1)

)
a,b∈S

= (−1)
m−1

2 ψ12(m)

(
±

11∑
d=0

ψ12

(
Rm(a′b−1) + dm

)
B1

(Rm(a′b−1) + dm

12m

))
a,b∈S

.

Therefore it follows from Theorem 1 and Lemma that

det

(
U

(3,1)
m (ab−1)

)
a,b∈S

=
(
(−1)

m−1
2 ψ12(m)

)φ(m)
2

∏
χ∈X(1)

χ(3) det∆m,1,{1}(ψ12)

=
(
(−1)

m−1
2 ψ12(m)

1

2

)φ(m)
2

∏
χ∈X(1)

χ(3)
∏
p|m

(
1− χψ12(p)

)
B1,χψ12 .

We conclude this note by noting that the products det
(
R

(3,0)
m (ab−1)

)
det

(
S
(3,0)
m (ab−1)

)
and det

(
R

(3,1)
m (ab−1)

)
det

(
U

(3,1)
m (ab−1)

)
, unless they vanish, give the formulae

for the relative class numbers of the quadratic extensions K(
√
−3) and K(

√
3) of

K, respectively.
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