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Abstract. It is proved that if M = Dp+1(3)(p ≥ 3), G is a finite group
and has the same order components of M , then G ∼= M .

1 Introduction

If G is a finite group, we define the prime graph Γ(G) as follows: its vertices are
the primes dividing the order of G, and two vertices p and q are joined by an edge
if and only if there is an element in G of order pq. We denote the set of all the
connected components of graph Γ(G) by T (G) = {πi(G), for i = 1, 2, · · · , t(G)}
where t(G) is the number of connected components of Γ(G), and if G is of even
order we always assume that 2 belongs to π1(G). We denote by π(n) the set of all
primes dividing n where n is a natural number. Obviously |G| can be expressed as
a product of m1,m2,· · · ,mt(G), where mi is a positive integer with π(mi) = πi(G).
All mi are called the order components of G. Let OC(G) = {m1,m2, · · · ,mt(G)}
be the set of order components of G. The order components of non-abelian simple
groups having at least two prime graph components have been obtained in [3].

Professor J.G.Thompson proposed the following conjecture. Let M be a non-
abelian simple group, if G is a finite group satisfying Z(G) = 1 andN(G) = N(M),
where N(G) = {n ∈ N |G has a conjugacy class C, such that |C| = n}, then
G ∼= M . To formulate another conjecture put forward by Professor W. J.Shi,
let us introduce the notation πe(G) that denotes the set of orders of elements
of G. After the conjecture, if both M and G are finite groups with properties
|G| = |M | and πe(G) = πe(M) then G ∼= M . In [5], we had proved that if M is
a simple group with non-connected prime graph and G is a finite group satisfying
the conditions of J.G. Thompson’s conjecture then OC(G) = OC(M). Obviously,
if G is a finite group satisfying the conditions of W.J. Shi’s conjecture, we have
OC(G) = OC(M). As a consequence, these two conjectures naturally hold for a
simple group M characterized by it’s order components that consist at least of two

Mathematical Subject Classification (2010): Primary 20D05; Secondary 20D60
Key words: finite groups, prime graphs, order components



22 H.G. Shi and G.Y. Chen

elements. Hence, it’s an important topic to find out those simple groups satisfying
above mentioned properties.

We have established that the following simple groups have a non-connected
prime graph and can be characterized by their order components: a finite simple
group with at least three prime graph components [5], sporadic simple groups [3],
Suzuki-Ree groups [6], G2(q) where q ≡ 0 (mod 3) [4], E8(q) [1], PSL2(q) [7],
3D4(q) [8], 2Dn(3), 9 ≤ n = 2m + 1 ̸= p [9], 2Dp+1(2), 5 ≤ p ̸= 2m − 1 [28], Ap

where p and p − 2 are primes [12], PSL(5, q) [13], PSL(3, q) where q is an odd
prime power [14], PSL(3, q) for q = 2n [15], F4(q) where q is even [16], C2(q)
where q > 5 [17], PSU5(q) [18], PSU(3, q) for q > 5 [19], 2D4(q) [20],

2E6(q) [22],
E6(q) [21], PSL(p, q).[23], PSU(p, q)[24], PSL(p + 1, q) [25], PSU(p + 1, q)[26],
Cp(2)[29].

In this paper we continue this work and will prove the following theorem:

Theorem 1. Let M = Dp+1(3) where p is an odd prime. If a finite group G
satisfies the condition OC(G) = OC(M), then G ∼= M .

2 Preliminary Results

Lemma 2. [[3] Lemma 6] If t(G) ≥ 2, H is a πi subgroup of G, and H �G,then

(Π
t(G)
j=1,j ̸=imi) | (|H| − 1).

Lemma 3. [[2] Theorem 2] Let G be a 2-Frobenius group of even order. Then
t(G) = 2, G has a normal series 1�H�K�G such that |K/H| = m2, |H|·|G/K| =
m1, |G/K| | (|K/H| − 1), |G/K| | φ(|K/H|),and H is nilpotent.

Lemma 4. [[30] Lemma 3]If M is a simple group with t(M) = 2, G is a finite
group and OC(G) = OC(M), then one of the following holds:

(1) G is a Frobenius group or 2-Frobenius group.
(2) G has a normal series 1�H �K �G such that H is a nilpotent π1-group,

K/H is a non-abelian simple group, the odd order component of M is equal to one
of those of K/H, G/K is a cyclic π1-group, and |G/K| | |Out(K/H)|.

Lemma 5. [[11] Remark] The only solution of the equation pm − qn = 1, where
p , q are primes and m,n > 1, is 32 − 23 = 1.

Lemma 6. [31] Let p be a prime and n be a natural number, n ≥ 2 . Then there
exists a prime divisor r of pn − 1 which does not divide pm − 1 for any natural
number m ≤ n, except n = 6, p = 2 or n = 2, p + 1 is a power of 2. Such r is
called a primitive prime divisor of pn − 1.
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Of course a primitive prime divisor of pn − 1 can not divide pn + 1 or pm − 1
for n ∤ m.

Lemma 7. [[27] Lemma 1] If n ≥ 6 is a natural number then there exists at least
s(n) primes pi such that n+1

2 < pi < n:
s(n) = 6 for n ≥ 49;
s(n) = 5 for 42 ≤ n ≤ 47;
s(n) = 4 for 38 ≤ n ≤ 41;
s(n) = 3 for 18 ≤ n ≤ 37;
s(n) = 2 for 14 ≤ n ≤ 17;
s(n) = 1 for 6 ≤ n ≤ 13.

Suppose p is a prime number, a is a natural number, We denote the power of
p in the standard factorization of a by ap, and if ap = pn, then we write pn ∥ a.
Of course pn ∥ a denotes that pn|a and pn+1 ∤ a.

Lemma 8. [[29] Lemma 7, Lemma 8, Lemma 9] Let p be a prime, q > 1 be a
natural number e = min{d > 0 : p | (qd−1)}, qe = 1+prk, p ∤ k, s =

∏n
i=1(q

i−1),

t is a natural number and pu ∥ t. If p > 2 or r > 2 then pr+u ∥ (qet−1), sp < q
np
p−1

and sp < q1.5n if p = 2.

Definition 9. Let a and f be expressions of integers with integral coefficients, if
f | a and (f, a/f) = 1, then we say that f is a hall factor of a.

Lemma 10. [[10] Theorem 1]If q is a power of a prime number, c =
∏n

i=1(q
2i−1)

or (qn ± 1) ·
∏n−1

i=1 (q
2i − 1), then there exists a hall factor f of c satisfying:

(1) If n ≥ 23 then f > q8n;
(2) If n = 22 then f > q7n;
(3) If 18 ≤ n ≤ 21 then f > q6n;
(4) If 16 ≤ n ≤ 17 then f > q5n;
(5) If 14 ≤ n ≤ 15 then f > q4n.

And if the standard factorization of f =
∏t

k=1 r
δk
k , then rδkk ≤ qn−1−1

q−1 .

3 Proof of the theorem

Proof: Because M = Dp+1(3), p ≥ 3, and G has the same order components
with M , so the even order component of G is m1 = 2 · 3p(p+1)(3p+1 − 1)(3p +

1)
∏p−1

i=1 (3
2i − 1), the odd order component of G is m2 = (3p − 1)/2.

We divide the proof into several cases based on Lemma 4 and Tables 1-4 in [3].



24 H.G. Shi and G.Y. Chen

Case 1. G is not be a Frobenius group or a 2-Frobenius group.

Subcase 1.1 If G is a Frobenius group with Frobenius kernel H and comple-
ment K, then |H| = m1, |K| = m2 since |K| | (|H| − 1) . There exists a primitive
prime divisor r of 32p−1 by Lemma 6. Set Sr ∈ Sylr(H), of course |Sr| | (3p+1)/4
and Sr �G since H is nilpotent and so SrcharH. |Sr| ≡ 1 (mod m2) by Lemma
2, which is impossible.

Subcase 1.2 If G is a 2-Frobenius group , there is a normal series 1�H�K�G
such that H is a nilpotent π1 group, |K/H| = m2, |G/K| | (|K/H| − 1) = (3 ·
(3p−1 − 1))/2. Hence (3p + 1) | |H|. Similarly to Subcase 1.1, we can show it’s
impossible.

From Subcase 1.1, Subcase 1.2 and Lemma 4 we have the following properties:

1. There is a normal series 1�H �K �G such that K/H is a simple group,
H and G/K are π1 group and H is nilpotent.

2. The odd order component of G is one of those of K/H, consequently
t(K/H) ≥ 2. Hence K/H may be one of the simple groups listed in Tables 1-
4 in [3].

Case 2. K/H ≇ E7(2), E7(3), A2(2), A2(4),
2A5(2),

2E6(2),
2F4(2)

′ or one
of the sporadic simple groups.

Any odd order component of E7(2), E7(3), A2(2), A2(4),
2A5(2), or one of

the sporadic simple groups(except Suz and F22) can not be written into the form
(3p− 1)/2 for p ≥ 3. Though 2E6(2), Suz, F22 or 2F4(2)

′ has an order component
13 can be written into the form (3p−1)/2 and p = 3, but the order of 2E6(2), Suz,
F22 or 2F4(2)

′ can not divides |D4(3)|. So K/H ≇ E7(2), E7(3), A2(2), A2(4),
2A5(2),

2E6(2),
2F4(2)

′ or one of the sporadic simple groups.

Case 3. K/H ≇ An.

If K/H ∼= An then An has an odd component equal to (3p − 1)/2. Thus
|A(3p−1)/2| | |An| and |An| | |Dp+1(3)|. by Lemma 7, there exists at least six
primes pi satisfying (3p+1)/4 < pi < (3p−1)/2 for p ≥ 5,On the other hand there
exists at most three prime divisors of |Dp+1(3)| between (3p+1)/4 and (3p− 1)/2
by Lemma 7, a contradiction.

By trivial calculation, we conclude that p can not be 3.

Case 4 K/H ≇ An(q) ,
2An(q), E6(q), E8(q), F4(q),

2F4(q) or
2E6(q).

Subcase 4.1 If K/H ∼= A1(q), then (3p−1)/2 = q, (q±1)/(2, q−1). Whenever
in any case we have that q ≤ 3p+1, hence |K/H| < 33(p+1). Assume q = rf , we have

that |G/K| < 3p+1 since 23
p+1/2 > 3p+1 and |G/K| | |Out(K/H)| = 2f . If p ≥ 14

then there exists a hall factor g of |G| = 3p(p+1)(3p+1 − 1)
∏p

i=1(3
2i − 1) satisfying

that g > 34p and for any prime number r′ | g we have that gr′ < (3p − 1)/2 by
Lemma 10. Clearly (g, |H|) ̸= 1. Let p′ be a prime number satisfy p′ | (g, |H|)
and Sp′ ∈ Sylp′(G). Sp′ is a normal π1−subgroup of G and |Sp′ | < (3p − 1)/2,
which contradicts Lemma 2.

By trivial calculation, we can show p can not be 3, 5, 7 or 11.
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Subcase 4.2 If K/H ∼= Ap′(q), q−1 | p′−1 then (3p−1)/2 = (qp
′ −1)/(q−1).

Thus qp
′+1 ≥ 3p.

If p′ > 7 then qp
′(p′+1)/2 > 33(p+1), which implies q is a power of 3 by Lemma

8 and Lemma 8. It follows that 3p − 3 = 2(qp
′−1 + qp

′−2 + · · ·+ q), consequently
q = 3 and p = p′, furthermore 3p + 1 | |H|. Similarly to Subcase 1.1, we can get
a contradiction.

By trivial calculation we can show that p′ can not be 3 or 5.
Similarly, we can show that K/H ≇ 2An(q), E6(q), E8(q), F4(q),

2F4(q) or
2E6(q).

Subcase 4.3 If K/H ∼= Ap′−1(q) then (qp
′ −1)/(q−1)(p′, q−1) = (3p−1)/2.

Similarly to Subcase 4.2, we can prove that p′ can not be greater than 7. And
similarly to Subcase 4.1, it is easy to prove that p′ can not be 3, 5 or 7.

Case 5 K/H ≇ Bn(q) or Cn(q).

Subcase 5.1 If K/H ∼= Cp′(2), then 2p
′ − 1 = (3p − 1)/2, 2p

′+1 − 1 = 3p,
which contradicts Lemma 5.

Subcase 5.2 If K/H ∼= Bp′(3) or Cp′(3), then (3p−1)/2 = (3p
′ −1)/2, p = p′,

|Bp(3)| and |Cp(3)| are divisors of |Dp+1(3)|, which is impossible.
Subcase 5.3 Similarly to Subcase 4.2, we can show that K/H ∼= Bn(q) or

Cn(q)(4 ≤ n = 2m).

Case 6 K/H ≇ 2Dn(q).

Subcase 6.1 If K/H ∼= 2Dp′(3)(5 ≤ p′ ̸= 2k+1), then (3p−1)/2 = (3p
′
+1)/4

� 2·3p−3p
′
= 3 a contradiction. Similarly, we can prove that K/H ≇ 2Dn(3)(9 ≤

n = 2k + 1 is not a prime); K/H ≇ 2Dp′(3)(5 ≤ p′ = 2k + 1).

Subcase 6.2 If K/H ∼= 2Dp′+1(2)(p
′ ̸= 2m − 1), then (3p − 1)/2 = 2p

′ − 1,

3p = 2p
′+1 − 1, which contradicts Lemma 5. Similarly we can prove K/H ≇

2Dp′+1(2)(3 ≤ p′ = 2k − 1).
Subcase 6.3 Similarly to Subcase 4.2, we can prove that K/H ≇ 2Dn(q)(2 ≤

n = 2k).

Case 7 K/H ≇ G2(q); K/H ≇ 3D4(q); K/H ≇ 2G2(q)(q = 32k+1).
Subcase 7.1 IfK/H ∼= G2(q)(3 | q), then (3p−1)/2 = q2±q+1, 3p−3 = q2±q,

a contradiction. Similarly we have that K/H ≇ 2G2(q)(q = 32k+1).
Subcase 7.2 Similarly to Subcase 4.1, we can prove that K/H ≇ G2(q)(3 |

q ± 1) or 3D4(q).

Case 8 K/H ≇ 2B2(q)(4 ≤ q = 22k+1).
If K/H ∼= 2B2(q)(4 ≤ q = 22k+1), then (3p − 1)/2 = q ±

√
2q + 1 or q − 1.

Clearly (3p − 1)/2 ̸= q − 1。
If (3p − 1)/2 = q +

√
2q + 1, then 3(3p−1 − 1) = 2k+2(2k + 1), 2k | p − 1 by

Lemma 8, furthermore, 2k+2(2k +1) = 3(3p−1 − 1) > 3p−1 > 32
k

> 22
k

> 22k+3 >
2k+2(2k + 1) for k ≥ 4, a contradiction. By calculation we can prove that k can
not be 1, 2 or 3.

Similarly we have (3p − 1)/2 ̸= q −
√
2q + 1.
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Case 9 From Cases 1-8 and Lemma 4 we have K/H is isomorphic to one of
Dn(q).

If K/H ∼= Dp′(3)(p′ ≥ 5), then (3p − 1)/2 = (3p
′ − 1)/2, p = p′, hence

|G/K| · |H| = 32p(3p + 1)(3p+1 − 1), furthermore, 3p + 1 | |H| since |G/K| |
|Out(K/H)| = 4, similarly to Subcase 1.1 we can get a contradiction.

If K/H ∼= DP ′(5), p′ ≥ 5, then (5p
′−1)/4 = (3p−1)/2, 5p

′
> 3P . Furthermore,

5p
′(p′−1) > 33(p+1), which contradicts Lemma 8.
So K/H ∼= Dp′+1(3), (3

p′ − 1)/2 = (3p − 1)/2, p = p′, hence K/H = 1, H = 1,
G ∼= M . 2
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